Bruno Jefferson de Sousa
José Jorge Lima Dias Junior
Andrei de Araujo Formiga

Introducao a Programacao

Editora da UFPB
Joao Pessoa
2014

Introdugdo a Programacao

Introducao a Programacao

[FoF [e DBLATEX

Introdugdo a Programacao

Sumario

(1 Algoritmos|

(1.1 Introducaol. e
(1.2 Oqueéumalgoritmo?]
(1.3 Caracteristicas de um algoritmo| o oL
(1.4 Formas de representacao|
(1.4.1 Descricao Narratival.
(1.4.2 Fluxograma
(1.4.3 Linguagem Algoritmical
(1.5 Recapitulando|.
(1.6 Exercicios Propostos|

2 Introducao a Programacao|

2.1 Introducdo|. e
[2.2 Niveis das Linguagens de Programacao|
2.3 Tradutores e Interpretadores|
[2.4 Paradigmas de Programacao|
2.5 Linguagem C| e
2.6 Nucleodeumprogramal.
R7 Memdriae Varidveisl
271 Identificadores|
[2.7.2 Tipos de dados primitivos|
[2.7.3 Declaracdo de variavers| o oL
274 Constantes simbdlicasl L o L
2.8 Comentarios e indentacaol. e e
2.9 Matematica Basical
.10 Entradaesaidadedadosl L
[2.10.1 Funcaoprintf()l
[2.10.2 Funcaoscanf()]
[2.11 Recapitulando|.
[2.12 Exercicios Propostos|

O ®©® O LN R R D —

Introdugdo a Programacao

3 Estruturas de Controle| 32
3.1 Introducdol. e 32
(3.2 Estrutura Sequencial| 32
3.3 Estruturade Decisaol 33

[(3.3.1 Decisaosimples| 33
(3.3.1.1 Expressoes logicas|. oL 34

B.3.1.2 Exercicioresolvidolo 36

[3.3.1.3 Verificacao da condi¢ao com expressoes aritmeéticas na Linguagem C| 37

[3.3.2 Decisaocompostal 38
3.32.1 Exercicioresolvidolo 39

[3.3.3 Comando de decisaomultpla] 0L, 40

[3.4 Estruturade Repeticaol 42
B41 Comandowhilel. 42
B4ATLT Exercicioresolvidol, 43

342 Comandodo-whilelo 44
343 Comandofor 45
[3.4.4 Lacomfinito| 46
B45 ExercicioResolvidol 47
346 Comandosdedesviol o 48
3.4.6.1 Comandobreakl 48

4.6.2 man ntinuel. L 49

[3.5 Recapitulando|o 50
[3.6 Exercicios Propostos| 50

52
@.1 Introducdol. e 52
o < 52

4.2.1 Declaracaode Vetores|, 53
B.22 Acessando os elementosdeumvetod L 53
B23 Exercicioresolvidolo 55
4) 57
#4.3.1 Lendo e imprimindo Strings| L Lo 57
#.3.2 Manipulando strings|o L 58
433 Exercicioresolvidol 59
4.4 Matrizes| e 59
“.5 Recapitulandolo 61
4.6 Exercicios Propostos| 61

Introdugdo a Programacao

63

5.1 Oquesaofuncoes?| e e e 63
[5.1.1 Umexemplo| 64

0.2 Parametrosl 67
[5.3 Retorno de Valores com Funcgoes| o o000 69
[5.3.1 Funcgoes, Procedimentos e o Tipovoid| 70

[>.4 Um Exemplo Matematico: Equacao de Segundo Grau|. 73
0.5 Escopode Variavers|. 76
[5.5.1 Escopo dos Parametros| L. 78
[5.5.2 Sombreamento e Sobreposicao de Escopos| 78

[5.6 Passagem de Parametros| o Lo 80
[5.6.1 Passagempor Valor{. oo 81
[5.6.2 Passagem por Referéncial L. 82
[5.6.2.1 Realizando troca de valores com variaveis globais| 83

[5.7 Prototipos e Declaracao de Funcoes| o000 85
[5.8 Funcdes Recursivas| 87
5.9 Recapitulando| 90
[5.10 Exercicios Propostos| 90

|6 I’]I R . . | 92

Introdugdo a Programacao

Prefacio

BAIXANDO A VERSAO MAIS NOVA DESTE LIVRO

Acesse https://github.com/edusantana/introducao-a-programacao-livro/releases para ve-
rificar se hd uma versao mais o Historico de revisdes, na inicio do livro, para verificar o
que mudou entre uma versao e outra.

Este livro é destinado a alunos de cursos como Ciéncia da Computagdo, Sistemas de Informacao,
Engenharia da Computacio e, sobretudo, Licenciatura em Computacdo. Ele tem o objetivo de apre-
sentar os principais conceitos da programacdo de computadores, de modo que sua utilizacdo é mais
adequado a disciplinas introdutérias como a de Introdu¢do a Programacgdo. De forma alguma o pre-
sente livro tem a pretensdo de cobrir todos os assuntos relacionados a drea de programacgdo. Sua
principal finalidade € a de servir como guia para os alunos que estdo dando os primeiros passos nessa
area que € tdo importante para a ci€éncia da computacao.

A disciplina de Introdugdo a Programacao € a primeira de uma sequéncia de disciplinas que t€ém o ob-
jetivo de tornar os alunos capazes dominar os fundamentos e as técnicas relacionadas a programacao
de computadores. Durante o curso de Licenciatura em Computacdo, especificamente, os alunos terao
a chance de conhecer em detalhes algumas das linguagens de programacao mais utilizadas atualmente
e estardo habilitados a ministrar cursos de programacao para diversos publicos.

Mais importante do que conhecer as peculiaridades das linguagens de programacao é aprender como
funciona a légica aplicada na elaboracdo de solucdes desenvolvidas a partir de algoritmos compu-
tacionais. Sendo assim, o principal objetivo deste livro € ensind-los a resolver problemas com base
nos comandos e mecanismos presentes nas linguagens de programacgdo, desenvolvendo assim o que
chamamos de 16gica de programacdo. No decorrer do livro, o leitor aprenderd gradativamente a dar
instrucdes ao computador através de programas que ele proprio serd capaz de criar. Para isso, conhe-
cerd a linguagem de programac¢do C, uma das mais utilizadas e mais importantes linguagens na area
de Ciéncia da Computagao.

No Capitulo 1 serd abordado o conceito de algoritmo, e suas principais formas de representacao serao
apresentadas. No Capitulo 2, descrevemos todo o processo de tradu¢cdo de um programa escrito em
linguagem de alto nivel para um programa equivalente em c6digo de maquina, isto €, a linguagem que
os computadores conhecem. Além disso, serd apresentado ao leitor a estrutura de um programa na
linguagem C, o que o habilitard o leitor a desenvolver seu primeiro programa. O Capitulo 3 consiste
no contetido do livro que mais desenvolve a 16gica de programacio. E nele que se encontram as
principais instru¢des de uma linguagem de programacao: as estruturas de controle. No Capitulo 4
serd apresentado o conceito de arranjos e, por fim, no Capitulo 5, explicaremos como programas
complexos podem ser divididos em programas menores, mais faceis de serem solucionados, através
da utilizacdo das funcoes.

Recomendamos ao aluno, iniciante na programacdo de computadores, que ndo se limite a leitura e ao
conteudo deste livro. Pesquise na internet outros materiais, leia outros livros e faca todos os exercicios

https://github.com/edusantana/introducao-a-programacao-livro/releases

Introdugdo a Programacao

propostos. Programacgao, assim como matemadtica, requer muito exercicio, muita pratica. Como
mencionado anteriormente, a programac¢do de computadores € uma das subdreas mais importantes da
carreira que voce escolheu seguir. Boa parte das disciplinas do seu curso depende do conhecimento
adquirido em Introducdo a Programacdo. Portanto, dedique o maximo que puder ao aprendizado de
uma drea que vai permiti-lo transformar sonhos em realidade.

Publico alvo

O publico alvo desse livro sdo os alunos de Licenciatura em Computacdo, na modalidade a distancia
I Ele foi concebido para ser utilizado numa disciplina de Introducdo a Programagdo, no primeiro
semestre do curso.

Como vocé deve estudar cada capitulo

* Leia a visdo geral do capitulo

Estude os conteudos das se¢oes

* Realize as atividades no final do capitulo

Verifique se vocé atingiu os objetivos do capitulo

NA SALA DE AULA DO CURSO

* Tire duvidas e discuta sobre as atividades do livro com outros integrantes do curso
* Leia materiais complementares eventualmente disponibilizados

* Realize as atividades propostas pelo professor da disciplina

Caixas de dialogo

Nesta secdo apresentamos as caixas de didlogo que poderao ser utilizadas durante o texto. Confira os
significados delas.

Nota

Esta caixa é utilizada para realizar alguma reflexao.

Dica

Esta caixa é utilizada quando desejamos remeter a materiais complementares.

"Embora ele tenha sido feito para atender aos alunos da Universidade Federal da Paraiba, o seu uso nio se restringe
a esta universidade, podendo ser adotado por outras universidades do sistema UAB.

Vi

Introdugdo a Programacao

Importante
Esta caixa € utilizada para chamar atengéo sobre algo importante.

Cuidado
Esta caixa € utilizada para alertar sobre algo que exige cautela.

Atencao
Esta caixa € utilizada para alertar sobre algo potencialmente perigoso.

Os significados das caixas sdao apenas uma referéncia, podendo ser adaptados conforme as intengdes
dos autores.

Videos

Os videos sao apresentados da seguinte forma:

Figura 1: Como baixar os cédigos fontes: http://youtu.be/Od90rVXIV78

Nota

Na versao impressa ir4d aparecer uma imagem quadriculada. Isto é o qgrcode
(http://pt.wikipedia.org/wiki/C%C3%B3digo_QR) contendo o link do video. Caso vocé tenha
um celular com acesso a internet podera acionar um programa de leitura de grcode para
acessar o video.

Na versao digital vocé podera assistir o video clicando diretamente sobre o link.

Vi

http://youtu.be/Od90rVXJV78
http://pt.wikipedia.org/wiki/C%C3%B3digo_QR

Introdugdo a Programacao

Compreendendo as referéncias

As referéncias sdo apresentadas conforme o elemento que estd sendo referenciado:

Referéncias a capitulos

Referéncias a secoes
“{Como voce deve estudar cada capitulo]” [[vi]l, ‘{Caixas de dialogo]” [[v].

Referéncias a imagens

Figura[2]

Nota

Na versao impressa, o0 nimero que aparece entre chaves “[]’ corresponde ao nimero da
pagina onde esta o contetdo referenciado. Na versao digital do livro vocé podera clicar no
link da referéncia.

Feedback

Vocé pode contribuir com a atualizac@o e correcdo deste livro. Ao final de cada capitulo vocé sera
convidado a fazé-lo, enviando um feedback como a seguir:

Feedback sobre o capitulo
Vocé pode contribuir para melhoria dos nossos livros. Encontrou algum erro? Gostaria de

submeter uma sugestao ou critica?
Para compreender melhor como feedbacks funcionam consulte o guia do curso.

Nota

A secao sobre o feedback, no guia do curso, pode ser acessado em: |https://github.com/-
edusantana/guia-geral-ead-computacao-ufpb/blob/master/livro/capitulos/livros-
contribuicao.adoc.

viii

https://github.com/edusantana/guia-geral-ead-computacao-ufpb/blob/master/livro/capitulos/livros-contribuicao.adoc
https://github.com/edusantana/guia-geral-ead-computacao-ufpb/blob/master/livro/capitulos/livros-contribuicao.adoc
https://github.com/edusantana/guia-geral-ead-computacao-ufpb/blob/master/livro/capitulos/livros-contribuicao.adoc
https://github.com/edusantana/guia-geral-ead-computacao-ufpb/blob/master/livro/capitulos/livros-contribuicao.adoc

Introdugdo a Programacao

-
. cap1 Repeticao da palavra dados

No one is assigned ¥~ No milestone & v
Write Preview LI Parsed as Markdown {E, Edit in fullscreen
Verséo do livro: "v1.1.0°

Pagina: "32
Onde esta escrito "O barramento de endereco de dados dados ..."

A palavra **dados** estd repetida.

Attach images by dragging & dropping or selecting them

R

Figura 2: Exemplo de contribui¢cdo

Introdugdo a Programacao

Capitulo 1

Algoritmos

OBJETIVOS DO CAPITULO

Ao final deste capitulo vocé deverd ser capaz de:

* Definir algoritmo
» Descrever suas principais caracteristicas

* Criar algoritmos utilizando diferentes formas de representacao

E comum pensarmos em uma estratégia para executar uma tarefa do nosso dia a dia, mesmo que ela
seja muito simples. Ao escovar os dentes, por exemplo, nés seguimos diferentes estratégias. Uns
comecam com a escovacdo dos molares e depois partem para os dentes da frente, outros fazem o
inverso. Enfim, existem varias formas de escovarmos os dentes, assim como existem varias maneiras
de realizarmos diversas atividades. Vocé sabia que o conjunto de passos para resolver um certo
problema ou realizar determinada tarefa chama-se algoritmo? E que eles sdo importantissimos para a
programacgdo de computadores?

Neste capitulo estudaremos as caracteristicas dos algoritmos, suas formas de representacao e, sobre-
tudo, a relacdo entre eles e a programacio de computadores.

1.1 Introducao

Fonte inspiradora de livros e filmes, o americano Monty Roberts (Figura [I.T] [2]]), conhecido como
o “encantador de cavalos”, revolucionou a forma de domar cavalos. Ao estudar o comportamento
de cavalos selvagens, percebeu que existe entre eles uma linguagem corporal compartilhada. Enten-
dendo tal linguagem, conseguiu rapidamente ganhar a confianca de cavalos arredios e instrui-los a
se comportarem como desejava. Além de ndo usar de violéncia, essencial no emprego dos métodos
convencionais, seu método é capaz de domar cavalos em poucos dias, ao contrdrio da maioria, que
normalmente necessita de varias semanas.

1/92

Introdugdo a Programacao

Figura 1.1: Monty Roberts.

Assim como os cavalos, os computadores também sao instruidos por meio de uma linguagem par-
ticular. Para que eles se comportem como desejamos, basta que sejam comandados a partir de uma
linguagem que sejam capazes de entender.

Diferentemente do que ensina o senso o comum, os computadores ndo possuem inteligéncia. Seu
Unico trabalho é processar dados, conforme uma sequéncia de instru¢des que fazem parte do voca-
buldrio da linguagem que eles conseguem compreender. A ilusdo de que eles realizam tarefas de
forma inteligente € proporcionada através desse conjunto ordenado de instrucdes, que € denominado
de algoritmo. Neste caso, o “domador” do computador, responsdvel por elaborar o algoritmo que vai
orientd-lo na execucdo de uma determinada tarefa, ¢ chamado de programador de computadores.

1.2 O que é um algoritmo?

A palavra “algoritmo” € derivada do nome Mohammed ibn Musa Al-Khowarizmique, que foi um
matematico, astrélogo, astronomo e autor persa. Ele fez parte de um centro académico conhecido
como a Casa da Sabedoria, em Bagdd, por volta de 800 d.C. Seus trabalhos introduziram o célculo
hindu aos drabes e, a partir dai, ao resto da Europa.

N3ao obstante os algoritmos representam um conceito central na Ciéncia da Computagdo, sua atuagcdo
ndo se limita a essa drea do conhecimento. Rotineiramente, lidamos com algoritmos na realizagcdo
das mais variadas tarefas. Eles podem ser utilizados para lavar um carro, preparar um bolo, tomar
banho, montar um guarda-roupa, etc. Perceba que os algoritmos ndo devem ser confundidos com as
atividades. Eles se referem aos passos seguidos para que estas sejam realizadas. Como exemplo de
algoritmos, podemos citar as instru¢des para montagem de equipamentos, para utilizacdo de cosmé-
ticos como shampoos e condicionadores, para saida de emergéncia em meios de transporte, receitas
culinarias, manuais de uso, entre outros.

A partir do que foi exposto, podemos definir algoritmo como uma sequéncia finita, ordenada e ndo
ambigua de passos para solucionar determinado problema ou realizar uma tarefa.

Na ciéncia da computacdo, esse conceito foi formalizado em 1936, por Alan Turing e Alonzo Church,
da seguinte forma:

DEFINICAO DE ALGORITIMO

Um algoritmo € um conjunto nao ambiguo e ordenado de passos executdveis que definem

um processo finito.
O exemplo a seguir mostra como pode ser elaborado um algoritmo para realizar uma atividade com a
qual lidamos corriqueiramente:

ALGORITMO PARA FRITAR UM OVO

2/92

Introdugdo a Programacao

1. Retire o ovo da geladeira.

2. Coloque a frigideira no fogo.

3. Coloque ¢leo na frigideira.

4. Quebre ovo, separando a casca.

5. Ponha a clara e a gema na frigideira.
6. Espere um minuto.

7. Apague o fogo.

8. Retire o ovo da frigideira.

Agora considere o seguinte problema. Suponha que vocé dispde de duas vasilhas de nove e quatro
litros respectivamente. Como elas ndo possuem marcagdo, nao € possivel ter medidas intermedidrias
sobre o volume ocupado. O problema consiste, entdo, em elaborar uma sequéncia de passos, por meio
da utilizacao das vasilhas de nove e quatro litros, a fim de encher uma terceira vasilha com seis litros
de 4gua. A figura abaixo ilustra dois possiveis passos de um algoritmo para resolver o problema.

=l

Capacidade: 9 litros Capacidade: 4 litros Capacidade: 6 litros
Utilizacao: 9 litros Utilizacao: 0 litros Utilizacao: 0 litros

C__)

Capacidade: 9 litros Capacidade: 4 litros Capacidade: 6 litros
Utilizagao: 0 litros Utilizagao: 4 litros Utilizagao: 5 litros

Figura 1.2: Ilustra dois passos possiveis envolvendo as operagdes de encher e esvaziar as vasilhas.
Em (a) apenas a primeira vasilha esta cheia. Ja em (b) os nove litros da primeira vasilha sdo colocados
nas outras duas.

Uma solugdo para o problema pode ser alcancada a partir do seguinte algoritmo:

ALGORITMO PARA ENCHER VASILHAS

1. Encha a vasilha de nove litros.
2. Usando a vasilha de nove litros, encha a de quatro.

3. Coloque a quantidade que sobrou (cinco litros) na terceira vasilha (v3 = 5).

3/92

Introdugdo a Programacao

Esvazie a vasilha de quatro litros.

Encha novamente a vasilha de nove litros.

Usando a vasilha de nove litros, encha a de quatro.
Esvazie a de quatro litros.

Usando a sobra da de nove litros (cinco litros), encha novamente a de quatro litros.

© 24 s

Coloque a sobra da de nove litros (agora um litro) na terceira vasilha (v3=5+1=6).

1.3 Caracteristicas de um algoritmo

Todo algoritmo, seja ele computacional ou ndo, recebe uma entrada, processa-a € gera uma saida
segundo seu conjunto de passos. No caso do algoritmo para fritar ovo, a entrada corresponde a
frigideira, ao ovo e ao 6leo. O processamento ocorre com a execugdo de seus passos, gerando como
saida o ovo frito.

Os algoritmos computacionais, especificamente, possuem as seguintes caracteristicas:

Definicao
Os passos de um algoritmo devem ser bem definidos, objetivando a clareza e evitando ambigui-
dades.

Finitude
Um algoritmo deve chegar ao seu fim apds um nimero finito de passos.

Efetividade
Um algoritmo deve ser efetivo, ou seja, suas operagdes devem ser bdsicas o suficiente para que
possam, em principio, serem executadas de maneira exata e em um tempo finito.

Entradas
Um algoritmo deve possuir zero ou mais entradas. Estas sdo insumos ou quantidades que sao
processados pelos algoritmos durante a execugao de seus passos.

Saidas
Um algoritmo deve possuir uma ou mais saidas. Elas representam o resultado do trabalhado

realizado pelos algoritmos.

1.4 Formas de representacao

As formas mais comumente utilizadas para representar algoritmos sao as seguintes:
* Descricao narrativa

* Fluxograma

* Linguagem Algoritmica

Todas elas apresentam pontos fortes e fracos, ndo existindo consenso entre os especialistas sobre a
melhor forma de representagdo. Apresentaremos as nuances de cada uma nas proximas secoes.

4/92

Introdugdo a Programacao

1.4.1 Descricao Narrativa

Os algoritmos sdo expressos em linguagem natural (portugués, inglés, francés, espanhol, etc.). Sua
principal desvantagem se encontra no fato da linguagem natural estar bem distante da linguagem
utilizada pelos computadores. Logo, a tradu¢do de uma para a outra se torna uma atividade bastante
dispendiosa. Além disso, linguagens naturais sao mais propensas a ambiguidades. Muitas vezes uma
palavra pode ter varios significados, dependendo do contexto no qual sao utilizadas. Em contrapartida,
¢ bem mais fécil elaborar um algoritmo por meio de uma linguagem com a qual ja temos uma certa
familiaridade, do que através de linguagens que ndo sao utilizadas com frequéncia no dia a dia.

Os exemplos de algoritmos mostrados anteriormente (Algoritmo para fritar um ovo] [2]] e [Algoritmo]
[para encher vasilhas| [[3]]) refletem esta forma de representagao.

1.4.2 Fluxograma

Consiste em usar formas geométricas padronizadas para descrever os passos a serem executados pelos
algoritmos. As formas apresentadas na Figura 1.3 sdo as mais comumente utilizadas em fluxogramas.

)
Processamento. Inicio/Fim.
———
/
Sentido do fluxo
de execugao do Entrada de dados.
algoritmo.
Ponto de deciséo. Saida de dados.
\/

Figura 1.3: Formas geométricas utilizadas em fluxogramas

A vantagem de se fazer uso dos fluxogramas estd na facilidade de compreendé-los. Descri¢des de
algoritmos mediante formas graficas sdo mais facilmente compreendidas do que descricdes que en-
volvem apenas textos. Além do mais, os fluxogramas possuem um padrdao mundial no que se refere a
sua simbologia, tornando sua utiliza¢do independente das peculiaridades das linguagens naturais.

Para exemplificar o uso de fluxogramas, a Figura [I.4] [[6] mostra um algoritmo para calcular a média
final de um aluno com base em suas notas e classificd-lo como aprovado ou reprovado. Analisando-a
com mais cuidado, € possivel perceber que os fluxogramas tendem a crescer bastante quando descre-
vem algoritmos constituidos de muitos passos, o que dificulta tanto sua constru¢do como sua visua-
lizagdo. Além dessa desvantagem, por impor regras para sua utilizacdo de acordo com cada forma
geométrica, hd uma limitacao no seu poder de expressdo, se comparado com a descricdo narrativa.

5/92

Introdugdo a Programacao

Inicio Obter nota1 Obter nota2

M=(nota1 + nota2)

. Aprovado

Fim

Reprovado

Figura 1.4: Fluxograma para calcular a média de um aluno e classificé-lo

1.4.3 Linguagem Algoritmica

A linguagem que o computador é capaz de compreender tem grande influéncia na elaboragdo de
algoritmos projetados para ele. Seus passos ndo podem conter instru¢des desconhecidas ou fazer
referéncia a simbolos ou expressdes que os computadores ndo conseguem decifrar. Tal linguagem,
tantas vezes mencionada neste capitulo, se baseia em conceitos e em arquiteturas de hardware que
determinam o funcionamento basico de um computador. Dentre as existentes, a mais utilizada nos
computadores atuais € a arquitetura de von Neumann. Seu autor, John Von Neumann (Figura [L.5][[])),
propds um modelo em que as instrugdes e os dados ficam juntos na memoria.

O processador busca as instru¢cdes na memoria e as executa uma de cada vez, segundo o seguinte ciclo
de execucao:

1. Busca instrucdo;
2. Decodifica instrugdo;
3. Executa instrucao;

4. Volta para o passo 1 para buscar a instru¢do seguinte na memoria.

Figura 1.5: John von Neumann

6/92

Introdugdo a Programacao

Para esclarecer como funciona a execuc¢ao de um algoritmo baseado no ciclo de execu¢ao mencio-
nado, considere uma memoria com 32 posi¢des para armazenamento, organizada conforme Figura[I.6]

[7]l.

0 1 2 3
X =2 y=3|z=x.y
3 5 6 7
8 9 10 1
2 3 6
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

Figura 1.6: Representacdo de uma memoria com 32 posi¢des para armazenamento.

Os ndmeros do canto superior direito de cada célula indicam os enderecos de memoria correspon-
dentes a cada posicao da memoria representada. Nas trés primeiras células constam as instrug¢des
que serdo executadas e, da oitava a décima, constam valores armazenados nas posi¢cdes de memoria
nomeadas por X, y € z, respectivamente.

Supondo que a execucao do algoritmo em questdo inicia-se com a busca da instru¢io no endereco 0
(zero), o ciclo de execucdo continua com a decodifica¢@o da instrucdo x = 2, que, apds sua realizacao,
resulta no armazenamento do valor 2 na posicdo de memoria de nimero 8, nomeada de x. O passo
4 entdo € executado, dando inicio a busca da préxima instru¢do. Com isso, a instrucdo y = 3 €
encontrada e decodificada, gerando como resultado o armazenamento do valor 3 na posi¢do de nimero
9, nomeada de y. O mesmo ocorre com a instru¢do z = X.y, que, apos sua decodificagdo, armazena
o valor 6 (produto de x por y) na posi¢ao de endereco 10 e rotulada de z. O algoritmo em descri¢ao
narrativa para a execugdo das instrugdes anteriores encontra-se logo abaixo:

ALGORITMO PARA MULTIPLICAR DOIS NUMEROS
1. Escreva 2 na posicao de memdria nomeada de x.

2. Escreva 3 na posi¢do de memoria nomeada de y.

3. Multiplique x e y e o resultado escreva em z.

Modelos como o mencionado anteriormente nao apenas definem a forma como os dados sao processa-
dos pelo computador, mas também a linguagem que eles sdo capazes de compreender. Assim sendo,
a linguagem utilizada pelos computadores esta restrita a um conjunto limitado de instrucdes, cujo
funcionamento depende de sua arquitetura de hardware. As linguagens de programacao imperativas
(Pascal, C, Cobol etc), por exemplo, foram criadas em funcdo da arquitetura de von Neumman.

7/92

Introdugdo a Programacao

A linguagem algoritmica, também chamada de pseudocddigo ou pseudo-linguagem, por sua vez,
consiste no emprego de uma linguagem intermedidria entre a linguagem natural e uma linguagem de
programacgdo. Esse meio termo resulta em uma linguagem que se aproxima das constru¢des de uma
linguagem de programacgdo, sem exigir, no entanto, rigidez na defini¢do das regras para utilizacdo de
suas instru¢des. Geralmente, essa forma de representacdo de algoritmos é uma versao reduzida de
linguagens de alto nivel como C e Pascal. Segue abaixo o algoritmo da Figura [T.4][[f]] em pseudocé-
digo:
ALGORITMO
DECLARE notal, nota2, M : NUMERICO
LETIA notal
LEIA nota2
M ¢ (notal + nota2) / 2
SE M >= 7.0 ENTAO
ESCREVA “Aprovado”
SENAO
ESCREVA “Reprovado”
FIM-SE
FIM ALGORITMO.

As palavras em letras maitdsculas correspondem a palavras reservadas que fazem parte do conjunto
de regras que a linguagem algoritmica deve seguir.

Embora sejam mais flexiveis do que as linguagens de programacao em relac@o ao seu uso (a instru¢ao
LEIA, por exemplo, muitas vezes € substituida por LER, OBTER, etc.), algumas palavras sdo necessd-
rias, pois facilitam o entendimento e aproximam o pseudocddigo de um programa de computador. As
palavras INTCTO e FIM, por exemplo, indicam onde comega e termina o algoritmo. J4 as instrugdes
LEIA e ESCREVA referem-se a operagdes de entrada e saida de dados (ex.: ler dados do teclado ou
exibir uma frase no monitor), presentes na maioria das linguagens de programacao.

Seguindo com a explicacdo do algoritmo, perceba que a linha com a instrucdo M < (notal +
notaz) / 2 contém dois simbolos ainda ndo apresentados. O simbolo / diz respeito a operagao
aritmética da divisdo, ao passo que o simbolo <— expressa uma operacdo de atribui¢do, que pode ser
lida da seguinte forma: A posicdo de memoria, representada simbolicamente por M, recebe o valor
da soma de notal e nota2, dividido por dois. Para finalizar, a linha 6 apresenta uma estrutura de
controle condicional essencial para as linguagens de programacdo. Operacdes de atribuicdo, expres-
sOes e estruturas de controle fazem parte do nucleo das linguagens de programacao imperativas e sao,
portanto, fundamentais para o aprendizado da programacao. Todos esses assuntos serdo abordados de
forma mais aprofundada em capitulos posteriores.

A principal vantagem da forma de representacdo em linguagem algoritmica estd na facilidade com
a qual um pseudocddigo pode ser transcrito para uma linguagem de programacgdo. Assim como os
fluxogramas, a desvantagem fica por conta da limitacao do seu poder de expressdo, devido as regras
impostas para a elaboragdo das instrugdes.

1.5 Recapitulando

Neste capitulo vocé estudou algoritmos, suas principais caracteristicas e suas formas de representacao.

Apesar de ser um tema mais abordado na ciéncia da computagdo, algoritmos estao presentes nas mais
diversas dreas e em vdrias atividades do cotidiano. Lidamos com eles, por exemplo, quando tomamos

8/92

Introdugdo a Programacao

banho, cozinhamos, planejamos uma rota para fugirmos do transito, consultamos um manual de mon-
tagem, enfim, sempre que nos deparamos com um conjunto 16gico de passos para realizarmos uma
tarefa ou solucionarmos um problema, estamos em contato com algoritmos. E por meio deles que
os computadores passam a ilusdo de que sdo inteligentes, realizando tarefas capazes de impressionar
qualquer ser humano. No entanto, sabemos que eles apenas processam dados, segundo um conjunto
de instrugdes que lhe sdo passadas — os algoritmos.

Vocé viu que os algoritmos computacionais, aqueles elaborados para serem executados em computa-
dores, devem ser claros, ter um numero finito de passos, € que estes devem ser simples o suficiente
para serem executados de maneira exata e em um tempo finito. Além disso, os algoritmos computa-
cionais devem possuir zero ou mais entradas e uma ou mais saidas.

As formas de representacdo de algoritmos mais comuns sdo a linguagem algoritmica, o fluxograma e
o pseudocddigo. Da primeira a tltima ha uma aproximagao em relacao as linguagens de programacao,
ou seja, o pseudocddigo € a forma de representacdo que mais se assemelha as linguagens utilizadas
na programac¢do de computadores. Na direcdo inversa, hd uma maior liberdade na elaboragdo de
algoritmos, aumentando, assim, a capacidade de expressa-los.

No préximo capitulo abordaremos o processo de tradu¢do de um programa escrito em uma lingua-
gem de alto nivel, os paradigmas de programacao existentes, e introduziremos os conceitos basicos
da programacdo de computadores. Além disso, vocé terd o primeiro contato com a linguagem de
programagdo a ser estudada neste livro: a linguagem C.

1.6 Exercicios Propostos

1. Explique, com suas proprias palavras, o que € algoritmo.

2. Rotineiramente, usamos algoritmos para as mais diversas tarefas. Cite trés algoritmos que
podemos encontrar no dia a dia.

3. Em que consiste a caracteristica de efetividade de um algoritmo?

4. Suponha que o quarto passo de um determinado algoritmo ordene que a execugdo retorne ao
primeiro. Qual caracteristica ndo esta sendo satisfeita por esse algoritmo?

5. Discorra sobre as formas de representacdo de algoritmos mais comuns, destacando suas vanta-
gens e desvantagens.

6. Suponha que voceé foi premiado com um robd capaz de auxilid-lo nas tarefas domésticas. Antes
que execute determinada atividade, vocé precisa instrui-lo corretamente através de um algo-
ritmo especifico. Sabendo disso, escreva algoritmos, em linguagem natural, para ensina-lo a
realizar cada uma das tarefas abaixo:

Trocar a lampada do seu quarto.

a.
b. Trocar o pneu do seu carro.

e

Fazer uma vitamina de banana com acai.

o

Lavar e secar os pratos.

e. Calcular quanto vocé precisar tirar na terceira nota para passar por média em Introdugdo
a Programacao.

9/92

Introdugdo a Programacao

7. Escreva um algoritmo, utilizando fluxograma, que receba como entrada o peso e altura de uma
pessoa, calcule seu IMC (Indice de Massa Corpdrea) e exiba sua situagdo, segundo os seguinte
critério:

Se o IMC > 25, a pessoa estd acima de seu peso, caso contrdrio, estd abaixo. Onde o IMC =
(Peso)/(Altura?)

8. Usando fluxograma, faca um algoritmo que receba como entrada a idade de uma pessoa ex-
pressa em anos, meses e dias (Atencdo: sdo 3 entradas) e mostre-a expressa apenas em dias.
Considere anos de 365 dias e meses de 30 dias.

9. Considere as instru¢des armazenadas na memoria a seguir:

0 1 2 3
x=10 | y=5 z=x/y+z
4 5 6 7
8 9 10 1
10 5 3
12 13 14 15

Considerando que a instrucdo inicial se encontra no endereco O (zero) e as posicoes 8, 9 e 10
correspondem a x, y e z, respectivamente, explique como funciona a execugdo das instrucoes
acima, segundo a arquitetura de von Neumann. Antes da execucao da instrucao de endereco 2
(z=x/y + z),aposicdo de memdria referente a z possuia o valor 1 (um).

10. Escreva um algoritmo, em pseudocddigo, que receba como entrada a base e a altura de um
triangulo, calcule e exiba sua drea.

Feedback sobre o capitulo

) Voceé pode contribuir para melhoria dos nossos livros. Encontrou algum erro? Gostaria de
submeter uma sugestao ou critica?
Para compreender melhor como feedbacks funcionam consulte o guia do cursol

10/92

https://github.com/edusantana/guia-geral-ead-computacao-ufpb/blob/master/livro/capitulos/livros-contribuicao.adoc

Introdugdo a Programacao

Capitulo 2

Introducao a Programacao

OBJETIVOS DO CAPITULO

Ao final deste capitulo vocé deverd ser capaz de:

* Entender o processo de traducdo de programas escritos em linguagem de alto nivel para
cddigo de maquina

* Compreender o conceito de variavel e sua relacdo com a memoria do computador
* Criar instru¢des que envolvam operagodes aritméticas
 Utilizar instrugdes de entrada e saida da linguagem C

* Escrever um programa simples em C

Agora que vocé ja conhece as caracteristicas de um algoritmo computacional e é capaz de criar algo-
ritmos utilizando suas diferentes formas de representacdo, estd na hora de voce escrever seu primeiro
programa. Porém, antes que isso ocorra, vocé deve aprender alguns conceitos bdsicos, como o de
varidvel, e conhecer o processo de traduc@o de um programa escrito em linguagem de alto nivel (a
linguagem C, por exemplo) para cédigo de maquina, ou seja, para a linguagem que o computador tra-
balha. Além desses conceitos, este capitulo também aborda a elaboragdes de expressdes aritméticas
em C, bem como alguns de seus comandos bdsicos.

2.1 Introducao

Vocé viu no capitulo anterior que existe uma linguagem que os computadores sdo capazes de com-
preender e que ¢ utilizada na elaboracdo de algoritmos para instrui-los a executarem as mais diversas
tarefas. Essa linguagem € chamada de linguagem de programacdo e consiste no principal assunto
deste capitulo.

Assim como as linguagens naturais (portugués, inglés, espanhol, etc.), as linguagens de programacgao
tém o objetivo de prover um meio eficaz de comunicacdo. Elas sdo constituidas de um conjunto de
palavras especiais (vocabuldrio), que associadas a um conjunto de regras de utilizacdo, determinam
como os algoritmos devem ser especificados para que possam ser corretamente decodificados pelo
computador.

As linguagens de programacido diferem das naturais de vdrias formas. Primeiramente, apesar de ser
possivel de serem utilizadas como meio de comunicagdo entre pessoas, seu principal propdsito €

11/92

Introdugdo a Programacao

possibilitar a comunicagdo entre uma pessoa € um computador. Além disso, as linguagens naturais
sdo mais tolerantes a erros. Um erro gramatical, por exemplo, ndo impossibilita uma conversa entre
duas pessoas. Ja no caso das linguagens de programagdo, a simples omissdo de um ponto e virgula é
capaz até de impedir que a comunicagao seja iniciada.

O contetido da comunicacdo por meio de uma linguagem de programacgao tem um significado especial
para a ciéncia da computacdo. Enquanto que nos expressamos nas linguagens naturais através de tex-
tos e da emissao de sons, nas linguagens de programagao nos expressamos através de programas, que
nada mais sdo do que algoritmos escritos em uma linguagem de programacao. O estudo das técnicas
para elaboracdo de programas consiste em um dos pilares da ciéncia da computagdo, conferindo uma
importancia particular a disciplina de Introducdo a Programacao.

Antes que vocé conheca as peculiaridades de uma linguagem de programacao estruturada, como suas
principais instrucdes e regras para a constru¢ao de um programa, estudaremos os paradigmas de
programagdo existentes e o processo de tradu¢cdo de um programa escrito em linguagem de alto nivel
para um programa em c6digo de maquina.

2.2 Niveis das Linguagens de Programacao

Os computadores representam as informagdes através da manipulac@o de dois estados. Esse sistema
de representa¢do, denominado de sistema bindrio, decorre do fato da grande maioria dos componentes
eletrobnicos poder assumir apenas dois valores. Por exemplo, uma lampada pode estar no estado
"ligado"ou "desligado", um capacitor pode estar "carregado"ou "descarregado"e um circuito elétrico
pode estar energizado ou nao.

A representacdo bindria utiliza os algarismos "0"e "1", chamados de digitos bindrios. Eles s@o os va-
lores que um bit (menor unidade de informagd@o em um computador) pode assumir e estdo associados
aos valores de tens@o presentes nos circuitos elétricos do computador. Para representar o bit zero, por
exemplo, normalmente utiliza-se um valor préximo a zero volts. Para o bit um, utiliza-se um valor
um pouco maior, da ordem de poucos volts.

Repare que trabalhar com uma combinacao de zeros e uns nao € uma tarefa facil para um ser humano.
Para que vocé perceba a dificuldade, imagine como seria escrever um pseudocéddigo substituindo
comandos como "LEIA", "ESCREVA"e expressoes aritméticas por uma combinacdo de zeros e uns.
O quadro de cddigo bindrio hipotético abaixo ilustra tal situacdo, apresentando um algoritmo em
pseudocddigo que calcula a média de duas notas lidas da entrada padrdo e sua versao hipotética em
c6digo bindrio.

Algoritmo em pseudocédigo

ALGORITMO
DECLARE notal,

notaz2,

M : NUMERICO
LEIA notal
LEIA notaZ2
M <= (notal + nota2) / 2
FIM_ALGORITMO.

Ilustracao de um cédigo binario hipotético referente a um algoritmo escrito em pseudocéodigo.

10100001
10100011 10010001

12/92

Introdugdo a Programacao

10010010
10010011 11000001
10100100 10010001
10100100 10010010
10010011 11110011 10010001 11110001 10010010 11110010 00000010
10100010

Q Importante
O codigo binario acima apresentado tem fins meramente didaticos, ndo sendo elaborado
com base em nenhuma maquina real.

Com o intuito de tornar menos complicada, mais eficiente e menos sujeita a erros a tarefa de progra-
mar computadores, foram criadas linguagens de programacao mais proximas as linguagens naturais.
Elas sdo compostas de um conjunto de palavras-chave, normalmente em inglés, e simbolos que esta-
belecem os comandos e instru¢des que podem ser utilizados pelo programador na construcio de seus
programas.

As linguagens com essa caracteristica sdo chamadas de linguagens de alto nivel, ao passo que as mais
préximas da linguagem de maquina (representacdo bindria), sdo denominadas de linguagens de baixo
nivel. Sdo exemplos de linguagens de alto nivel: Pascal, C (linguagem abordada neste livro), Java,
C++ e Python. Como exemplo de linguagem de baixo nivel, temos a linguagem Assembly.

2.3 Tradutores e Interpretadores

Se por um lado as linguagens de programacdo facilitam o trabalho dos programadores, por outro
impossibilitam que os programas desenvolvidos nessas linguagens sejam compreendidos pelos com-
putadores, visto que eles sdo capazes de manipular apenas codigos bindrios. Dessa forma, os cientistas
do passado se depararam com o seguinte desafio: como executar um programa em linguagem de pro-
gramacao, seja ela de baixo ou alto nivel, em um computador que trabalha apenas como ndmeros
bindrios?

A primeira vista, o desafio em questdo parece ser complexo demais para ser solucionado por um
iniciante na ciéncia da computacdo. Todavia, vocé vai perceber que a solu¢do para o problema esta
mais proxima da sua realidade do que imagina. Suponha que vocé recebeu uma proposta miliondria
para trabalhar em uma empresa de desenvolvimento de software da China. Seus patrdes pagardao
suas passagens, hospedagem, transporte e todo o aparato necessdrio para que vocé possa ter uma
vida tranquila no pais asidtico. Apesar de a proposta ser atraente, existe um problema: todos os
funciondrios da empresa falam somente o chinés, inclusive seus patrdes. Além disso, o contrato a ser
assinado também estd escrito em chinés. O que voceé faria em tal situag@o?

Recusaria a proposta? E isso mesmo que vocé estd pensando, um tradutor seria a solucdo para seus
problemas.

Do mesmo modo que vocé precisaria de um tradutor para poder lidar com uma linguagem que nao
consegue entender, os computadores também necessitam de um tradutor para traduzir um programa
escrito em linguagem de programacao para um programa correspondente em linguagem de maquina.
Dois softwares bésicos sdo responsdveis por realizar a tradu¢do em questio: os tradutores e os inter-
pretadores.

13/92

Introdugdo a Programacao

Os tradutores podem ser classificados como montadores e compiladores. Quando o processo de tra-
ducdo converte um programa que se encontra no nivel de linguagem de montagem (representacao
simbolica da linguagem de mdaquina, ex.: linguagem Assembly) para a linguagem de mdquina, o
tradutor utilizado € o montador. Ja na tradug@o de programas em linguagem de alto nivel para a lin-
guagem de montagem, o software responsdvel é o compilador. Perceba que ndo ha traducao direta da
linguagem de alto nivel para a linguagem de maquina. Para que esta seja alcangada, sdo necessarios
varios passos intermedidrios, sendo um deles a traducdo para a linguagem de montagem.

Codigo Objeto
{binario)

Cédigo Objeto 1

Cédigo fonte Tradutor —_ .
___,—-—"""' Ligador
' ' x ’_._._'_,__.—-—'—
Linguagem de Baixo Nivel

: Montador ~————» Codigo Objeto 2
(Linguagem de montagem) \
Linguagem de Alto Nivel , Codigo traduzido
(Ex: C, Pascal, ...) Compilador (Linguagem de montagem)

Y

—_— —_—
- Codigo Bindrio
Memoria Carregadeor |= 9 -
Executavel

Figura 2.1: Passos no processo de compilagdao

No processo de compilagdo, cada parte de um programa (mdédulo) escrito em linguagem de alto nivel
¢ traduzido para um moddulo objeto diferente, que consiste em sua representacdo em linguagem de
montagem. Esse passo no processo de compilagio corresponde ao passo 1 da Figura [2.1][[T4]]. Antes
de serem traduzidos para linguagem de maquina pelo montador, € necessario que os varios méodulos
objetos sejam integrados de modo a formarem um tnico cddigo. Essa tarefa € realizada no passo 2. O
passo 3 € o responsdvel por carregar o programa na memoria, a fim de tornar suas instrucdes prontas
para serem executadas pelo processador.

Os interpretadores, além de realizar a tradu¢ao de um programa para a linguagem de maquina, ainda
executam suas instrugdes. Assim que traduz uma instrucao, ela € imediatamente executada, gerando
assim um ciclo de tradugdo e execugdo que prossegue de instru¢do a instru¢do até o fim do programa

(Figura [2.2] [T4]).

Linguagem - Traduz e executa

de Alto Nivel » Interpretador ‘w uma intrugao

Figura 2.2: Processo de Interpretagao

Por ndo traduzir um programa escrito em linguagem de alto nivel diretamente para linguagem de ma-
quina, o processo de compilacdo tende a ser mais rapido que o processo de interpretacao. Além disso,
uma vez compilado, um programa pode ser executado varias vezes sem a necessidade de haver uma
recompilagdo. Ja na interpretacdo, cada vez que um programa tiver que ser reexecutado, todo o pro-
cesso de interpretacdo devera ser refeito, independente de ter ocorrido modificagdes no codigo fonte

14 /92

Introdugdo a Programacao

do programa desde sua ultima execugdo. A vantagem da interpretacao fica por conta da possibilidade
de testar os programas ao mesmo tempo em que sao desenvolvidos.

Importante

A linguagem utilizada neste livro (linguagem C) como ferramenta para iniciad-lo na progra-
macgao de computadores € uma linguagem compilada, portanto, os programas que voceé ira
desenvolver passarao pelos passos explanados anteriormente.

Nota
Para saber mais sobre o processo de montagem e compilagao, leia a Segao 3 do Capitulo 5
do Livro de Introdugdo ao Computador.

2.4 Paradigmas de Programacao

Um paradigma de programacao estd relacionado com a forma de pensar do programador na cons-
trucio de solugdes para os problemas com os quais se depara. Programar seguindo um determinado
paradigma de programacdo significa representar solugdes a partir de uma forma particular de raci-
ocinar na elaboracio dos algoritmos. Como os paradigmas mencionados sustentam a atividade de
programas, eles influenciam todo o processo de desenvolvimento de software. Alguns dos paradig-
mas de programacao mais utilizados estio relacionados abaixo:

Paradigma imperativo
Representa a computacdo como acdes, enunciados ou comandos que alteram o estado (varid-
veis) de um programa. Consiste na elaborag@o de programa a partir de comandos que dizem o
que o computador deve fazer a cada momento.

Paradigma estruturado
Soluciona problemas a partir de sua quebra em problemas menores, de mais facil solu¢do, deno-
minados de sub-rotinas ou subprogramas. Normalmente, o trabalho de cada sub-rotina consiste
em receber dados como entrada, processar esses dados e retornar o resultado do processamento
para o médulo de software que o executou. Este paradigma ainda defende que todo proces-
samento pode ser realizado pelo uso de trés tipos de estruturas: sequencial, condicional e de
repeticio. E o paradigma adotado neste livro.

Paradigma declarativo

Descreve as caracteristicas da solugdo desejada sem especificar como o algoritmo em si deve
agir. Em contraste com o paradigma imperativo, que informa ao computador como as instrucoes
devem ser executadas, o paradigma declarativo preocupa-se apenas em definir o que deve ser
feito, deixando a cargo de outros softwares decidirem como alcancar a solucdo descrita. E
bastante utilizado no desenvolvimento das paginas web (linguagem html) e na descri¢do de
documentos multimidia através da linguagem Nested Context Language — NCL, adotada pelo
padrdo brasileiro de TV Digital.

Paradigma orientado a objetos
Enxerga o problema como uma cole¢@o de objetos que se comunicam por meio da troca de men-
sagens. Os objetos sdo estruturas de dados que possuem estado (varidveis) e comportamento
(16gica).

15/92

Introdugdo a Programacao

2.5 Linguagem C

A linguagem C foi desenvolvida por Dennis Ritchie, entre os anos 1971 e 1973, nos laboratdrios da
AT&T. O objetivo de Ritchie era criar uma linguagem para a implementacao de sistemas operacionais
e softwares basicos que combinasse a eficiéncia das linguagens de baixo nivel com caracteristicas das
linguagens de alto nivel, como legibilidade, portabilidade e manutenibilidade.

A criagdo da linguagem C € resultado de um processo evolutivo de linguagens, iniciado com uma lin-
guagem chamada BCPL, desenvolvida por Martin Richards. Essa linguagem influenciou a linguagem
B, inventada por Ken Thompson, que por sua vez levou ao desenvolvimento de C.

Em 1973, Dennis Ritch ndo deixou dividas que seu objetivo foi alcancado, desenvolvendo eficiente-
mente parte do sistema Unix na linguagem C. A partir de meados dos anos 80, C comecou a ganhar
popularidade e, devido a sua flexibilidade em atuar com caracteristicas de linguagens de alto e baixo
nivel, foi reconhecida como uma linguagem de propdsito geral, sendo utilizada na implementacio de
uma grande variedade de sistemas.

Devido a importancia auferida na drea da programacgao de computadores, C € hoje uma das lingua-
gens mais utilizadas em cursos de programacdo do mundo inteiro. Sendo assim, ela € a linguagem
que guiard vocé na compreensdo das nuances da arte de programar e servird como ferramenta para
elaboracdo dos seus primeiros programas. A linguagem C sera apresentada, de forma conveniente, a
partir da préxima se¢ao.

2.6 Nucleo de um programa

A organizagdo da sequéncia de instrucdes em um programa obedece a um conjunto de regras esta-
belecidas pela linguagem de programagdo. Um programa em C € estruturado em fungdes, que sdo,
basicamente, trechos de c6digo que podem ser chamados varias vezes para realizar uma certa tarefa.
Assim, todas as instrugdes pertencentes a um programa em C devem estar contidas em uma fungao.

Além de ser um meio de agrupar trechos de um cédigo, uma funcdo em programagado tem caracteris-
ticas semelhantes a uma fun¢do matemadtica, no sentido de que recebe parametros como entrada (seria
o dominio da fun¢do) e retorna um valor como saida (imagem).

Em C existe uma fung¢do especial, denominada de main (principal), que determina o inicio € o fim da
execucdo de um programa. De forma mais especifica, a execu¢@o de um programa tem seu inicio com
a execucdo da primeira instrucao da funcdo main e termina com a execucao da sua ultima instrucdo.
Dessa maneira, todo programa em C deve possuir tal funcao.

Importante

Vocé conhecera mais sobre as fungdes no Capitulo 6 deste livro. Por enquanto é neces-
sario apenas que vocé saiba que todo programa em C deve ter uma funcao main e que a
execucdo de um programa inicia e termina com a execuc¢ao de seus comandos.

Iniciaremos nosso estudo com um programa extremamente simples, que apenas imprime uma men-
sagem na tela:

#include <stdio.h>

int main () {

16/92

Introdugdo a Programacao

printf ("Meu primeiro programa!");
return 0;

Analisemos o que ocorre em cada linha de cédigo:

#include <stdio.h>

Esta linha de c6digo solicita ao compilador que inclua no programa a biblioteca padrao para coman-
dos de entrada e saida da linguagem C. Uma biblioteca consiste em um conjunto de arquivos que
contém funcdes que podem ser incorporadas a outros programas. Neste caso, a inclusio da biblioteca
stdio.h permite que o programa utilize suas fun¢des para ler dados da entrada padrio (teclado) e
para escrever dados na saida padrao (tela).

int main () {

Com esta linha de cédigo definimos a funcdo main e demarcamos o seu inicio com o caractere {
(abre-chaves). Todo contetido de uma fun¢do em C fica delimitado por chaves ({ }).

printf ("Meu primeiro programa!");

O programa tem seu inicio com a execucao desta instru¢io, uma vez que ela € a primeira instru¢ao da
fun¢do main.

A funcdo printf tem a finalidade de escrever na tela os dados recebidos por parametro. Como
resultado de sua execugio, neste caso, serd exibida a frase "Meu primeiro programa!'no canto superior
esquerdo do monitor do computador.

O ponto-e-virgula no fim da instru¢c@o serve para separar esta instru¢do da préxima, dessa maneira,
cada instru¢do deve terminar com sua utilizacao.

return 0;

Essa instrugcdo encerra a execu¢do do programa, de modo que deve ser sempre a Ultima da fun¢do
main (antes do fecha-chaves, é claro). O nimero O (zero) serve para indicar ao sistema operacio-
nal que o programa terminou com sucesso (nimeros diferentes de zero indicariam um erro). Vocé
entenderd melhor como isso funciona quando abordarmos detalhadamente as func¢des, no capitulo 6.

2.7 Memoria e Variaveis

A memoria principal do computador ou meméria RAM (Figura [2.3] [T8]]) é constituida por compo-
nentes eletrOnicos capazes de armazenar dados. Cada digito bindrio (O ou 1) ocupa uma porcao de
memoria chamada de bit, e um conjunto de 8 bits é denominado de byte. A memoria € dividida em
células de memoéria de um byte de tamanho, que podem ser acessadas a partir de um ndmero tnico
que as identifica de forma particular. Esse nimero € chamado de endereco e tem a mesma fungao que
os endere¢os de nossas casas, que € identificar de forma tnica nossas residéncias, a fim de possibilitar
o envio e o recebimento de correspondéncias. No caso do computador, as correspondéncias sao os
dados que serdo armazenados nas células de memoria.

17 /92

Introdugdo a Programacao

2GB DDR3 1066 DIMM 7-7-7
76-0005 RoMs [1V]

(_- 2080
o> AT s
e R St S

LA L BT B
T e

Figura 2.3: Figure 2.3: Memoria RAM.

Uma varidvel em programagdo representa, através de simbolos, o contetido de uma célula ou posi¢cao
de memoria. Por exemplo, se uma varidvel de nome x possui o valor 10, significa dizer que a posi¢ao
de memdria, representada pelo simbolo x, armazena o valor 10. Em programacdo, podemos enxergar
a memoria como um conjunto de posi¢des que possuem um endereco e uma representacao simbolica
(varidvel), como ilustrado na Figura 2.4 [Tg]|.

Endereco Variavel Valor
0 X 100
1 y 20,5
2 z aula
n var -1700,23

Figura 2.4: Representacdo da memoria em fungdo dos enderecos, das posicoes de memoria e das
varidveis.

Nota

As variaveis podem ter nomes diversos, desde simbolos comuns na matematica, como é o
caso das variaveis x, y e z, até nomes como var, endereco, cpf, etc. As regras para dar

nome as variaveis serdo apresentadas na préxima secao. Perceba também que os valores

que as variaveis podem armazenar nao se limitam apenas a valores numéricos inteiros. Elas

podem armazenar, por exemplo, um conjunto de caracteres, como € o caso da variavel z, e

valores fracionarios, como é o caso das variaveis y e var.

2.7.1 Identificadores

Os nomes que damos as varidveis, rotinas, constantes ¢ demais componentes num programa escrito
numa dada linguagem de programacao sdao chamados de identificadores. Na secdo anterior, por exem-
plo, utilizamos os identificadores x, y, z e var para dar nome as varidveis da Figura 2.4] [I§]. As

18/92

Introdugdo a Programacao

palavras que possuem significado especial nas linguagens de programacao, como € o caso dos no-
mes dados as estruturas de controle (for, while, if, etc.), tipos de varidveis, dentre outros, sdo
chamadas de palavras-chave.

As regras bésicas para formacgao de identificadores sao:

» Qs caracteres utilizados sdo os numeros, letras maidsculas, mindsculas e o caractere especial subli-
nha ();

* O primeiro caractere deve ser uma letra ou o sublinha;
* N3io sdo permitidos espacos em branco;

* Palavras reservadas nao podem ser utilizadas como identificadores.

Abaixo, alguns exemplos de identificadores vélidos:

B

b

X2
computacao
COMPUTACAO
notal
nota_2

cpf

RG

Identificadores invalidos:

3B —> Nao pode comegar com numero.

X 2 —-> Nao pode conter espago em branco.

Computacao —-> Nado é permitido utilizar o caractere cedilha.
COMPUTACAO -> Caracteres especiais como o til (~) ndo sdo permitidos.
while -> while é uma palavra reservada.

function -> function também é uma palavra reservada.

Uma boa préatica de programacao € escolher nomes que indiquem a fun¢@o de uma varidvel, como
por exemplo: soma, ano, idade, media, dataNascimento, numero_filhos,
notal, nota2, notaFinal, salario, etc. Também € uma pratica bastante difundida
iniciar os identificadores com letras mintsculas e usar letras maidsculas ou sublinha para separar
palavras. Por exemplo, para escolher um identificador para uma varidvel que deve armazenar a
data de nascimento de uma pessoa, as duas opg¢des citadas correspondem a dataNascimento e
data_nascimento, respectivamente.

& Importante
A linguagem C faz distin¢ao entre letras maiusculas e mindsculas, sendo assim, variaveis de
nomes var e Var sdo consideradas como duas variaveis diferentes.

2.7.2 Tipos de dados primitivos

Vimos anteriormente que as varidveis podem armazenar valores de diversos tipos, tais como ndmeros
inteiros, fraciondrios e um conjunto de caracteres. Os tipos de dados ou tipo de varidveis sdo repre-
sentados de forma diferente em cada linguagem de programacao, algumas dando suporte a mais tipos

19/92

Introdugdo a Programacao

que outras. Embora haja certa variagdo de uma linguagem para outra, a maioria delas da suporte a
um grupo de tipos basicos, incorporados na prépria linguagem, chamados de tipos primitivos. Em C
ha a possibilidade da criagdo, por parte do programador, de tipos particulares, denominados de tipos
derivados. Estudaremos as formas de definirmos tipos derivados no Capitulo 5.

Existem trés tipos primitivos na linguagem C: niimeros inteiros, nimeros de ponto flutuante (nimeros
fraciondrios) e caracteres. Os numeros fraciondrios sdo chamados de nimeros de ponto flutuante
devido a forma como eles sdo armazenados no computador. Portanto, sempre que vocé ouvir o termo
ponto flutuante, tenha em mente que o tipo de dados em questao diz respeito aos nimeros fraciondrios.

Os tipos de dados primitivos em C estdo descritos na tabela abaixo:

Tabela 2.1: Tipos primitivos da linguagem C

Tipo Tamanho (em bytes) | Funcao
int 4 Armazenar um nimero inteiro.
float 4 Armazenar nimeros de ponto flutuante.
double 8 Armazenar ndmeros de ponto flutuante com
maior precisao.
char 1 Armazenar um caractere.

Como as varidveis de tipos primitivos distintos sdo representadas na memoria de formas diferentes,
elas exigem uma quantidade de bytes distinta para seu armazenamento. Uma varidvel do tipo int,
por exemplo, ocupa normalmente quatro bytes na memoria, ao passo que uma variavel do tipo char
ocupa apenas 1 (um) byte.

E importante salientar que o tipo char na linguagem C, diferentemente de outras linguagens, pode
também armazenar nimeros inteiros que requerem apenas um byte de memoria. O que ocorre €
que ha uma correspondéncia entre um caractere € um numero inteiro, conforme uma tabela padrao.
Por exemplo, quando atribuimos a varidveis do tipo char valores como a, b e c, na verdade estamos
atribuindo os valores inteiros 97, 98 € 99. Os niumeros inteiros que correspondem aos caracteres estao
todos listados em uma tabela padrao, conhecida como tabela ASCIL.

O tipo int pode ainda ser qualificado de acordo com as seguintes palavras-chave:

short ou long
se referem ao tamanho das variaveis;

signed ou unsigned
indicam, respectivamente, se as varidveis do tipo int poderdo ser positivas e negativas (com
sinal) ou apenas positivas (sem sinal) .

A qualificacdo de tipo € realizada quando os qualificadores sdo antepostos aos tipos. Por exemplo,
uma variavel do tipo unsigned long int armazena inteiros positivos de tamanhos grandes, enquanto
que uma varidvel do tipo signed short int armazena inteiros positivos e negativos de tamanhos me-
nores.

A tabela a seguir ilustra os valores que normalmente podem ser armazenados nas varidveis do tipo int
e diversas de suas variacgoes.

20/92

Introdugdo a Programacao

Tabela 2.2: Intervalos de valores de tipos inteiros utilizados
por grande parte dos compiladores de C.

Tipo Tamanho (em bytes) Valores que podem ser armazenados
int 4 23T a 23
short int 2 2B a2b
long int 4 2313231
unsigned int 4 0a2%-1
unsigned short int 2 0a2'®-1
unsigned long int 4 0a2%-1
signed char 1 27a2’ -1
unsigned char 1 0a2%-1
long long int 8 2032203 1
unsigned long long int 8 0a2%-1

Nota

% Os tamanhos e valores presentes nas tabelas anteriores podem variar de compilador para
compilador. Desse modo, eles servem apenas como um guia de referéncia para de nortea-lo
na escolha dos tipos adequados aos programas que vocé desenvolvera.

2.7.3 Declaracao de variaveis

Cada varidvel utilizada na elaboracdo de um programa precisa ser definida com antecedéncia. Para
isso, o programador precisa definir o identificador da varidvel e o seu tipo por meio do que chamamos
de declaracdo de varidveis. Sua forma geral € a seguinte:

tipo_da_varidvel identificador;

O exemplo a seguir declara, na linguagem C, as varidveis X ¢ y como sendo do tipo int.

int x, vy;

A declaracdo de varidveis, além de estabelecer uma interpretagao sobre os bits armazenados na memo-
ria, também € responsdvel por alocar espaco para armazenamento desses bits. No exemplo anterior,
a declaragdo das varidveis x e y resulta na alocacdo de 4 bytes (provavelmente) para cada uma delas,
bem como determina que os bits a serem armazenados no espacgos alocados deverao ser interpretados
como nudmeros inteiros. Seguem abaixo alguns exemplos de declara¢des de varidveis:

int idade;

int numeroFilhos;
int dia, mes, ano;
float altura;
float nota, media;

Os tipos das varidveis tem uma relagdo muito préxima com a funcdo que elas exercem em um pro-
grama. Caso precisemos armazenar e realizar cdlculos sobre a idade de alguém, deveremos declarar
a varidvel idade como int, visto que a idade corresponde a um ndmero inteiro positivo. Do mesmo

21/92

Introdugdo a Programacao

modo, como sabemos que a altura de uma pessoa € um numero fraciondrio (ex.: 1,80 m), devemos
declarar a varidvel altura como sendo do tipo float. Varidveis do mesmo tipo podem ser declaradas
em uma mesma linha, sendo separadas por virgulas, como na declaracdo das varidveis dia, mes e
ano do exemplo anterior. J4 varidveis de tipos diferentes devem ser declaradas obrigatoriamente de
forma separada.

Um programa elaborado com base no paradigma estruturado pode ser visto como uma sequéncia de
transi¢cdes de estado do inicio até o fim de sua execugao. Se pudéssemos tirar uma "foto"da execugao
de um programa em determinado momento, o que observariamos seria o conjunto de suas varidveis
e os valores nelas armazenados no momento, isto €, o estado do programa. Se os programas podem
mudar de estado, entdo deve existir um comando nas linguagens de programagdo que permitam alterar
o conteido de uma varidvel. Tal comando € denominado de atribuicao, e o exemplo a seguir mostra
como ele € utilizado em pseudocddigo.

idade « 18

Essa instru¢@o deve ser lida como "a varidvel idade recebe o valor 18 (dezoito)". Em C, o comando
correspondente é:

idade = 18;

Nota
Podemos utilizar o comando de atribuicdo no momento da declaragao de uma variavel. Esse
procedimento é chamado de inicializagao de variaveis.

Embora C e outras linguagens de programacao utilizem o operador aritmético da igualdade para repre-
sentar a atribuicdo, as semanticas de ambos ndo podem ser confundidas. Por exemplo, em matematica
aequacdo x=x+1,onde x pertece aos Reais, nunca pode ser satisfeita, visto que um nimero
real ndo poder ser igual a ele préprio mais um. Ja em programacdo, o comando x = x + 1 quer
dizer que a varidvel x ird receber o conteido armazenado nela prépria mais um. Supondo que x pos-
sufa conteudo igual a 10 antes da execugdo da atribui¢do em questdo, apds sua execucao x seria igual

all(x = 10 + 1 = 11). A tabela abaixo ilustra o cendrio apresentado.
Comando Valor atual de x
int x; Indefinido
x = 10; 10
Xx = x + 1; 11

Essa forma de atribuicdo € um artificio bastante empregado na programac¢do, sendo denominado de
incremento.

2.7.4 Constantes simbolicas

Muitas vezes declaramos algumas varidveis que nao devem ser modificadas durante a execucao de
um programa. E o caso das varidveis abaixo:

PI = 3.14159;
ACELERACAO_GRAVIDADE = 9.8;

22 /92

Introdugdo a Programacao

VELOCIDADE_LUZ = 300000;

N3ao faz sentido alterar o valor de uma varidvel que representa a aceleracao da gravidade, por exemplo,
pois o valor da constante gravitacional, como seu proprio nome ja diz, permanece sempre 0 mesmo.
Para casos como esse € preferivel que usemos constantes simbélicas no lugar de varidveis. A lingua-
gem C permite que um identificador seja associado a uma constante através da diretiva #define,
cuja sintaxe é descrita abaixo:

#define nome_constante valor_constante;

Dessa forma, a definicdo da constante PT mencionada acima poderia ser realizada através da linha de
codigo:

#define PI = 3.14159;

Quando o programa que contém essa instrucdo é compilado, o compilador substitui todas as ocorrén-
cias de PT pelo seu valor associado.

Outra utilidade proveniente da definicao de constantes diz respeito a facilidade de modificacao de
um programa. Imagine que vocé desenvolveu um programa para o registro contdbil de uma locadora
de veiculos e que em vdrios trechos de cddigo vocé usou o valor da didria de locacdo para realizar
diversos calculos. Suponha agora que o dono da locadora aumentou o valor da diaria de locagado e
que vocé foi chamado para modificar o programa a fim de adequéd-lo ao novo valor. Dessa forma,
vocé terd que alterar cada ocorréncia contendo o valor antigo e o seu trabalho serd proporcional ao
ndmero de ocorréncias desse valor. Utilizando constantes simbdlicas, vocé precisaria apenas alterar a
defini¢do da constante, conforme sugere o quadro abaixo:

#define VALOR_LOCACAO 80.0
#define VALOR_LOCACAO 100.0

Apesar das regras para definicdo dos nomes das constantes simbdlicas serem as mesmas daquelas
utilizadas para identificadores, € uma boa pratica de programacdo defini-las com letras maitsculas,
separando as palavras que as compdem, se houverem, pelo caractere sublinha (_).

2.8 Comentarios e indentacao

A medida que um programa cresce, ele vai ficando cada vez mais dificil de ser lido e consequente-
mente de ser entendido. E comum um programador ter grandes dificuldades para compreender seus
proprios programas apds passar alguns dias sem trabalhar em suas linhas de cédigo. Por isso, al-
gumas medidas devem ser tomadas no sentido de preparar um cédigo-fonte legivel. Existem vérias
formas de aprimorar a legibilidade de um programa, contudo nos restringiremos aos comentarios e a
indentacao.

Explicar o cddigo-fonte em linguagem natural € uma estratégia 6bvia para facilitar sua compreensao.
Esse € o papel dos comentarios em uma linguagem de programacdo. Em C, qualquer sequéncia de
caracteres localizada entre os delimitadores /x € »/ € um comentério. Por exemplo:

z = x +vy; /* z é& o resultado da soma entre x e y. */

A explicacdo da linha de cédigo acima, embora desnecesséria devido a simplicidade da instrucao, €
um comentério na linguagem C. Outras linguagens podem usar delimitadores distintos para expressar

23/92

Introdugdo a Programacao

os comentarios. A linguagem C ainda possui o delimitador //, muitas vezes chamado de delimitador
de comentdrio de linha. Os caracteres colocados a sua frente e na mesma linha em que ele se encontra
sdo considerados comentdrios e ignorados pelo compilador. Exemplo de sua utilizagdo:

int idade; // Variével inteira para representar
// a idade de wuma pessoa.

Perceba que para comentar mais de uma linha com o delimitador //, precisamos utilizd-lo em cada
linha que se deseja comentar. Dessa maneira, quando se deseja comentar mais de uma linha € mais
adequado o uso dos delimitadores / * e = /.

Outra forma de tornar um programa mais legivel é organizar as instrucdes de modo a refletir a hierar-
quia entre elas. Por exemplo:

#include <stdio.h>
/* Cébdigo nado-indentado =/

int main() {
iat %, YV, 28

x = 10;
y = 2;
z =X / V;

if (x > 5) {
printf ("x é maior que cinco.");

}

return O;

}

Repare que a declaracdo de varidveis, os comandos de atribuicao e os comandos if (apresentado no
Capitulo 3) e return estdo todos dentro da fun¢do main. Dizemos entdo que eles sdo hierarquica-
mente subordinados a fun¢ao referida. Da mesma forma, o comando print f estd subordinado ao
comando if. Uma maneira de destacar a hierarquizacdo das instrucdes € alinhar os comandos com
o mesmo nivel de hierarquia (inserindo espagos nas instru¢des de nivel inferior), o que chamamos de
indentac¢do. Para que vocé visualize o resultado do processo de indentagdo, considere o cédigo do
exemplo anterior depois de corretamente indentado:

#include <stdio.h>
/* Cédigo indentado =*/

int main () {
int x, vy, z;

x = 10;
y = 2;
z =X / Vy;

if (x > 5) {
printf ("x é maior que cinco.");

return 0;

24 /92

Introdugdo a Programacao

2.9 Matematica Basica

O computador foi criado com o intuito inicial de realizar contas. Portanto, é importante que saibamos
como instrui-lo a computar as operacdes aritméticas basicas. E essa ndo vai ser uma tarefa dificil, ja
que as expressoes aritméticas em programacao sao bastante semelhantes as expressoes utilizadas na
matematica. Em C, os operadores matematicos utilizados sdo os seguintes:

Tabela 2.3: Operadores aritméticos

Operador Operacao
+ Adicado
- Subtragao
* Multiplicagdo
/ Divisdo
% Resto da divisdo

A utilizagdo dos operadores em C ocorrem da forma com a qual estamos acostumados: colocamos
um operador entre dois operandos e vamos construindo as expressoes. A medida que as expressoes
vao ficando mais complexas, podemos utilizar os parénteses para agrupar operadores e operandos.
Diferentemente do que ocorre na matematica, em C ndo se utilizam colchetes e chaves para o agru-
pamento de expressdes que j4 estdo entre parénteses. Estes devem ser os substitutos dos primeiros

. ~ . —(atb
quando houver necessidade. Por exemplo, a expressdo matematica Mz(ﬁ)

((x+y)—(a+b)) /2

, em C se tornaria:

Veja alguns exemplos de como os operadores aritméticos devem ser usados em C (os resultados sdo
apresentados ao lado de cada operacdo):

x =4 x5; // 20

x=x/ 2; // 10

vy =x % 4; // 2

z =x xy — 5; // 15

z x = (y — 5); // =30

z = ((2 +3) =4 —-2)/2; // 9

A precedéncia dos operadores aritméticos, isto €, a ordem em que eles sdo avaliados, pode ser alterada
do mesmo modo que o fazemos quando tralhamos com expressdes na matemadtica: utilizamos os
parénteses para que algumas operacdes sejam realizadas antes que outras. E o que ocorre na expressao
acima na expressdo z=x (y—5). Caso os parénteses fossem omitidos', a primeira operacio a ser
realizada seria a que multiplica x por y, depois, do seu resultado seria subtraido cinco. Com a inser¢ao
dos parénteses, ocorre primeiro a subtracao para depois ser realizada a multiplicacao.

A linguagem C possui ainda operadores especiais que resultam da combinagao de operadores aritmé-
ticos com operadores de atribui¢do. Sao eles:

'Expressio resultante: z=x*y—5

25/92

Introdugdo a Programacao

Tabela 2.4: Operadores aritméticos de atribui¢do e operado-
res de incremento.

Operador Operacao equivalente

X +=y X =X +ty

X —-=y x X -y

X *=y x X %y

X /=y X x /y

X %=y b4 X %y
X++ X x + 1
++x X x + 1
X—= X x -1
-—Xx x =x -1

Os primeiros cinco operadores sdo denominados de operadores aritméticos de atribuicao, ao passo
que os quatro dltimos sdo chamados de operadores de incremento.

Aqui cabe destacar as diferencas entre os operadores de incremento quanto a localizagdo dos opera-
dores aritméticos. Considere os exemplos a seguir:

x = 03

y = 6;

z = 2;

(a) x =y / ++z; // incremento antes
// y =6, z =3, x =2

x = 03

y = 6;

z = 2;

(b) x =y / z++; // incremento depois
// y =6, z =3, x =3

Nos exemplos apresentados, temos dois algoritmos que se diferenciam apenas pela utilizagdao dos
operadores de incremento de adicdo. Na expressdo (a), a varidvel y € dividida por ++z, enquanto
que na expressdo (b) ela é dividida por z++. A diferenca € sutil, mas é determinante no resultado
da expressdo. No primeiro caso, z € incrementada antes da divisdo, logo x=6+ (2 + 1)=6+3=2.
Na expressao (b), z € incrementado depois da divisdo, o que resulta em x=6--2=3. Repare que em
ambos os casos o valor de z € incrementado, de modo que apds as instrucoes (a) e (b) o valor de z é
igual a 3.

2.10 Entrada e saida de dados

Imagine que vocé desenvolveu um programa para controlar suas financas pessoais e com ele intenci-
ona conter seus gastos e ainda guardar uma parte do que ganha na poupanca. Esse programa necessita
de interacdao? Como vocé informara suas receitas e despesas? Como ele apresentard o resultado dos
seus calculos com a finalidade de auxilid-lo no controle de suas financas?

26 /92

Introdugdo a Programacao

As respostas de todas essas perguntas convergem para a seguinte conclusdo: um programa de com-
putador € praticamente inutil se ndo apresentar algum tipo de interagdo com o usudrio. No cendrio
anterior, por exemplo, vocé precisa informar ao programa quais sao as suas receitas e despesas. Além
disso, € necessdrio que ele o deixe a par dos resultados dos seus cdlculos, caso contrdrio ele ndo terd
serventia alguma.

Os mecanismos que as linguagens de programagdo oferecem para interacdo com o usudrio estdo
presentes em suas bibliotecas de entrada e saida. Em C, as funcdes responsdveis pelas operagdes
basicas de entrada e saida se encontram na biblioteca stdio, que € utilizada por meio da diretiva:

#include <stdio.h>

Vimos nao sec¢do 2.6 uma forma de exibir na tela uma sequéncia de caracteres através da funcdo
printf (), que, além de imprimir caracteres, também € capaz de exibir o conteudo de varidveis de
diversos tipos. Os detalhes de sua utilizacdo, bem como uma fun¢do similar para entrada de dados
sdo apresentados ndo nas secdes posteriores.

2.10.1 Funcao printf()

A funcdo de saida print f () permite que dados sejam escritos na saida padrao, que normalmente é
a tela do computador. Uma chamada da fun¢do print f tem o seguinte formato:

int printf(string_de_formato, argl, arg2, ..., argn)

Isso quer dizer que a funcdo printf ird escrever na saida padrio os argumen-
tos argl,arg2,...,argn de acordo com o que estd especificado no pardmetro
string_de_formato. Além disso, o tipo int indica que a fungdo retorna um ndmero in-
teiro, que neste caso corresponde ao nimero de caracteres impressos. O exemplo a seguir ilustra a
utilizacdo da fungcdo printf ():

#include <stdio.h>

int main () {
int idade;
float altura;
idade = 18;
altura = 1.90;

printf ("Tenho %d anos e $%$.2f de altura.", idade, altura);

return O;

Ap6s a execugdo do codigo acima serd exibida na tela a seguinte frase:

Tenho 18 anos e 1.90 de altura.

Os caracteres $d e % .2 f sdo denominados de especificadores de formato e t€m o objetivo de definir
o formato das varidveis que serdo escritas na saida padrdo. De outro modo, podemos entendé-los
como "guardadores de lugar"para as varidveis a serem exibidas. No exemplo acima, no lugar do $d
serd colocada a primeira varidvel passada por parametro (idade) e no lugar do %.2f a segunda
variavel (altura). Além disso, elas deverdo ser dos tipos int e f1loat, respectivamente. O ponto

27192

Introdugdo a Programacao

seguido de um ndmero antes do cédigo de formato indica a quantidade de casas decimais a serem
exibidas (quando aplicados a variaveis do tipo ponto-flutuante) e sdo denominados de especificadores
de precisdo. No exemplo anterior eles foram os responséveis pela exibicdo da varidvel altura com
duas casas decimais.

A tabela abaixo lista os especificadores de formato mais comuns utilizados na fun¢cdo printf ().

Tabela 2.5: Especificadores de formatos mais utilizados na

fungdo printf()
Cédigo Formato
$d ou %1 Inteiro (int) decimal
%$1d ou %11i Inteiro (long int) decimal

U Inteiro sem sinal
%C Caractere
%s Cadeira de caracteres
St Numero de ponto-flutuante

2.10.2 Funcao scanf()

A funcdo de entrada scanf () possibilita a leitura de dados da entrada padrdo, ou seja, do teclado.
O que ela faz € interromper a execugdo do programa até que o usudrio digite algo e depois pressione a
tecla Enter. Depois que o programa retoma sua execug¢do, o conteddo digitado ¢ armazenado em uma
ou mais varidveis. Uma chamada da funcdo scanf tem o seguinte formato:

int scanf(string_de_formato, argl, arg2, ..., argn)

O parametro string_de_formato especifica os tipos de dados que serdo lidos e os parametros
arg, arg2, ..., argn correspondem aos enderecos das varidveis nas quais serdo armazena-
dos os valores digitados pelo usudrio. A func@o scanf () retorna um valor inteiro que indica o
numero de varidveis que tiveram valores atribuidos, sendo utilizado para verificar algum problema na
entrada de dados. O exemplo a seguir ilustra a utilizagdo da fungdo scanf ():

#include <stdio.h>
int main () {

int idade;
float altura;

printf ("Informe sua idade: ");
scanf ("%d", &idade)
printf ("Informe sua altura: ");

scanf ("$f", &altura);
printf ("\nVocé tem %d anos e %.2f de altura.", idade, altura);

return O;

28 /92

Introdugdo a Programacao

Ao contrario do exemplo da sec@o anterior, os dados a serem exibidos nao estdo pré-determinados,
isto é, as varidveis ndo possuem valores a priori. As atribui¢cdes apenas ocorrem quando o usudrio
entra com valores via teclado. No exemplo, depois que a sequéncia de caracteres "Informe sua
idade: " € exibida, a execucdo do programa € interrompida até que o usudrio digite um valor.
Quando isso ocorre, ele € armazenado no endereco da varidvel idade, obtido quando ela € precedida
pelo caractere &. Por conseguinte, o printf () ao final do cédigo ird exibir os dados informados

pelo usudrio e ndo os dados pré-determinados pelo programador.

Importante

A tecla Enter também possui um caractere que a representa, a saber, o caractere especial
‘\n’. Portanto, quando o \n’ é escrito na saida padrao, o efeito gerado é o mesmo da digitacao
da tecla Enter.

A funcdo scanf () também pode ler numa mesma linha diversos dados, armazenando-os em dife-
rentes varidveis. As leituras do cédigo anterior, por exemplo, podem ser reescritas da seguinte forma:

printf ("Informe sua idade e sua altura:");
scanf ("%d %.2f", &idade)

Para que esse cddigo funcione como desejado, o usudrio precisa digitar um ndmero inteiro seguido
de um espago e depois um niimero de ponto-flutuante. O espaco € requerido porque ele € utilizado na
especificacdo do formato (entre 0 $d e 0 $.2f hd um espago). Assim como printf (), a fungdo
scanf () também possui uma lista de especificadores de formato. Os mais utilizados seguem abaixo:

Tabela 2.6: Especificadores de formatos mais utilizados da
funcgdo scanf()

Cédigo Significado
%d ou %1 | Leitura de um inteiro (int) decimal
%$1d ou Leitura deum inteiro (long int) decimal
$1i

$u Leitura de um inteiro sem sinal
%$c Leitura de um Unico caractere
%s Leitura de uma cadeira de caracteres
St Leitura de um nimero de ponto-flutuante

2.11 Recapitulando

Neste capitulo vocé pode conhecer um pouco mais sobre o funcionamento dos computadores, mais
especificamente sobre a forma com a qual eles decodificam as instru¢cdes que lhes sdo passadas.
Vimos, portanto, que as linguagens de programagao podem ser classificadas em linguagens de alto
nivel ou baixo nivel, de acordo com sua proximidade em relagdo a linguagem que os computadores
podem compreender: o cédigo de mdquina.

Como programar em linguagem de baixo nivel é uma tarefa drdua, foram criadas as linguagens de alto
nivel para facilitar a vida dos programadores. Desse modo, surgiu a necessidade de um software que

29/92

Introdugdo a Programacao

fosse capaz de realizar a traduc@o de programas escritos em linguagem de alto nivel para programas
equivalente em cddigo de maquina. Esses softwares sdo os tradutores e interpretadores.

Aprendemos que a maneira de pensar de um programador na resolu¢ao de um problema est4 relacio-
nada com um paradigma de programacgao. Se um programador utilizar a linguagem C, por exemplo,
ele vai raciocinar segundo os paradigmas imperativo e estruturado.

Falando em linguagem C, conhecemos a estrutura de um programa escrito nessa linguagem, seus tipos
primitivos, como podem ser elaborados nomes para as varidveis e como estas podem ser declaradas.
Enfim, vocé deu os primeiros passos para a elaboracao do seu primeiro programa.

No préximo capitulo vocé vai estudar as estruturas de controle em C. Elas simplesmente sdo as ins-
trucdes mais importantes para o desenvolvimento da légica de programacao. Por isso, estude atenta-
mente o préximo capitulo e tente elaborar o maior nimero de programas possivel para consolidar o
aprendizado.

2.12 Exercicios Propostos
1. Diferencie linguagem de programacgdo de alto nivel de linguagem de programacdo de baixo
nivel. D& exemplos de linguagens que se enquadram em ambos os tipos.
2. Qual € o principal objetivo dos tradutores e interpretadores?
3. Defina montador e compilador, enfatizando suas diferencas.
4. Explique como funcionam os interpretadores.
5. Quais as vantagens da compilacdo em relacdo a interpretacdo?
6. O que € um paradigma de programacgdo? Cite exemplos.

7. Quais dos seguintes itens ndo podem ser utilizados como identificadores na linguagem C? Ex-
plique por qué?
a. 3x
b. Inflacéo
COMPUTACAO

g o

nota_1
nota 2
prof.
$4

RG

50 - 0

main

[

J. return
8. Descreva os tipos primitivos de C, destacando os valores que eles podem armazenar.

9. Qual a diferenga entre os operadores prefixo e sufixo de incremento?

10. Qual é valorde (x1 + x2) apds a execugdo dos grupos de comandos abaixo:

30/92

Introdugdo a Programacao

ay = 6;

b. z = 8;

c.c = 2;

d. x1 = ((y = z) - z)/c;
e. X2 = (z / 2)/ y++;

11. Considerando as atribuigcdes x = 20ey = 2,calcule oresultado de cada uma das expressoes

abaixo:
A (x—— + X * (x % V))
b. (x—— + x * (x % vy))
C. (x— + x » (x % 3))
d (——x + x * (x % 3))
e. (——x + X * (X % x))

12. Faca um programa em C que solicite ao usudrio que digite o ano de seu nascimento, armazene
o valor digitado em uma varidvel e em seguida imprima na saida padrdo a sua idade.

Feedback sobre o capitulo

[=3°) Voce pode contribuir para melhoria dos nossos livros. Encontrou algum erro? Gostaria de
submeter uma sugestao ou critica?
Para compreender melhor como feedbacks funcionam consulte o guia do cursol

31/92

https://github.com/edusantana/guia-geral-ead-computacao-ufpb/blob/master/livro/capitulos/livros-contribuicao.adoc

Introdugdo a Programacao

Capitulo 3

Estruturas de Controle

OBJETIVOS DO CAPITULO

Ao final deste capitulo vocé deverd ser capaz de:

* Entender as estruturas sequenciais, de selecdo e de repeticao;

* Escrever estruturas de sele¢do utilizando os comandos if, if-else e switch da linguagem
&

* Escrever estruturas de repeticdo utilizando os comandos for, while e do-while da lin-
guagem C.

3.1 Introducao

Vimos no Capitulo [1] [I] que os algoritmos sdo instru¢des que contém passos para solucionar um
determinado problema. Vimos também que estes algoritmos podem ser representados através de
linguagens de programacdo, como por exemplo, a linguagem C, que estamos aprendendo aqui. Estes
passos sdo executados na sequéncia que eles aparecem. Entretanto, em muitas situagdes, € necessario
alterar o fluxo de execugdo destas instru¢des. Pode ser que seja necessdrio executar um passo, ou um
conjunto deles, apenas se uma determinada condi¢do for verdadeira, ou talvez, pode ser que seja
preciso repetir um conjunto de passos vdrias vezes até uma determinada condi¢do. Neste sentido, este
capitulo ird explicar as diferentes estruturas de controle existentes nos algoritmos e seus respectivos
comandos na linguagem C.

3.2 Estrutura Sequencial

Um algoritmo que possui uma estrutura sequencial significa que suas instrucdes sdo executadas na
sequéncia em que elas aparecem, sem nenhuma alteracdo no seu fluxo, a nao ser, claro, que exista
alguma instrucdo explicita para a mudanca deste fluxo. Vejamos o cédigo em C na Figura [3.1] [33]]
abaixo.

32/92

Introdugdo a Programacao

Execucgao das
void main () { Intrugdes
int x, y, soma;
scanf (&x) ;
scanf (&y) ;
soma = x + y;
printf ("%d" ,soma) ;

Figura 3.1: Estrutura sequencial na linguagem C

Este algoritmo ird ler dois valores e guarda-los, respectivamente, nas varidveis x e y. Apds isso,
a varidvel inteira soma receberd a soma dos valores de x e y. Em seguida, serd mostrada na saida
padrdo, o resultado desta soma. Perceba que os passos do algoritmo sdo executados de cima para
baixo.

Entretanto, em alguns momentos os problemas que queremos resolver requerem a alteracao no fluxo
normal de execucdo do algoritmo. Na préxima secdo, iremos aprender como executar um conjunto
de instru¢des de acordo com uma determinada condicao.

3.3 Estrutura de Decisao

Como foi dito, muitas vezes é necessdrio criar blocos de instru¢des no algoritmo que sdao executados
apenas se uma determinada condi¢do for verdadeira. Veja o algoritmo abaixo:

"Se hoje ndo chover, entdo Jodo ird a praia".

No algoritmo acima, Jodo ird a praia se, e somente se, ndo chover hoje. Significa que esta instru¢cdo
de Jodo ir a praia s6 serd executada se a condi¢do de ndo chover for verdadeira. Este tipo de estrutura
€ chamado de estrutura de decisao, também conhecido como estrutura de selecao ou condicional.

Podemos ter trés tipos de estrutura de decisdo: decisdo simples, decis@o composta e decisao multipla.
Vamos ver adiante estes trés tipos e quais sdo os comandos na linguagem C, respectivamente, para
cada um destes tipos.

3.3.1 Decisao simples

Quando queremos que uma determinada instru¢do ou um conjunto de instru¢des execute apenas se
uma determinada condicdo for verdadeira. A estrutura da decisdo simples € a seguinte:

SE condicdo ENTAO instrucdo

Uma condig¢do deve ter como resultado apenas dois valores possiveis: verdadeiro ou falso. A instru¢cdo
sO serd executada se a condicao tiver o valor verdadeiro.

Vamos analisar o exemplo a seguir. Este algoritmo 1€ um valor digitado pelo usudrio e armazena na
variavel x. Em seguida, o comando SE verifica se o valor de x € menor que 20. Caso seja, a instru¢ao
ESCREVA ¢ executada, mostrando na tela a frase "o valor de X é menor que 20".

33/92

Introdugdo a Programacao

Exemplo 3.1 Algoritmo que comparava valor lido com 20
LETA x

SE x < 20 ENTAO

ESCREVA "O valor de x é menor que 20."

Para cada linguagem de programacgdo hd uma sintaxe para criar estruturas de controle. Na Linguagem
C, a estrutura de decisdo simples possui a seguinte forma:

if (expressao)
instrucao;

Na linguagem C, a condic¢do € definida como uma expressao, que pode ser logica ou aritmética. Ao
ser executada, a expressado € verificada. Se o resultado desta for verdadeiro, a instru¢do que vem apds
a expressao € executada.

Entretanto, muitas vezes queremos que mais de uma instru¢io seja executada caso a condicdo seja
verdadeira. Neste caso, devemos utilizar um bloco de instru¢des dentro do comando if, como ¢é
mostrado abaixo.

Estrutura de decisao simples com blocos na linguagem C

if (expressao) {
instrucao 1;
instrucao 2;

As duas formas, com e sem bloco, se diferenciam apenas pelo fato de que a primeira possui ape-
nas uma instru¢do a ser executada caso a condicdo seja verdadeira. No segundo caso, um bloco de
instrugdes serd executado. Na linguagem C, um bloco de instrucdes deve estar entre chaves.

& Importante
Sempre que vocé precisar executar um bloco de instrugdes, utilize as chaves para delimitar
o inicio e o fim deste bloco.

Como foi dito, a expressao pode conter uma expressao lgica ou aritmética. As expressoes aritméticas
foram vistas no capitulo 2. Vamos ver agora como funcionam as expressoes logicas na linguagem C.

3.3.1.1 Expressoes logicas

As expressoes logicas sdo usualmente utilizadas para fazer comparacdes entre operandos. Para isso,
estas expressdes sdo compostas por operadores 16gicos e relacionais, e possuem apenas dois valores
possiveis: verdadeiro ou falso. Por exemplo, quando queremos saber se um valor é maior, menor,
igual ou diferente de um outro valor.

Na linguagem C, os seguintes operadores relacionais podem ser utilizados:

Operador Descricao
> Maior que
< Menor que

34 /92

1

3

Introdugdo a Programacao

Operador Descricao
>= Maior ou igual a
<= Menor ou igual a
== Igual a
= Diferente de

Considere o cédigo [B3]l abaixo. Este reflete o mesmo algoritmo de Exemplo [3.1] [34]],
sendo que agora, implementado na linguagem C. Na linha 6, estamos pedindo para o usudrio entrar

com o valor de x. Na linha 8, temos um comando i f, onde hd uma expressao relacional x < 20.
Portanto, essa expressao € verificada e caso seja verdadeira, serd mostrado na saida padrao "O valor
de x é menor que a 20."(linha 9). Caso a expressdo seja falsa, o algoritmo se encerra sem mostrar
nada na saida padrio, pois a instru¢@o apds o comando i f ndo é executada.

Cadigo fonte
menorq20.c
#include <stdio.h>

int main () {
int x;

scanf ("%d", &x);

if (x < 20)
printf ("O valor de x e’ menor que 20.");

return O;

Em outros casos, necessitamos utilizar operadores 16gicos nas expressdes para avaliar mais de uma
expressao relacional. Por exemplo, digamos que no problema acima queremos verificar se o valor
digitado para a varidvel x estd dentro do intervalo entre 10 e 20. Neste caso, precisamos que a
condic¢do verifique as duas expressoes relacionais: (x > 10) e (x < 20). Portanto, precisamos
conectar as duas expressdes relacionais utilizando um operador 16gico E. A tabela abaixo apresenta
os operadores l6gicos possiveis:

Operador em C Operador em
linguagem
algoritmica
&& E

Il ou

! NAO

Portanto, o algoritmo para resolver o problema acima, na linguagem C, € o seguinte:
Cadigo fonte
entrel0e20.c

#include <stdio.h>

int main () {
int x;

35/92

Introdugdo a Programacao

scanf ("%d",

&x) ;

if (x > 10 && x < 20)

printf ("x esta’

return 0;

Perceba que agora a condi¢do do comando ‘if” possui duas expressodes relacionais conectadas por um
operador 16gico E (&&). Nesse caso, se ambas as expressoes forem verdadeiras, serd mostrada na
saida padrao "x esta’ entre 10 e 20". Caso alguma das expressoes seja falsa, nada serd mostrado, pois
o resultado da expressdo completa é falso. Vejamos a tabela abaixo, denominada de tabela verdade,
que mostra a relacdo l6gica entre duas expressodes e seus respectivos resultados.

entre 10 e 20.™);

Expressao 1 Operador Expressao 2 Resultado
Verdadeiro E Verdadeiro Verdadeiro
Verdadeiro E Falso Falso

Falso E Falso Falso
Verdadeiro ouU Verdadeiro Verdadeiro
Verdadeiro ouU Falso Verdadeiro

Falso ouU Falso Falso
Verdadeiro NAO - Falso

Falso NAO - Verdadeiro

3.3.1.2 Exercicio resolvido

ER 3.1. Considere quatro varidveis a, b, ¢ e d com valores iniciais de 5, 7, 3 € 9. Dada as condi¢des

abaixo, indique se o resultado final da expressao serd verdadeiro ou falso.

a. (a !'= 3 || b <10 || ¢c ==
b. (d > 8 && ¢ == 3 || a >=10)
c. '(d == 12 && a !'= 10)
d (¢ ==4 || d <= 6) && (a 5 && b !'=9)] (!'(a < 5))
Resposta:
a. Neste caso temos trés expressoes logicas. A primeira (a !'= 3) ¢é verdadeira. A segunda (b
< 10) € verdadeira, e aterceira (¢ == 5) € falsa. Como as expressdes estdo conectadas por

um operador OU (| |), entdo basta que uma das expressoes seja verdadeira para o resultado da
expressao completa ser verdadeira.

. Temos neste caso trés expressdes. Para um melhor entendimento, vamos utilizar uma tabela.

As duas primeiras expressoes (d > 8 e == 3) sdo verdadeiras e estdo conectadas pelo
operador logico &&,logo R1 && R2 € verdadeiro. A terceira expressao (a >= 10), por sua
vez, é falsa. Entdo, resolvendo R3 | | R4, temos o resultado final como verdadeiro.

36 /92

Introdugdo a Programacao

Rs Expressao Resultado
R1 d > 8 VERDADEIRO
R2 c == 3 VERDADEIRO
R3 R1 && R2 VERDADEIRO
R4 a >= 10 FALSO
RS R3 || R4 VERDADEIRO
c. Utilizando novamente a tabela, temos que a primeira expressdo (d == 12) éfalsa. A segunda
expressdo (a != 10) verdadeira. A relacdo entre R1 && R2 € falsa, pois apenas R2 é
verdadeira. A ultima expressdao € uma negacdo de R3, ou seja, se R3 é falso, entdo R4 €
verdadeiro.
R Expressao Resultado
R1 d == 12 FALSO
R2 a !'=10 VERDADEIRO
R3 Rl && R2 FALSO
R4 'R3 VERDADEIRO

d. Vamos utilizar novamente a tabela para nos auxiliar. Temos que prestar bastante aten¢do nos
parénteses das expressdes que podem ser utilizadas para explicitar a precedéncia da avaliagdo.

[T N

Rs Expressao Resultado
R1 c == FALSO
R2 d <= 6 FALSO
R3 Rl || R2 FALSO
R4 a >= 5 VERDADEIRO
RS b !=9 VERDADEIRO
R6 R4 && R5 VERDADEIRO
R7 a <5 FALSO
R8 'R7 VERDADEIRO
R9 R3 && R6 FALSO
R10 R9 || RS VERDADEIRO

3.3.1.3 Verificacao da condicao com expressoes aritméticas na Linguagem C

Anteriormente, dissemos que a expressdo dentro de um comando if pode ser Idgica ou aritmética.
Vimos como funciona nos casos de expressdes ldgicas. Nos casos de expressdes aritméticas, na
linguagem C, Falso assume o valor zero, e Verdadeiro assume qualquer valor diferente de zero. Neste
sentido, quando utilizamos uma expressdo aritmética dentro da condicdo de um comando if para
verificar se esta é verdadeira ou falsa, temos que ter o cuidado de analisar o valor resultante. Vamos
verificar o exemplo no cédigo abaixo.

Cédigo fonte
if5.c
#include <stdio.h>

int main () {
int x = 5;

37/92

Introdugdo a Programacao

1if (x)
printf ("Isto sera’ mostrado");

if (x — 5)
printf ("Isto nao sera’ mostrado");

return 0;

Inicialmente a varidvel inteira x recebe o valor 5 (linha 4). Na linha 6 existe uma estrutura de decisao
simples, onde hd a verificacdo da expressdo que estd entre parénteses. Nesse caso, a expressio &
apenas a prépria variavel x, logo o resultado da expressao € o valor desta, que € 5. Considerando o que
foi dito, quando o resultado for diferente de zero, ele é considerado verdadeiro. Logo, o resultado
da expressdo também € verdadeiro, e entdo a instru¢do que vem apos a condi¢ao € executada.

Ja na linha 9, também h4 outra estrutura de decisdo simples, na qual a condic@o a ser avaliada €
a expressdo x — 5. O resultado dessa expressdo € zero, fazendo com seja avaliada como falsa.
Consequentemente, a instrucao que vem ap0ds a condi¢cdo ndo é executada.

3.3.2 Decisao composta

Em alguns momentos, ao termos uma estrutura de decisdo, queremos que uma outra instrucao ou
um outro bloco de instrugdes seja executado caso a condi¢do de decisdo seja falsa. Esta estrutura é
chamada de decisdo composta.

O pseudocddigo abaixo exemplifica uma estrutura de decisdo composta.

Exemplo 3.2 Pseudocddigo com decisdo composta
LETA nota
SE nota >= 7 ENTAO
ESCREVA "Aprovado"
SENAO
ESCREVA "Reprovado"

Na linguagem C, utilizamos a palavra else, apds a instru¢do ou bloco de instru¢des do if, para
definir que queremos executar um outro conjunto de instru¢des, caso a expressdo condicional seja
falsa.

if (expressao)
instrugao 1;

else
instrucédo 2;

Quando possuimos apenas uma instru¢do a ser executada, ndo precisamos utilizar o delimitador de
bloco de instrugdes (as chaves). Neste caso, a condi¢do € verificada. Caso seja positiva, a instru¢ao 1
¢é executada, caso contrdrio, a instru¢do 2 é executada. Caso queiramos que um conjunto de instrucdes
seja executado, devemos utilizar entdo as chaves, como mostra o cddigo abaixo.

if (condicéao) {
instrucédao 1;
instrucgao 2;

38/92

Introdugdo a Programacao

} else {
instrucao 3;
instrucédo 4;

Neste caso temos dois blocos de instrucdes: um para o bloco do if, que serd executado caso a
condi¢do seja verdadeira, e o bloco de instru¢des do el se, caso a condicdo seja falsa.

Importante

Tabule as instrugdes que estao dentro dos blocos, colocando-os mais a direita (utilize a tecla
TAB do teclado). Esta organizagao do cédigo chama-se indentacdao. Dessa maneira, seu
cédigo se torna mais legivel, e consequentemente mais facil de encontrar possiveis erros.

Vamos traduzir o pseudocddigo apresentado no Exemplo [3.2][38]] para a linguagem C.
Cadigo fonte

nota7.c

#include <stdio.h>

int main () {
float nota;

scanf ("$f", ¬a);

if (nota >= 7)
printf ("Aprovado") ;
else
printf ("Reprovado") ;

return 0;

3.3.2.1 Exercicio resolvido

ER 3.2. Escreva um programa para ler 2 ndmeros inteiros do teclado (A e B), verificar e imprimir
qual deles é o maior, ou a mensagem "A=B", caso sejam iguais.

Resposta:

Codigo fonte

comparaab.c

#include <stdio.h>

int main () {
int a, b;

scanf ("%$1i", ¢&a);
scanf ("%1", &b);

39/92

Introdugdo a Programacao

if (a > b)

printf ("A e’ maior que B.");
else if (b > a)

printf ("B e’ maior que A.");
else

printf ("A = B");

return 0;

3.3.3 Comando de decisao multipla

Uma outra forma de escrever uma estrutura de condicao € utilizando o comando de decisdo multipla
switch. Este tipo de estrutura condicional tem a mesma fun¢do do i f—-else—1if, com a diferenca
que o comando switch ndo aceita expressoes, apenas constantes. A vantagem de se utilizar este
comando € a legibilidade do c6digo quando conhecemos os possiveis valores para uma determinada
varidvel. Vamos ver o formato de uso do comando switch.

switch (varidvel) {

case VALORI1:
instrucgaol;
instrucgao?2;
break;

case VALOR2:
instrucao3;
instrucao4;
break;

default:
instrucao5;
instrugcaob6;
break;

Uma variavel do tipo char ou int € colocada entre parénteses apds o comando switch. Os
valores desta varidvel que serdo avaliados logo em seguida, através das declaracdes case. Para cada
possivel valor da varidvel, existe uma declaracido case correspondente. Caso o valor seja aquele que
corresponde na declaracdo case, entdo as instrucdes abaixo dela serdo executadas até encontrar o
comando break. A declaracdo default € opcional, e € executada apenas se a varidvel ndo for
igual a nenhuma das constantes definidas nas declaracdes case.

Importante

O comando break tem a fungédo de interromper um determinado fluxo de execucao. Este
& comando serd melhor explicado na secéo 3.4.5 que fala sobre os comandos de desvio. O im-

portante a saber por hora é que o comando break deve ser utilizado ao final das instrugées

de cada declaragdao case. Caso nao seja colocado, as instrucoes das outras declaragoes

case também serdo executadas.

Para um melhor entendimento, vamos analisar o cédigo[semana.c|[#1]] abaixo. A ideia deste programa
€ que o usudrio digite o valor numérico correspondente ao dia da semana e o programa mostre por

40/92

1

3

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Introdugdo a Programacao

extenso este dia. Uma varidvel chamada semana do tipo int € declarada (linha 4) e guardara o valor
que o usudrio ird digitar (linha 7). Em seguida, o comando switch foi utilizado (linha 9). Para cada
dia da semana existe uma declaracdo case correspondente. Isto significa que se o usudrio digitou o
valor 1, a instru¢do da linha 11 serd executada, mostrando na saida a string "Domingo". Caso o valor
digitado seja 2, a instru¢do da linha 14 é executada, mostrando na saida a string "Segunda-feira". A
mesma ideia acontece para os outros 5 dias da semana. Caso o valor digitado pelo usudrio nao esteja
entre 1 e 7, as instrucdes da declaracdo default serdo executadas, mostrando a string "Numero fora
do intervalo permitido.".

Cadigo fonte
semana.c

#include <stdio.h>

int main () {
int semana;

printf ("Digite um numero de 1 a 7: ");
scanf ("$d", &semana);

switch (semana) {

case 1:
printf ("Domingo") ;
break;

case 2:
printf ("Segunda-feira");
break;

case 3:
printf ("Terca-feira");
break;

case 4:
printf ("Quarta-feira");
break;

case 5:
printf ("Quinta-feira");
break;

case 6:
printf ("Sexta-feira");
break;

case 7:
printf ("Sabado") ;
break;

default:
printf ("Numero fora do intervalo permitido.");
break;

return 0;

41/92

Introdugdo a Programacao

3.4 Estrutura de Repeticao

Considere um algoritmo em que vocé precise repetir um determinado conjunto de passos, por exem-
plo, um algoritmo para retirar uma lampada do bocal. Um passo deste algoritmo é realizar um movi-
mento com a mao para girar a lampada. Este passo deve ser repetido até que a lampada desencaixe do
bocal. Neste sentido, existem as estruturas de repeticoes nas linguagens de programacgao para permitir
que uma instru¢do ou um bloco de instrucdes seja repetido em um algoritmo computacional. Estas
estruturas também sdo conhecidas como estruturas de iteracao ou estruturas de lago.

Vamos tomar como base Exemplo [3.2] [38]], onde uma nota € solicitada ao usudrio. Caso a nota seja
maior que 7, € mostrado “Aprovado” na tela, caso contrério, € mostrado "Reprovado". O algoritmo
utilizado, até entdo, s6 permite que uma nota seja digitada, ou seja, quando o usudrio digita a nota, o
programa apresenta o resultado e em seguida fecha. Mas digamos que agora queremos que o programa
continue executando, solicitando notas e apresentando o resultado, até que o usudrio digite o valor -1
para sair do programa. Este algoritmo é mostrado no pseudocddigo abaixo. Perceba que temos uma
condi¢do nota <> -1 que serd avaliada antes de executar as instru¢des que estdo dentro do bloco
do ENQUANTO. Desse modo, enquanto a nota digitada pelo usudrio for diferente de —1, o programa
ird solicitar uma nota e apresentar o resultado.

Exemplo 3.3 Pseudocddigo com estrutura de repeticao
LETA nota
ENQUANTO nota <> -1 FAGCA
SE nota >= 7 ENTAO
ESCREVA "Aprovado"
SENAO
ESCREVA "Reprovado"

LEIA nota
FIM-ENQUANTO

Na linguagem C ha trés op¢des diferentes para se criar estruturas de repeticdo. Sdo os comandos
while, do-while e for. Veremos cada um deles em detalhes a seguir.

3.4.1 Comando while

Podemos usar o comando while quando desejamos que uma ou mais instru¢des sejam repetidas
até que uma determinada condicdo seja atendida. A estrutura do while na linguagem C € bastante
parecida com a do pseudocddigo apresentado anteriormente. Veja abaixo:

while (expresséao) {
instrucéao 1;
instrugao 2;

As instrucdes serdao executadas repetidamente enquanto a expressao for verdadeira. Assim que essa
condic¢ao tornar-se falsa, o lago para. Vejamos o exemplo abaixo, que consiste no pseudocédigo do
Exemplo [3.3] [#2]] escrito na linguagem C.

Cadigo fonte

whilenota.c

42 /92

Introdugdo a Programacao

#include <stdio.h>

int main () {
float nota;

scanf ("$f", ¬a);
while (nota != -1) {
if (nota >= 7)
printf ("Aprovado\n") ;
else
printf ("Reprovado\n") ;

scanf ("$f", ¬a);

return O;

Vamos tentar entender o c6digo acima. Inicialmente, uma varidvel nota, do tipo f1oat, é declarada
(linha 4). Logo depois ocorre a leitura da primeira nota. Caso ela seja diferente de —1, o bloco de
instrucdes dentro do while (linhas 8 a 14) serd executado. O comando while fard com que as
instrugdes em seu corpo sejam executadas, repetidamente, enquanto a condi¢do nota != -1 for
verdadeira.

Vejamos outro exemplo. O programa [mostradoIOvezes.c| [A3]] abaixo escreve 10 vezes na tela "Isto
sera’ mostrado 10 vezes.". A condi¢do de parada do comando while é cont <= 10, o que sig-
nifica que enquanto o valor de cont for menor ou igual a 10, o bloco de instrugdes serd executado.
Para que o lago tenha fim, a varidvel cont precisa ser incrementada até que alcance o valor 11.

Cédigo fonte
mostradolOvezes.c

#include <stdio.h>

int main() {
int cont = 1;

while (cont <= 10) {

printf ("Isto sera’ mostrado 10 vezes.\n");
COME 2

return 0;

3.4.1.1 Exercicio resolvido

ER 3.3: Escreva um programa que leia vdrias notas de alunos de uma turma. O programa deve ler
notas até que o usudrio digite o valor —1. Apds isso, o programa deve mostrar a média dessas notas.

Resposta:

43 /92

Introdugdo a Programacao

Neste programa nao sabemos previamente a quantidade de notas que o usudrio precisa. Precisamos,
nesse caso, utilizar um laco de repeti¢do que fique lendo notas até que o valor —1 seja passado pelo
usudrio. Desse modo, podemos utilizar o comando while (linha 7) com a condi¢do de parada nota
!= -1, ou seja, o0 usudrio seguird entrando com as notas enquanto os valores digitados forem dife-
rentes de —1. Dentro do lago, € solicitado que o usudrio digite a nota (linha 8). Na linha 9, o valor
digitado pelo usudrio € armazenado na varidvel not a. Para calcular a média das notas, precisamos de
duas informacdes: a soma de todas as notas e a quantidade de notas lidas. Utilizamos a varidvel soma
para armazenar a soma das notas (linha 12) e a varidvel cont para armazenar a quantidade de notas
(linha 13). A média das notas serd mostrada depois do lago, ou seja, quando o usudrio digitar —1 para
a nota. Como o célculo da média precisa da quantidade total das notas, seu cdlculo e o comando para
sua exibicdo devem ser executados apds o término do lago (linha 17).

Cédigo fonte

notas_alunos.c

#include <stdio.h>

int main () {
float nota = 0, soma = 0;
int cont = 0;
while (nota != -1) {
printf ("Entre com a nota: ");

scanf ("$f", ¬a);

if (nota != -1) {
soma += nota;
cont++;

printf ("Media das notas: %$.2f", soma / cont);

return O;

3.4.2 Comando do-while

Assim como o while, o comando do-while também € uma estrutura de repeticio. Com seme-
lhancas que vao além dos seus nomes, sobretudo em termos de funcionalidade, a principal diferenca
entre eles é que, no caso do do—while, o bloco de instrucdes dentro do lago € executado pelo menos
uma vez, mesmo que a condi¢c@o seja falsa. Isso acontece porque a condicdo de parada s6 € avaliada
depois que as instru¢des sao executadas. Segue abaixo a estrutura do comando do-while.

do {
instrucao 1;
instrucdo 2;

} while (condicéao);

44 /92

Introdugdo a Programacao

O comando comeca com a palavra do, seguida do bloco de instru¢des a ser repetido. Apds a exe-
cucao dessas instrugdes, a condicdo € avaliada. Caso seja verdadeira, as instrugdes sdo executadas
novamente, caso contrdrio, o laco se encerra. Para entender melhor, observe o exemplo abaixo. Este
exemplo faz exatamente o mesmo que o exemplo [mostradoIOvezes.c| [43]l, porém, utilizando o co-
mando do-while.

Codigo fonte
do_while.c

#include <stdio.h>

int main () {
int cont = 1;
do {
printf ("Isto sera’ mostrado 10 vezes.\n");
cont++;

} while (cont <= 10);

return 0;

3.4.3 Comando for

Este comando também serve para criar um lago de repeti¢ao e geralmente € utilizado quando conhe-
cemos a quantidade de vezes que queremos que as instrucdes sejam repetidas.

O formato do comando for € o seguinte:

for (expressaol; condicdo; expressao2) {
instrucaol;
instrucao?;

Em expressé&ol, uma varidvel, geralmente um contador, recebe um valor inicial. Essa varidvel
serd incrementada ou decrementada de acordo com a expressao definida em expresséo?2. O laco
ficard executando as instrugdes (instrugdol e instrugdo?2) até que a condicgéao seja falsa.

Vejamos o exemplo abaixo para entender a sequéncia de operacdes que sdo realizadas durante a exe-
cugdo do comando for. O programa [for_cont.c| [46]] abaixo tem o mesmo resultado de
[45]] mostrado anteriormente. Inicialmete, uma varidvel inteira é declarada (linha 4). Diferentemente
do programa [do_while.c| [43]], ndo atribuimos nenhum valor inicial a varidvel, visto que ela serd ini-
cializada na primeira expressdo do comando for. Na linha 6 existe um comando for, cuja primeira
expressdo € a inicializacdo da varidvel cont. Em seguida, a condi¢do cont <= 10 € avaliada.
Como inicialmente cont = 0, expressdo € avaliada como verdadeira, e a instru¢do na linha 7 é
executada. No fim da execucdo das instrugdes (nesse caso, especificamente, hd apenas uma instrugao)
contidas dentro do for, a terceira expressdo do for € avaliada, que nesse caso € um incremento
(cont++). Entdo a varidvel cont € incrementada e passa a valer 2. Em seguida, a condicdo é
verificada novamente e, caso seja verdadeira, executa novamente a instru¢do dentro do for. Essa
sequéncia de passos € repetida até que a condi¢ao seja avaliada como falsa.

Cadigo fonte

45/92

Introdugdo a Programacao

for_cont.c

#include <stdio.h>

int main () {
int cont;

for (cont = 1; cont <= 10; cont++)
printf ("Isto sera’ mostrado 10 vezes.\n");

return 0;

Para entender melhor o funcionamento do comando for, vamos ver outro exemplo que utiliza decre-
mento (——) ao invés do incremento. A ideia é muito parecida com a do exemplo anterior, entretanto,
ao invés de incremento, temos um decremento da variavel cont. No comando for, a variavel cont
¢ inicializada com o valor 10. Em seguida, a condicdo cont > 0 é avaliada. Como o valor de
cont € 10, a condi¢do é verdadeira, e a instru¢cdo dentro do for € executada (linha 7). Ao fim da
execucao dessa instrucao, a varidvel cont € decrementada e passa a valer 9. Novamente a condi¢ao
cont > 0 € verificada e continua sendo verdadeira, o que faz com que a instrucdo da linha 7 seja
executada novamente. O lago continua até a varidvel cont passar a valer 0, caso no qual a condi¢ao
cont > O serd falsa.

Cadigo fonte
for_cont_decremento.c
#include <stdio.h>

int main () {
int cont;

for (cont = 10; cont > 0; cont—-)
printf ("Valor de cont: %i\n", cont);

return O;

Uma particularidade do comando for € que nenhum dos trés elementos que o compde € obrigatd-
rio, ou seja, podemos omitir qualquer um desses elementos ou at€¢ mesmo uma combinagdo deles.
Contudo, essa € uma prética que deve ser evitada.

3.4.4 Laco infinito

Quando a condicdo de parada de uma determinada estrutura de repeti¢do nunca é alcancada, as in-
trucdes do laco sdo executadas indefinidamente, e consequentemente o programa nunca chega ao seu
fim. Tal comportamento € algo que deve ser evitado em programac¢do (na grande maioria das situ-
acdes) e, por ser um problema tdo recorrente, recebe um nome especial: lago infinito. O exemplo
abaixo ilustra esse tipo de lago:

Codigo fonte

laco_infinito.c

46 /92

1

2

3

Introdugdo a Programacao

#include <stdio.h>

int main () {
int cont;

for (cont = 1; ; cont++)
printf ("Laco infinito.\n");

return O;

Observe que na linha 6 temos um comando for cuja condicdo de parada ndo foi definida. Conse-
quentemente, o laco entra em loop e a execucdo da instruc¢do na linha 7 é executada indefinidamente.

Atencao

Ao criar uma estrutura de repeticao, observe bem a condigdo de parada para verificar se ela
realmente sera alcancada em algum momento. Sem esse cuidado vocé corre o risco de criar
um lacgo infinito, e seu programa, possivelmente, ndo tera o resultado esperado.

3.4.5 Exercicio Resolvido

E.R 3.4. Analise o programa abaixo. O objetivo do programa ¢ ler 50 valores e mostrar, ao final da
leitura, o menor deles. Entretanto, ele possui um problema. Identifique e corrija o erro.

Cédigo fonte

menor_deles.c
#include <stdio.h>
int main () {

int quantidade = 1;
float valor, menor;

printf ("Informe um valor: ");
scanf ("$f", &menor);

while (quantidade < 50) {
printf ("Informe um valor: ");
scanf ("$f", &valor);
if (valor < menor)
menor = valor;

printf ("Menor valor lido: %f", menor);

return O;

Resposta:

47192

1

3

20

21

22

23

Introdugdo a Programacao

Vamos analisar o codigo considerando seu objetivo: ler 50 valores e apresentar o menor deles. Vamos
iniciar nossa andlise na estrutura de repeticdo while, na linha 10. A condi¢do é quantidade <
50. Logo percebemos que a varidvel quant idade, que tem o valor inicial de 1 na sua declaragao,
ndo € alterada em nenhum momento dentro do laco, o que sugere algum problema. Para o lago ter um
fim, é necessdrio que a varidvel quant i dade atinja o valor 50 em algum momento, e ndo € isso que
estd acontecendo. Portanto, temos um lago infinito. Para corrigir o problema, devemos incluir uma
linha dentro do laco a fim de incrementar o valor da varidvel quantidade.

O cd6digo abaixo apresenta a solu¢do do problema com a inclusido da linha 12, na qual a varidvel
quantidade € incrementada. Dessa forma, o lago deixou de ser infinito, uma vez que ele atingira
o valor 50 em algum momento, tornando falsa a condi¢do quantidade < 50 do lago.

Cadigo fonte
menor_deles_resposta.c
#include <stdio.h>
int main () {

int quantidade = 1;
float valor, menor;

printf ("Informe um valor: ");
scanf ("$f", &menor);

while (quantidade < 50) {
printf ("Informe um valor: ");

scanf ("$f", &valor);

if (valor < menor)
menor = valor;

quantidade++; // Solucao do problema

printf ("Menor valor lido: %.2f", menor);

return O;

3.4.6 Comandos de desvio

Vimos no ultimo exemplo o que € um laco infinito. Em alguns momentos, precisamos utilizar um
comando para realizar um desvio dentro do lago de repeticdo. Esses comandos sdo: break e
continue. Ambos podem ser utilizados em qualquer estrutura da repeticao.

3.4.6.1 Comando break

O comando break interrompe a execucdo do lagco, fazendo com que as instru¢gdes dentro do laco
apos esse comando ndo sejam executadas. Vamos ver o exemplo preak_interrompe.c| [49]]. Apesar de
ndo haver condi¢do de parada no for, ele ird parar quando o comando break for executado, ou seja,

48 /92

Introdugdo a Programacao

quando o valor da varidvel cont for igual a 10. Caso houvesse mais alguma outra instrugao apés a
linha 8, dentro do bloco de instru¢des do for, ela ndo seria executada.

Cédigo fonte
break_interrompe.c
#include <stdio.h>

int main () {
int cont;

for (cont = 1; ; cont++) {
printf ("Valor de cont: %i\n", cont);
if (cont == 10) break;

return 0;

3.4.6.2 Comando continue

O comando continue faz com que o fluxo de execugdo “salte” para a avaliacdo da condi¢do de
parada do lago, no caso do while e do—while, e para a expressdo de incremento e decremento, no
caso do comando for. Isso significa que as instrucdes apds esse comando nao sio executadas.

Agora vamos analisar o programa [continue_desvio.c| [A9]] abaixo. Esse programa mostra na tela os
nimeros impares no intervalo de 1 a 20. A varidvel cont € inicializada com o valor 1 no for.
Como a condic¢do € verdadeira, as instru¢des dentro do bloco sdo executadas. Agora aten¢do para o
comando if (linha 7). Na condicdo do if, ha uma expressdo cont % 2 == 0, o que significa
que se o resto da divisdo inteira entre a varidvel cont e 2 for 0, o comando cont inue € executado.
Entretanto, o resto da divisdo serd 1. Nesse caso, a a instru¢do da linha 8 € executada, mostrando o
valor 1 na saida. Em seguida, a expressao de incremento do for € avaliada, e cont passa a valer 2.
Como cont ainda € menor ou igual a 20, as instru¢des do bloco sdo executadas novamente. Mais
uma vez, na linha 6, a condi¢do do if € avaliada. Todavia, o resto da divisdo de cont e 2 agora é
igual a O, e entdo a instrucdo continue € executada. Com sua execucdo, o fluxo de volta para o
for, e a expressdo de incremento € avaliada. Note que a instru¢do da linha 7, nesse caso, ndo sera
mais executada. O valor de cont entdo € incrementado para 3, repetindo o que foi explicado quando
cont eraiguala 1.

Cédigo fonte
continue_desvio.c
#include <stdio.h>

int main () {
int cont;

for (cont = 1; cont <= 20; cont++) {
if (cont % 2 == 0) continue;
printf ("Valor de cont: %i\n", cont);

49 /92

Introdugdo a Programacao

return 0;

3.5 Recapitulando

Este capitulo apresentou as estruturas de controle da linguagem C e como elas podem ser utilizadas.

A estrutura sequencial significa que o fluxo de execug¢do das instrucdes segue uma linha sequencial,
que no caso da linguagem C, € de cima para baixo e da esquerda para a direita.Entretanto, podemos
mudar o fluxo de execu¢@o desas instrug¢des utilizando as estruturas de decisdao e de repeticdo. No
caso da estrutura de decisdo, aprendemos a utilizar os comandos i f, else e switch para executar
uma instru¢c@o ou um bloco de instrucdes caso uma determinada condi¢do seja verdadeira.

Aprendemos também a construir lacos de repeticdo com os comandos while, do-while e for.
Vimos que todos esses comandos proporcionam a repeti¢ao de instrugdes até que uma determinada
condicdo seja falsa. Diante disso, é importante ter bastante atencdo na condi¢cdo de parada dessas
estruturas de repeticdo, para ndo criar um lago infinito.

No préximo capitulo estudaremos os arranjos: uma estrutura de dados que tem o objetivo de repre-
sentar um conjunto de valores do mesmo tipo. Vamos também aprender a manipular as cadeias de
caracteres, também conhecidas como strings.

3.6 Exercicios Propostos

1. Escreva um programa que verifique se um nimero digitado pelo usudrio € menor, igual ou maior
que zero.

2. Dado o algoritmo abaixo, explique o que acontece se o valor lido para a varidvel x for: 3, 1 e
0. Explique o porqué.

#include <stdio.h>

int main () {
int x;

scanf (&x) ;
if (x) printf ("verdadeiro");

return 0;

3. Escreva um programa que informe se um dado ano € ou ndo bissexto. Obs.: um ano é bissexto
se ele for divisivel por 400 ou se ele for divisivel por 4 e nao por 100.

4. Escreva um programa que mostre todos os nimeros pares no intervalo de 1 a 40 de forma
decrescente, utilizando o comando while. Depois fagca 0 mesmo, mas desta vez, utilizando o
comando for.

50/92

Introdugdo a Programacao

10.

I11.

. Um determinado banco abriu uma linha de crédito para os funciondrios publicos. Porém, o

valor maximo da prestacdo ndo poderd ultrapassar 30% do saldrio deste funciondrio. Faca um
programa para ajudar este banco. O programa deve permitir o usudrio entrar com o saldrio do
funciondrio e o valor da prestacdo e informar se o empréstimo pode ou ndo ser concedido.

. Escreva um programa que leia o més do ano em valor numérico e exiba este més por extenso

(utilize o comando switch).

. Faca trés programas que mostrem de 1 a 10 na tela, utilizando, em cada um, uma estrutura de

lago de repeticao diferente.

. Escreva um programa que mostre na tela os nimeros multiplos de 3 no intervalo de 2 a 100.

. Escreva um programa para ler dois ndimeros inteiros M e N e, a seguir, imprimir os nimeros

pares existentes no intervalo [M, NJ.

A organizacdo de um evento esportivo deseja um programa que faca a leitura do nome e a
pontuacao de cada um dos 10 participantes e exiba o nome do vencedor. Elabore este programa.

O supermercado Excelente Preco esta precisando ser informatizado. Neste sentido, o dono quer
um programa que leia os precos dos produtos até que seja informado o valor zero. No final o
programa deve informar o total da compra e perguntar a forma de pagamento. As opcdes da
forma de pagamento sdo: 1) A vista; 2) No cartdo de crédito. Se a op¢ao escolhida for a vista,
entdo o programa informa o valor da compra com um desconto de 5%. Caso a compra seja no
cartdo de crédito, o programa informa o valor da compra dividido em 4 vezes.

Feedback sobre o capitulo

1) Voce pode contribuir para melhoria dos nossos livros. Encontrou algum erro? Gostaria de

submeter uma sugestao ou critica?
Para compreender melhor como feedbacks funcionam consulte o guia do curso.

51/92

https://github.com/edusantana/guia-geral-ead-computacao-ufpb/blob/master/livro/capitulos/livros-contribuicao.adoc

Introdugdo a Programacao

Capitulo 4

Arranjos

OBJETIVOS DO CAPITULO

Ao final deste capitulo vocé deverd ser capaz de:

* Apresentar os conceitos de vetores e matrizes

* Apresentar o conceito de strings € como manipulé-las

4.1 Introducao

Até agora vimos que uma varidvel armazena um Unico valor por vez. Por exemplo, em um programa
para ler as notas de varios alunos, cada nota ¢ armazenada em uma varidvel, e assim que as notas de
um novo aluno sio lidas, as notas do aluno anterior sdo perdidas. Em alguns problemas, € necessario
armazenar todos ou um conjunto de valores lidos sem que haja perda de informacao. Nesse caso, seria
invidvel declarar uma varidvel distinta para armazenar cada valor, quando a quantidade de valores a
serem manipulados for relativamente grande. Para situagdes como essas utilizamos Arranjos (em
inglés Arrays), que consistem em estruturas de dados capazes de agrupar em uma unica varidvel
varios elementos de um mesmo tipo. O conceito de Arranjos, bem como as diferentes formas de
utilizd-los serdo discutidos em detalhes no decorrer deste capitulo, que ainda apresentard as cadeias
de caracteres, conhecidas como strings.

4.2 \Vetores

Os arranjos podem ter diferentes dimensdes. Um tipo especial de arranjo com apenas uma dimensao
€ chamado de vetor. Portanto, vetores sdo arranjos unidimensionais que representam um conjunto
de varidveis com o mesmo tipo, as quais sdo acessadas através de um indice que as identificam. A
Figura @ [|3_7[] ilustra o conceito de vetor, apresentando um vetor de inteiros com cinco elementos,
cada um com seu indice correspondente. O indice do primeiro elemento € sempre zero.

indices > 0 1 2 3 4
Vetor valores —3» 41217193

Figura 4.1: Vetor com cinco elementos.

52 /92

Introdugdo a Programacao

Nota

O conceito de arranjo nas diferentes linguagens de programacao é o mesmo. Entretanto, em
algumas linguagens alguns detalhes podem ser diferentes. Na linguagem C, por exemplo, o
indice inicial é sempre zero. Ja na linguagem Pascal, o indice inicial é definido pelo proprio
programador.

4.2.1 Declaracao de Vetores

Na linguagem C, devemos declarar um vetor da seguinte forma:

tipo_vetor nome_vetor|[quantidade_elementos];

O tipo_vetor € o tipo de cada elemento do vetor. O nome_vetor é o nome da varidvel que ird
identificar o vetor. A quantidade_elementos representa a quantidade maxima de elementos
que o vetor podera armazenar. Observe que essa quantidade deve ficar entre colchetes. Os indices
do vetor irdo de zero até quantidade_elementos - 1. O compilador ird reservar o espago de
memoria correspondente ao que o programador definiu em quantidade_elementos.

Vamos ver alguns exemplos de declara¢des de vetores:

int idades|[50];
char nomes[200];
float precos[30];

No exemplo acima temos trés declaragdes de vetores diferentes. Na primeira linha temos a declaragcdo
de um vetor chamado i dades que terd no maximo 50 elementos do tipo int, com indices de 0 a 49.
Na segunda linha temos um vetor chamado nomes com 200 elementos do tipo char, com indices
de 0 a 199. Por fim, temos na ultima linha um vetor com identificador precos, com espaco para
armazenar 30 elementos do tipo £1oat, cujos indices variam de 0 a 29.

4.2.2 Acessando os elementos de um vetor

Uma vez que um vetor foi declarado, poderemos armazenar e ler os valores dos elementos desse vetor.
Para isso, devemos identificar o elemento do vetor que queremos acessar através do nome do vetor
seguido do indice do elemento entre colchetes. Observe o exemplo abaixo:

int main () {
int v[5], 1i;
=0 ; 1 < 5 ; i++)
("sd", &v[il]);

for (i
scanf

Na linha 3, um vetor v de 5 elementos do tipo int é declarado. Em seguida, temos um comando
for que ird se repetir 5 vezes, com a varidvel i variando de 0 a 4. No corpo da estrutura de repeticao,
na linha 5, ocorre a leitura de valores inteiros, na qual cada valor lido é armazenado em um elemento
do vetor v com indice igual ao valor da varidvel i em cada iteracdo. Para um melhor entendimento,
considere a situacdo hipotética a seguir. Suponha que o usudrio digitou os seguintes valores na leitura
de dados: 4, 3, 7,2 e 9. Nesse caso, o vetor ficaria da seguinte forma apds a leitura dos valores:

53/92

Introdugdo a Programacao

v[0] 4
v[1l] = 3
Vetor v v[2] =7
v[3] 2
v[4] = 9

Figura 4.2: Configuragdo do vetor v apds a leitura dos valores.

Uma vez que os elementos de um vetor foram inicializados, isto é, receberam algum valor através de
uma operacao de escrita na memoria, podemos acessar tais valores para diversos fins. Por exemplo,
podemos implementar um lago para percorrer todo o vetor e imprimir na tela os valores da cada um
de seus elementos. O trecho de cddigo a seguir ilustra como os elementos de um vetor sdo acessados
e mostra como um laco para percorrer um vetor pode ser implementado:

printf ("%d", v[0])
printf("sd", vI[2]); // mostra o valor 7 na saida
for (1 = 0 ; 1 < 5 ; 1i++4)

printf("sd ", v[i]); //mostra todos os valores
printf ("sd", vI[5]);

; //mostra o valor 4 na saida

Na linha 2 estamos pedindo para ser mostrado o valor do elemento de indice O do vetor v. Sendo
assim, o valor 4 é mostrado na tela. Na linha 3, € mostrado o valor do elemento de indice 2 do
vetor v, cujo valor € 7. Ja na linha 4 temos um laco de repeticdo que ird mostrar todos os valores
dos elementos do vetor v. Em seguida, na linha 6, estamos tentando acessar o elemento de indice
5, que ndo existe. O programa ird compilar normalmente, entretanto, ocorrerd um erro em tempo de
execugdo assim que o programa tentar acessar o elemento inexistente do vetor.

@ Cuidado
Tenha cuidado ao acessar elementos de um vetor cujo indice nao existe. Caso isso acontecga,
0 programa ira compilar, entretanto, ocorrera um erro em tempo de execugao.

Vamos fazer um outro exemplo para fixar melhor o assunto. Digamos que queremos um programa
para ler 20 valores do tipo inteiro e que apds isso, sejam mostrados esses mesmos valores na ordem
inversa da qual foram lidos. O exemplo abaixo mostra a solucao do problema.

int main () {
int i, wvalores[20];
for (i = 0 ; 1 < 20 ; i++) //primeira etapa
scanf ("%d", &valores([i]);
for (i =19 ; i >= 0 ; i--) //segunda etapa

printf ("%d ", valores|[il]);
return 0;

Podemos dividir o problema em duas etapas. A primeira € para “montar” um vetor com 20 valores
digitados pelo usudrio. A segunda parte € para mostrar os valores desse vetor na ordem inversa da
qual foram lidos. Inicialmente, declaramos o vetor ~“valores™ com 20 elementos do tipo int. Para

54 /92

Introdugdo a Programacao

resolver cada etapa do problema, utilizamos um laco de repeticdo com o comando for. Na linha
3, 0 laco for € utilizado para ler os valores, cada um sendo armazenado em um elemento do vetor.
Na linha 5, temos um outro laco for, cuja varidvel de controle i € inicializada com o valor 19, que
representa o indice do dltimo elemento do vetor. A condi¢do de parada do laco € que a varidvel i
seja maior ou igual a zero e a ultima expressdo do for € o decremento da varidvel i. Isso significa
que o valor da variavel i ird de 19 a 0 dentro do laco de repeticdo. Consequentemente, os valores dos
elementos do vetor valores irdo ser mostrados na ordem inversa da que foram lidos.

4.2.3 Exercicio resolvido

ER 4.1
Escreva um programa que leia 20 notas de alunos de uma turma. O programa deve calcular a
média da turma e apresentar na tela apenas as notas dos alunos que ficaram acima da média
calculada.

Resposta
A primeira etapa para resolver esse problema € analisar se precisamos realmente utilizar um
arranjo. Mas antes disso, vamos tentar dividir o problema em subproblemas menores para
facilitar a elaboragdo da solucdo.

Subproblema Descricao

Subproblema 1 Ler 20 notas de uma turma

Subproblema 2 Calcular a média da turma considerando as 20 notas lidas

Subproblema 3 Apresentar na tela as notas da turma que estdo acima da média
calculada

O primeiro subproblema € ler 20 notas dos alunos. A principio conseguiriamos ler as 20 notas uti-
lizando um lago de repeti¢do e apenas uma varidvel. Entretanto, se utilizarmos apenas uma varidvel
para ler as notas, s teremos a ultima nota armazenada ao final do laco. Como precisamos de todas
as notas para saber quais delas estdo acima da média calculada, a solu¢do do subproblema 3 requer
que um vetor seja utilizado ao invés de apenas uma varidvel. Resolveremos, a partir de agora, a ques-
tdo gradativamente a partir das solugdes dos subproblemas. Vejamos o trecho de c6digo abaixo que
resolve o subproblema 1 da questao.

int main () {

float notal[20];

int 1i;
for (1 = 0 ; 1 < 20 ; i++)
scanf ("$f", ¬ali]);

Como foi explicado, precisaremos de um vetor para armazenar todas as notas da turma. Portanto, na
linha 3 declaramos um vetor de f1oat chamado notas com 20 elementos. Utilizamos a estrutura
de repeticdo for para ler as 20 notas passadas como entrada para o programa (linha 6 e 7).

O subproblema 2 consiste em calcular a média das 20 notas lidas. Para isso, precisamos primeira-
mente somar todas as notas lidas. Uma vez que temos essas notas armazenadas em um vetor, poderia-
mos resolver esse subproblema de duas maneiras. Uma delas € criar, apds o laco de leitura das notas,

55/92

Introdugdo a Programacao

um outro laco para acessar os elementos do vetor para realizar a soma das notas. A segunda forma,
mais interessante, € somar as notas a medida que forem lidas, no mesmo laco de repeti¢cdo. Dessa
forma, teremos apenas um lagco de repeticdo, tornando nosso cddigo mais eficiente. Verifiquemos
como ficou o trecho de cédigo anterior com a inclusdo da solucdo para o subproblema 2.

int main () {
float nota[20], media, soma = 0;
int 1i;

for (i =0 ; 1 < 20 ; i++) {
scanf ("$f", ¬alil]);
soma += notalil];

media = soma / 20;

Perceba que incluimos na declaracdo as varidveis media e soma, para armazenar, respectivamente,
os valores da média e da soma das notas. Verifique também, na linha 8, que a soma das notas é
realizada a medida que cada nota € lida. O célculo da média, na linha 11, s6 pode ser feita depois que
todas as notas forem lidas e acumuladas na varidvel soma. Desse modo, ela deve ficar fora do lago.

O subproblema 3 consiste em apresentar na tela as notas da turma que ficaram acima da média.
Uma vez que ja temos a média calculada, podemos resolver facilmente esse problema. Para tanto,
precisamos percorrer todo o vetor e comparar cada elemento deste com a média. Caso o valor do
elemento seja maior que a média, ele deve ser apresentado na tela. A versdo final do programa esta
descrita abaixo:

int main () {
float nota[20], media, soma = 0;
int i;

for (1 =0 ; 1 < 20 ; i++4) {
scanf ("$f", ¬alil]);
soma += notalil];

media = soma / 20;
for (1 =0 ; 1 < 20 ; i++)
i1f (notal[i] > media)

printf ("%f ", notalil);
return 0;
As linhas 12 a 14 resolvem o subproblema 3, utilizando o comando for para percorrer todo o vetor

de notas e comparar cada elemento com a média. Para realizar tal comparagdo, utilizamos o comando
if. Caso o elemento nota [1] seja maior que a média, ele serd exibido na tela.

56 /92

Introdugdo a Programacao

4.3 Strings

Na maioria dos programas que implementamos, precisamos lidar com cadeias de caracteres no proces-
samento e armazenamento das informagdes que nos sao fornecidas. Nas linguagens de programacao,
essas cadeias sao chamadas de strings. Como nao h4, na linguagem C, um tipo de dados especifico
para representar as strings, utilizamos vetores de elementos do tipo char para a manipulagdo de ca-
deias de caracteres. Em outras palavras, quando queremos declarar uma varidvel para armazenar uma
cadeia de caracteres, declaramos um vetor do tipo char.

No exemplo abaixo, temos a declaracdo de trés strings: nome, logradouro e bairro. Perceba
que cada string é um array de char. Significa dizer que a string nome tem a capacidade de
armazenar 60 caracteres, a string 1ogradouro 200 caracteres e a string bairro 40 caracteres.

char nome[60];
char logradouro[200];
char bairro[40];

Na linguagem C, toda string tem um caractere especial que determina o seu fim. Esse caractere €
o \0, que significa NULO, e ele ¢ inserido automaticamente pelo compilador no dltimo elemento
do vetor de elementos do tipo char. Por essa razdo, deve-se levar isso em consideracdo na hora de
declarar suas strings. Assim sendo, se vocé€ deseja que uma string armazene N caracteres, voce deve
declard-la com um tamanho N+1.

4.3.1 Lendo e imprimindo Strings

Para ler e imprimir strings na linguagem C, podemos utilizar as funcdes scanf () eprintf () que
jé conhecemos. Entretanto, como muitas vezes precisamos manipular strings no nosso programa, as
linguagens de programacgdo possuem fungdes pré-definidas para serem utilizadas pelo programador,
facilitando a manipulacdo das cadeias de caracteres. A linguagem C, por exemplo, possui as fun-
¢des gets () e puts (), elaboradas especialmente para ler e imprimir st rings, respectivamente.
Vejamos um exemplo.

int main () {
char s[7];

gets(s);
puts(s);

printf ("%c", s[4]1);
printf ("%c", s[2]);

return 0;

Na linha 3, declaramos uma string s que armazena 6 caracteres (além do caractere NULO). Em
seguida, utilizamos a func¢do gets () ,que faz a leitura de uma string, esperando que o usudrio a
digite e tecle ENTER. Na linha 6, utilizamos a funcdo puts (), que imprime na saida padrdo a string
s lida. Digamos que o usudrio digite a string *‘BRASIL’. Dessa forma, a cadeia de caracteres sera
armazenada na memoria da seguinte forma:

57 /92

Introdugdo a Programacao

indices —>» 0 1 2 3
Vetor BIRIA IS

valores 3

Figura 4.3: Cadeia de caracteres.

Como uma string em C trata-se na verdade de um vetor de caracteres, podemos acessa-los individu-
almente do mesmo modo que acessamos os elementos de um vetor qualquer. Ao serem executadas
as linhas 8 e 9 do c6digo anterior, por exemplo, sdo exibidos na saida padrao os caracteres “I”’ e “A”,
respectivamente.

4.3.2 Manipulando strings

Existem ainda outras fungdes interessantes para manipular strings na linguagem C. A tabela abaixo
apresenta algumas dessas funcoes, todas presentes na biblioteca st ring. h.

Funcao Descricao

strlen(s) Retorna a quantidade de caracteres da string s
strcpy (sl, s2) Copia o conteuddo da string s2 para s1

strcat (sl, s2) Concatena (junta) o conteudo da string s2 em s1
strchr (s, c) Retorna a posi¢ao (inteiro) do caractere c na string s

Para entender melhor o uso destas funcdes, considere o exemplo a seguir.
Cadigo fonte

manipulacao_string.c

#include <stdio.h>

int main () {
char str1[100], str2[100];

gets(strl);
gets (str2);

printf ("%d", strlen(strl));
printf ("%d", strlen(str2));

strcat (strl, str2);
printf ("%d", strlen(strl));

return O;

Inicialmente declaramos duas strings: strl e str2. Nas linhas 6 e 7, utilizamos o comando
gets () para que o usudrio informe as duas strings que serdo armazenadas nas varidveis mencio-
nadas. As linhas 9 e 10 imprimem os tamanhos das strings strl e str2, enquanto que a linha 12
€ responsdvel por concatenar as strings str2 e strl, ou seja, strl passa a ter o conteido ante-

58 /92

Introdugdo a Programacao

rior com a adi¢do do conteudo de str2. Por fim, a linha 13 exibe o tamanho de strl apds a sua
concatenagdo com str2.

4.3.3 Exercicio resolvido

ER 4.2
Escreva um programa que leia uma string e substitua todos os espacos por um trago (caractere

113 ”)

Resposta
Primeiramente, declaramos uma string s com capacidade para armazenar 40 caracteres e utili-
zamos a funcdo gets (), nalinha 5, a fim de que o usudrio digite uma string. Tendo a string
digitada armazenada na varidvel s, podemos agora manipuléd-la. Para resolver essa questao, é
importante ter entendido o conceito de que uma string € um vetor de caracteres. Na linha 7,
utilizamos um for para percorrer os elementos da string. Veja que a condi¢do de parada do
comando for € i < strlen (s). Isso significa que o bloco de instrugdes serd repetido até
o final da string, uma vez que strlen () retorna a quantidade de caracteres de uma string.
Dentro do for, verificamos se o caractere da posi¢ao i € igual a um espaco. Caso seja, esse
elemento do array recebe o caractere “-”. Finalmente, depois do comando for, utilizamos a

(132

funcdo puts () para imprimir a nova string com os espagos trocados por “-”.

Cédigo fonte

resolvido4-2.c

int main () {
char s[40];
int i;

gets (s);

for (i=0; i < strlen(s); i++) {
if (s[i] == " ")

puts (s);

return 0;

4.4 Matrizes

Como foi dito no inicio do capitulo, arranjos podem ter varias dimensdes. Quando possuem mais
de uma dimensao, eles sdo chamados de matrizes. O conceito de matrizes em programacdo ¢ bem
semelhante a0 homdnimo da matemadtica. A figura a seguir apresenta o formato de uma matriz m x n,
onde m € representa o nimero de linhas e n o nimero de colunas.

59/92

1

2

3

Introdugdo a Programacao

Linha

Coluna

Figura 4.4: Matriz M x N

Analisemos os exemplos abaixo. A primeira matriz € 3 x 3, pois possui 3 linhas e 3 colunas. A
segunda matriz € 2 x 3, pois possui 2 linhas e 3 colunas. Se quisermos saber o elemento da primeira
matriz que possui indice A, 3, basta seguirmos em direc¢do a 2* linha e depois em dire¢do a 3 coluna.
Logo o valor de A3 € 1.

4 2 3 5 1 0

8 0 1 9 2 1

9 1 6 Matriz 2x3
Matriz 3x3

Figura 4.5: 4.5. Exemplos de matrizes

Podemos representar essas matrizes na linguagem C acrescentando mais um indice entre colchetes no
identificador do arranjo. Abaixo temos alguns exemplos de como declaramos matrizes:

int matriz[3]1[3];

int outra_matriz[2][3];

float matriz_de_ float[30][20];
char nomes[10][507;

Na primeira linha temos a declara¢do de uma matriz de inteiros com 3 linhas e 3 colunas, na segunda
novamente uma matriz de inteiros, s6 que agora com 2 linhas e 3 colunas, e na terceira uma matriz
de elementos do tipo £1oat com 30 linhas e 20 colunas. Agora atengdo para ultima linha. Trata-se
da declaracdo de um arranjo de strings. Lembre-se que uma string é um arranjo de caracteres. Se
declararmos uma matriz de char, entdo teremos na pratica um vetor de strings, onde cada linha da
matriz € uma cadeia de caracteres.

Ja sabemos como declarar matrizes, agora aprenderemos a montd-las a partir da leitura de dados da
entrada padrdo. Para isso, precisaremos utilizar dois comandos for aninhados. Considere o exemplo
abaixo:

Coédigo fonte
matriz_populando.c

int main () {
int matriz[20] [30];
int 1, 3j;

60 /92

Introdugdo a Programacao

for (i=0; i < 20; i++)
for (3 = 0; J < 30; J++)
scanf ("%d", &matriz[i][]j]);

return O;

Na linha 2, temos uma declara¢do de uma matriz 20 x 30. Se quisermos pedir para o usudrio digitar os
valores da matriz, precisaremos utilizar um for para percorrer as linhas e um for para percorrer as
colunas da matriz. Portanto, na linha 5, temos o primeiro for onde 1 ird variar de 0 a 19, justamente
os indices que representam a posicao dos elementos nas linhas da matriz. Na linha 6, temos um outro
for dentro do primeiro, onde j ird variar de 0 a 29, que sdo justamente os indices que representam
a posicao dos elementos nas colunas da matriz. Perceba que quando i = 0, j ird variar de 0 a
29. Depois i passa a valer 1 e novamente o j ird variar de 0 a 29 novamente. Isso acontecerd
repetidamente até i atingir o valor 19. Em suma, o codigo anterior preenche os elementos da matriz
linha por linha. Inicia preenchendo a linha de indice 0, em seguida preenche a linha de indice 1,
seguindo de forma sucessiva até que a linha de indice 19 seja preenchida.

4.5 Recapitulando

Como vimos neste capitulo, arranjos consistem em um conjunto de elementos do mesmo tipo, que
podem ter diferentes dimensdes e sdo acessados por um indice. Os arranjos de uma dimensdo sdo
chamados de vetores e quando possuem mais de duas dimensdes sdo chamados de matrizes.

Aprendemos também que strings sio cadeias (arranjos) de caracteres, ou seja, um vetor de elementos
do tipo char. Devido a sua importancia para a programacdo de computadores, as linguagens de
programacdo disponibilizam um conjunto de fun¢des para facilitar sua manipulacdo. Algumas das
funcdes mais utilizadas na linguagem C foram conhecidas neste capitulo, contudo, deve ficar claro ao
leitor que existe um ndimero bem maior de funcdes com tal objetivo.

4.6 Exercicios Propostos
1. Crie um programa que armazene numeros em dois vetores inteiros de cinco elementos cada,
depois gere e imprima o vetor soma dos dois.

2. Crie um programa que armazene 10 nimeros em um vetor A, e gere um vetor B onde cada
elemento € o quadrado do elemento de A.

Exemplo:

A[l] = 4 B[1] = 16
A[2] = 3 B[2] = 9
A[3] = © B[3] = 36

3. Escreva um programa para ler uma string qualquer e exiba as seguintes informacdes: quantidade
de caracteres, primeira e ultima letra.

4. Escreva um programa para ler uma frase de no maximo 70 caracteres e exibir a quantidade de
vogais dessa frase.

61/92

Introdugdo a Programacao

5. Escreva um programa que leia uma string qualquer e mostre-a invertida.
Exemplo:

Entrada: casa <ENTER>
Saida: asac

6. Um palindromo é uma cadeia de caracteres que representa a mesma palavra nos sentidos direto

e inverso. Por exemplo, “asa” € um palindromo, porque o inverso dela também ¢é “asa”. Faca
um programa que leia uma string e diga se esta € ou ndo um palindromo.

7. Escreva um programa para ler 9 nimeros inteiros para preencher uma matriz D 3x3, ou seja,
com 3 linhas e 3 colunas (considere que ndo serdo informados valores duplicados). A seguir,
ler um nimero inteiro X e escrever uma mensagem indicando se o valor de X existe ou nao na
matriz D.

Feedback sobre o capitulo

) Voceé pode contribuir para melhoria dos nossos livros. Encontrou algum erro? Gostaria de
submeter uma sugestao ou critica?
Para compreender melhor como feedbacks funcionam consulte o guia do curso.

62 /92

https://github.com/edusantana/guia-geral-ead-computacao-ufpb/blob/master/livro/capitulos/livros-contribuicao.adoc

Introdugdo a Programacao

Capitulo 5

Funcoes

OBJETIVOS DO CAPITULO

Ao final deste capitulo vocé deverd ser capaz de:

* Criar e usar fungdes e procedimentos em C

* Identificar quando escrever uma func¢io ou um procedimento

* Entender as regras de escopo para varidveis em C

* Entender os diferentes tipos de passagem de parametro e quando utiliza-los

* Trabalhar com funcdes recursivas

Quando elaboramos um algoritmo para resolver um problema, e quando escrevemos um programa
para implementar este algoritmo, muitas vezes identificamos uma parte do algoritmo que deve ser
realizada vdrias vezes para chegar ao resultado. Ou, ao trabalhar com vérios algoritmos diferentes,
identificamos algumas partes em comum entre eles. Nestes casos, € uma boa ideia isolar essas partes
que se repetem, de maneira que elas possam ser realizadas sem repetir o mesmo codigo varias vezes.
Esse objetivo pode ser atingido com o uso de fung¢des e procedimentos.

Neste capitulo, vamos estudar as fun¢des e procedimentos como uma forma de reaproveitar o codigo
de tarefas que se repetem em um programa. Fung¢des sdo importantes para a modularizacdo de um
programa, ou seja, para dividir o programa em partes menores, cada parte com uma func¢ao especifica;
sem fungdes ou procedimentos, um programa maior e mais complicado ficaria organizado em uma
Unica parte que faz tudo e é mais dificil de entender. Neste capitulo, vamos entender quando utilizar
as fung¢des ou procedimentos para melhor dividir o c6digo dos nossos programas.

Importante

Neste capitulo, vamos descartar a utilizacao de pseudocodigo. Agora que voceé ja possui
& um conhecimento basico sobre a linguagem C e, provavelmente, escreveu alguns programas

nela, consideramos que nao havera mais necessidade de apresentar sintaxes para pseudo-

cédigos. Portanto, deste capitulo em diante, o contelido apresentadao utilizara somente a

sintaxe da linguagem C.

5.1 O que sao funcoes?

Funcdes e procedimentos podem ser compreendidos como trechos reutilizdveis de c6digo. Uma fun-
¢do ou procedimento pode, entdo, ser utilizado vérias vezes por um mesmo programa. Isso simplifica

63 /92

1

3

Introdugdo a Programacao

a criagdo de programas maiores, dividindo-os em unidades menores que trabalham em conjunto. Fun-
¢oes e procedimentos sao bastante semelhantes e, posteriormente, vamos entender as diferencas entre
eles.

Revisao
Lembre-se que durante o curso vocé ja utilizou fungdes diversas vezes, o que nés sabemos
sobre fungbes até agora?

* Uma fungao implementa um comportamento que pode ser reutilizado;

% » Para executar uma fungao, utilizamos o nome da fungéo e passamos alguns parametros
entre parénteses e separados por virgula. Exemplo: printf ("R$ %1.2f", preco);

« Afungdo print f é utilizada para imprimir texto na saida;
* As fungbes scanf e getchar para ler dados da entrada;
» Asfungbes strlen, strcpy, strcat e strchr sdo utilizadas para manipular strings;

 As fungdes sao agrupadas em moédulos. Exemplo: stdio;

Quando realizamos um processo com um determinado objetivo, € comum identificarmos partes que se
repetem. Quando se trata de processos no mundo fisico, muitas vezes criamos maquinas que ajudam
a realizar as partes que se repetem.

Por exemplo, pense no processo de limpar as roupas que usamos para podermos usi-las novamente.
Este processo envolve lavar as roupas com dgua e sabao, secar as roupas lavadas e, finalmente, passar
as roupas para evitar que fiquem amassadas. Para reduzir a quantidade de trabalho necessdria para
realizar esse processo, foi inventada uma maquina de lavar, que realiza a lavagem das roupas. Uma
pessoa que tem uma maquina de lavar pode usé-la repetidamente e, sempre que precisa de roupas
limpas, precisa apenas se encarregar de enxugar e passar as roupas; a lavagem fica por conta da
maquina. Dizemos inclusive que a func¢ao da maquina € lavar as roupas.

As funcdes e os procedimentos funcionam desta forma, capturando partes menores de um algoritmo
que podem ser utilizadas por outros algoritmos, economizando o trabalho de sempre refazer uma
determinada tarefa.

5.1.1 Um exemplo

Vejamos um exemplo. Queremos criar um programa que calcule a média final de um aluno em uma
disciplina com trés provas; o programa deve pedir ao usudrio que entre com as notas das trés provas,
calcular a média aritmética das trés notas e apresentar o resultado. O programador que resolveu o
problema decidiu imprimir um separador na tela entre cada entrada de dados e o resultado final, desta
forma, produzindo o seguinte c6digo:

Cadigo fonte
Calculo da média de um aluno em uma disciplina
#include <stdio.h>

int main () {
float notal, nota2, nota3, media;

64 /92

20

21

22

23

24

25

26

27

28

29

30

31

Introdugdo a Programacao

printf ("Entre a nota da primeira prova:

scanf ("$f", ¬al);

printf ("\n");

printf ("===

printf ("\n");

printf ("Entre a nota da segunda prova:

scanf ("$f", ¬a2);

printf ("\n");

print f (= ————————

printf ("\n");

printf ("Entre a nota da terceira prova:

scanf ("$f", ¬a3l);

printf ("\n");

e e

printf ("\n");

media = (notal + nota2 + nota3) / 3.0;

printf ("Media: %$f\n", media);

return O;

Cédigo que imprime um separador na tela.

Resultado da execuciao do programa

Entre a nota da primeira prova:

Media: 8.200000

E fécil de notar que o c6digo usado para imprimir um separador se repete trés vezes no programa. Po-
demos melhorar esse programa utilizando um procedimento que tera a tarefa de imprimir o separador.

Isso teria o seguinte resultado:
Cadigo fonte

Calculo da média usando procedimento

7.0

8.0

9.6

")

")

")

65/92

20

21

22

23

24

25

26

27

28

29

30

31

Introdugdo a Programacao

#include <stdio.h>

void imprime_separador () { // @
printf ("\n"); // @
L R el R = L I VAR C)
printf ("\n"); // @

}

int main () {

float notal, nota2, nota3, media;

printf ("Entre a nota da primeira prova: ");
scanf ("$f", ¬al);

imprime_separador () ; // @
printf ("Entre a nota da segunda prova: ");
scanf ("$f", ¬a2);

imprime_separador () ;

printf ("Entre a nota da terceira prova: ");
scanf ("$f", ¬a3l);

imprime_separador () ;

media = (notal + nota2 + nota3) / 3.0;
printf ("Media: %$f\n", media);

return 0;

Defini¢do do procedimento imprime_separador.
Cédigo no corpo do procedimento.

Chamada do procedimento imprime_separador.

A linha void imprime_separador () inicia a definicilo do procedimento chamado
imprime_separador; o corpo do procedimento € o conjunto de comandos entre chaves que
vem logo apds o nome do procedimento. Os parénteses e a palavra void no inicio serdo explicados
depois. Dizemos que o uso de um procedimento € uma chamada ao mesmo. No exemplo anterior, o
codigo do programa chama imprime_separador trés vezes.

E importante notar que além de economizar a repeti¢do de linhas de cédigo, o programa usando o
procedimento imprime_separador também € mais ficil de entender porque transmite melhor as
partes que compdem o programa. A melhor modulariza¢ao do c6digo do programa € um motivo extre-
mamente importante para usar funcdes e procedimentos, principalmente a medida que os programas
se tornam maiores € mais complexos.

66 /92

2

4

20

21

22

23

24

25

26

27

28

29

30

31

32

Introdugdo a Programacao

5.2 Parametros

O exemplo usando imprime_separador € o caso mais simples, mas menos interessante do uso
de procedimentos e fungdes, quando o cddigo a ser reutilizado é sempre 0 mesmo. Na maioria das
situacdes de interesse, queremos utilizar uma funcdo ou procedimento em situagdes com algumas
diferencas. Para tornar um procedimento (ou funcdo) mais flexivel, € preciso que informagdes sejam
passadas para o procedimento. Isso é feito com o uso de parametros.

J4 vimos muitas vezes o uso de procedimentos com parametros. Por exemplo, print £ € um proce-
dimento da biblioteca padrao da linguagem C que imprime a string passada como parametro. Assim,

printf ("ola, mundo!");

¢ uma chamada ao procedimento print f com parametro "ola, mundo!".

Como exemplo do uso de parametros em um procedimento, voltemos ao exemplo do cdlculo das
médias. Vamos utilizar o separador para fazer uma visualizacdao simples das notas e da média, impri-
mindo uma barra de tamanho proporcional a cada valor.

Cadigo fonte
Uso de um procedimento com parametro

#include <stdio.h>
#include <math.h>

void imprime_separador (float nota) { // @
int 1i;
printf ("\n");
for (1 = 0; 1 < (int) lround(nota * 5.0); i++) {
printf ("=");

}
printf (" %$3.2f / 10.0\n", nota);
printf ("\n") ;

int main () {
float notal, nota2, nota3, media;

printf ("Entre a nota da primeira prova: ");
scanf ("$f", ¬al);

imprime_separador (notal) ; // ©

printf ("Entre a nota da segunda prova: ");
scanf ("$f", ¬a2);

imprime_separador (nota?2) ;

printf ("Entre a nota da terceira prova: ");
scanf ("$f", ¬a3l);

imprime_separador (nota3) ;

media = (notal + nota2 + nota3) / 3.0;

67 /92

33

34

35

36

37

38

Introdugdo a Programacao

printf ("Media: %3.2f\n", media);
imprime_separador (media) ;

return 0;

©® Definicdo do procedimento imprime_separador, com o pardmetro nota, do tipo float.

©® Chamada do procedimento imprime_separador, passando o argumento notal.

Resultado da execucao do programa code/capS/media_param.c

Entre a nota da primeira prova: 6.2
=============================== (.20 / 10.0

Entre a nota da segunda prova: 7.8
======================================= 7,80 / 10.0
Entre a nota da terceira prova: 9.2

e mmm e - 9,20 / 10.0

m=====——m—m—mmmmmm—mm—mem—meeeeeoooeo= 7,73 / 10.0

Como se pode ver no resultado da execugdo do programa, o novo procedimento
imprime_separador imprime uma barra de tamanho proporcional a nota passada como
argumento (sdo 5 caracteres = para cada ponto da nota). Note a diferenca de nomenclatura: o
procedimento imprime_separador € definido com um pariametro de nome nota, mas é
chamado com um argumento, o valor que é comunicado ao procedimento. No exemplo acima,
imprime_separador é chamado com os argumentos nota, nota2, nota3 e media. E
necessdrio especificar o tipo de cada parametro que deve ser passado para o procedimento; no caso,
o parametro nota do procedimento imprime_separador é dotipo float.

Na chamada de um procedimento com um parametro, o controle do programa executa o c6digo do
procedimento, atribuindo o valor passado como argumento a varidvel nota dentro do procedimento
imprime_separador. Ou seja, o seguinte codigo

int main () {
float notal;

printf ("Entre a nota da primeira prova: ");
scanf ("$f", ¬al);

imprime_separador (notal) ;

// resto do programa

68 /92

Introdugdo a Programacao

funciona como se fosse o seguinte (utilizando o procedimento):

int main () {
float notal;

printf ("Entre a nota da primeira prova: ");
scanf ("$f", ¬al);

float nota = notal; // @

int i; // ©

printf ("\n");

for (1 = 0; i < (int) lround(nota * 5.0); i++) {
printf ("=");

}
printf (" %$3.2f / 10.0\n", nota);
printf ("\n");

// resto do programa

@ Atribui¢do do valor do argumento notal para o pardmetro nota.

© Resto do corpo do procedimento imprime_separador.

Este exemplo € apenas uma ilustragc@o; na pratica, o chamado do procedimento nao funciona exata-
mente desta forma. Em particular, a varidvel nota, que designa o parametro do procedimento, s6
existe enquanto o procedimento executa. Isso serd detalhado mais tarde.

O uso de parametros nos procedimentos os tornam muito mais flexiveis para uso em diferentes situ-
acoes. Mas assim como € util que o cddigo que chama o procedimento comunique informagdes para
o procedimento chamado, muitas vezes também € util que o procedimento comunique algo de volta
para o c6digo que o chamou; neste caso, passamos dos procedimentos para as funcdes.

5.3 Retorno de Valores com Funcoes

Até agora sO temos usado procedimentos como ferramenta de modularizacao do c6digo, mas muitas
vezes € util chamar um procedimento que retorna alguma informacao de volta para o c6digo que o
chamou. Esta € a diferenca entre procedimentos e funcdes: as funcdes retornam algum valor. Desta
forma, as funcdes em linguagem C sdo similares as fungdes da matemadtica: uma funcdo como

fZ—7Z, f(x)=x>+2

tem um parametro X (um inteiro), e retorna um determinado valor que depende do parametro passado;
por exemplo,
f(5)=5*+2=27

E fécil escrever a mesma fungdo em linguagem C:

int f(int x) { // @
return x * x + 2; // ©

69 /92

1

Introdugdo a Programacao

® Definicdo da fungdo f. A definicdo comeca com int f (...), significando que o tipo de
retorno da funcdo é int.

® A palavra-chave return determina o valor de retorno da func¢do f, que serd o resultado da
expressdo x * x + 2.

A func¢do £ do exemplo faz o mesmo que a versdo matemadtica: dado o valor do parametro x, retorna
um valor que € igual a x ao quadrado, somado a dois. Note que € preciso especificar o tipo do valor
que € retornado pela funcdo e, por isso, toda fungdo comeca com o tipo de retorno antes do nome.
Especificar os tipos dos parametros e o tipo do valor de retorno também € similar as funcdes na
matematica, para as quais devemos especificar os conjuntos dominio e contra-dominio.

5.3.1 Funcoes, Procedimentos e o Tipo void

Neste ponto pode surgir uma pergunta: se € preciso especificar o tipo do valor retornado por uma
fun¢do antes do nome da funcdo (por exemplo int £ (...)), por que nos procedimentos usa-se a
palavra-chave void?

A verdade é que, embora algumas linguagens de programagao facam uma distin¢do entre procedi-
mentos e fungdes, na linguagem C existem apenas fun¢gdes. Como a diferenca entre procedimentos e
funcdes € apenas o fato de retornar ou nao um valor, os procedimentos em C sdo considerados funcoes
que retornam um valor vazio. E isso que significa o void no inicio da definicdo de um procedimento
como imprime_separador, que vimos anteriormente; a rigor, imprime_separador € uma
fun¢do, mas retorna um valor vazio, ou seja, nenhum valor. O tipo void na linguagem C é um tipo
especial que denota a auséncia de valores.

Como procedimentos em C sdo fungdes, também € possivel usar ret urn em procedimentos, mas
apenas para terminar sua execu¢do e retornar imediatamente. Isso as vezes € ttil para terminar um
procedimento em pontos diferentes do seu final. Também pode-se utilizar return ao final do pro-
cedimento, mas este uso € supérfluo e nao é recomendado.

O seguinte exemplo demonstra o uso do return em procedimentos. Continuando no tema relaci-
onado ao célculo de médias, queremos detectar se uma das notas entradas pelo usudrio é uma nota
invélida antes de fazer o cdlculo da média. Neste caso, o programa deve apenas imprimir se algum
valor negativo foi entrado pelo usudrio. O procedimento possui_negativo serd responsavel por
imprimir uma mensagem caso um dos valores seja negativo.

Cadigo fonte

Uso de return em um procedimento

#include <stdio.h>

void possui_negativo (float nl, float n2, float n3) {
if (n1 < 0.0) {

printf ("Numero negativo encontrado!\n");
return; // @

if (n2 < 0.0) {
printf ("Numero negativo encontrado!\n");
return;

70/92

21

22

23

24

25

26

27

28

29

30

31

32

33

Introdugdo a Programacao

if (n3 < 0.0) {
printf ("Numero negativo encontrado!\n");
return;

printf ("Nenhum numero negativo encontrado\n"); // ()

int main () {
float notal, nota2, nota3;

printf ("Entre as trés notas, separadas por espacos: ");
scanf ("%$f %$f %f", ¬al, ¬a2, ¬al);

possui_negativo (notal, nota2, nota3);
printf ("Media: %$f\n", (notal + nota2 + nota3) / 3.0);

return 0;

® Usodo return para sair prematuramente do procedimento.

©@ Este comando de impressdo serd executado se nenhuma das condi¢des testadas em
possui_negativo for verdade, ou seja, se nenhum dos valores dos parametros for nega-
tivo.

Resultado de duas execucoes do programa code/capS/retorno_proc.c

Entre as trés notas, separadas por espacos: 4.5 5.6 8.9
Nenhum numero negativo encontrado
Media: 6.333333

Entre as trés notas, separadas por espacos: 4.5 -6.7 9.9
Numero negativo encontrado!
Media: 2.566667

O procedimento possui_negativo deve verificar se um dos trés nimeros passados como argu-
mentos, mas basta achar um nimero entre eles para que o resultado possa ser impresso imediatamente
e o procedimento pode retornar; por isso, usamos return assim que o primeiro valor negativo € en-
contrado.

Esse exemplo ainda tem um problema: como pode ser visto nos exemplos de execucdo, mesmo que
o usudrio entre um valor negativo, a média aritmética das trés notas ainda € impressa na tela (o
usudrio apenas € avisado que um dos valores foi negativo). Isso € uma indica¢ao que seria melhor que
possui_negativo fosse uma funcdo, e que o programa principal verificasse o valor retornado e
tomasse uma decis@o. Se fizermos essas alteracdes ficamos com o seguinte programa:

Codigo fonte

Reescrevendo o exemplo anterior para usar uma funcao

71/92

20

21

22

Introdugdo a Programacao

#include <stdio.h>

int possui_negativo (float nl, float n2, float n3) { // @
if (nl < 0.0 || n2 < 0.0 || n3 < 0.0) // ©
return 1; // ©

return 0; // @

int main() {
float notal, nota2, nota3;

printf ("Entre as trés notas, separadas por espacos: ");
scanf ("%$f $f %f", ¬al, ¬a2, ¬al);

if (possui_negativo(notal, nota2, nota3) == 1) // @
printf ("Nao e’ possivel calcular a media, uma ou mais notas <>
sao negativas\n");
else
printf ("Media: %f\n", (notal + nota2 + nota3) / 3.0);

return 0;

©® A funcdo possui_negativo agora retorna um inteiro de valor 1 caso um dos valores dos
parametros seja negativo, e 0 caso contrario (todos sdao positivos).

© Teste para identificar se um ou mais dos parametros informados sdo negativos.
A funcgdo retorna 1 se um dos ntimeros passados para a funcdo for negativo.

© Caso nenhum dos nimeros seja negativo, o controle passa para o comando return ao final da
func¢do e o valor 0 é retornado para indicar que nenhum nidmero negativo foi encontrado.

© O programa principal verifica o valor de retorno da funcdo possui_negativo e imprime
informacdes adequadas na tela para cada caso.

Resultado de duas execucoes do programa code/capS/retorno_func.c

Entre as trés notas, separadas por espacos: 6.8 9.7 -2.3
Nao e’ possivel calcular a media, uma ou mais notas sao <+
negativas

Entre as trés notas, separadas por espacos: 6.8 9.7 7.2
Media: 7.900000

Como pode-se ver nos dois exemplos de execu¢do do programa, a saida agora € mais adequada.
Caso uma das notas informadas seja negativa, o programa nao imprime um valor de média, apenas
avisando o usudrio do erro na entrada de dados. O cddigo da funcdo possui_negativo também
foi simplificado pelo uso do operador 16gico OU.

72/92

Introdugdo a Programacao

Como funcdes e procedimentos sdo tratados de maneira uniforme na linguagem C (e em muitas
outras linguagens atuais), a partir de agora vamos usar o termo funcio tanto para fungdes como
para procedimentos. Isso ndo deve gerar nenhuma confusdo. Em caso de divida, basta olhar para a
defini¢do da fun¢@o no cédigo-fonte do programa; se a fungdo for declarada com o tipo de retorno
void, entdo € um procedimento.

5.4 Um Exemplo Matematico: Equacao de Segundo Grau

Nesta secdo, veremos mais um exemplo do uso de fungdes em um programa para calcular as raizes
de uma equacdo de segundo grau. Neste exemplo, as fun¢des ndo serdo utilizadas vdrias vezes, mas o
programa principal serd mais claro e mais facil de entender gracas a melhor modularizag¢ao conseguida
com o uso das funcgoes.

Lembremos que um polinémio de segundo grau € uma soma de trés termos em poténcias de uma
variavel, por exemplo
P(x) = ax* + bx+c

onde a, b e ¢ sdo coeficientes constantes. Uma equacdo de segundo grau é formada ao igualar um
polindmio de segundo grau a zero, ou seja

ax2+bx—|—c:()

Sabemos que uma equagdo de segundo grau pode ter até duas raizes reais; cada raiz é um valor
da varidvel x que satisfaz a equacdo. Essas raizes podem ser encontradas pela chamada férmula de
Bhaskara. A férmula consiste em calcular um valor auxiliar chamado de A (delta), e usar o valor
calculado para identificar quantas raizes reais distintas podem ser encontradas para a equagao:

* se A < 0, a equacio nao tem raizes reais;
* se A =0, a equacdo possui uma raiz real;

* se A > 0, a equacdo possui duas raizes reais distintas.

A férmula para calcular A é
A = b —4ac

No caso A >= 0, as raizes da equacgdo sao dadas por

_ —bxVA

o 2a

uma das raizes sendo obtida pelo uso do sinal positivo em —b 4 +/A, enquanto que a outra raiz é
calculada pelo uso do sinal negativo. Se A = 0, ambos os valores serdo iguais.

Como exemplo do uso da férmula de Bhaskara, considere a equagdo:
X =5x+6=0

Nesta equacdo os coeficientes sdo a = 1,b = —5 e ¢ = 6. Calculamos o A usando os valores dos
coeficientes:
A=b*—dac=(-5)>—4x1x6=25-24=1

73792

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Introdugdo a Programacao

E assim, podemos calcular as raizes:

 —bEVA 5+V1 5+1
22 2 2
Ou seja, as raizes sdo 6/2 =3 e 4/2 = 2.

X

Agora vamos escrever um programa que resolve equagdes do segundo grau, usando o0 processo mos-

trado acima.

Cadigo fonte

Calculo de raizes de uma equacao de segundo grau
#include <stdio.h>

#include <math.h>

float calculo_delta (float a, float b, float c) { // @
return (b * b) — (4 » a * c);

float raiz_positiva(float a, float b, float delta) { // ©
return (-b + sqgrt(delta)) / 2 * a;

float raiz_negativa (float a, float b, float delta) { // ©
return (-b - sqgrt(delta)) / 2 * a;

int main () {
float a, b, c;
float delta;

printf ("Entre os coeficientes A, B e C, nesta ordem: ");
scanf ("$f %f %$f", &a, &b, &c);

delta = calculo_delta(a, b, c);

if (delta < 0.0)
printf ("Delta negativo, nao existem raizes\n");
else if (delta == 0)
printf ("Delta = 0, uma raiz: %f\n", raiz_positiva(a, b,
) ;
else
printf ("Raizes: %f e %$f\n", raiz_positiva(a, b, delta),
raiz_negativa(a, b, delta));

return O;

® Funcio que calcula o valor do A.
©® Funcdo que calcula a raiz positiva da equacao.

©® Funcdo que calcula a raiz negativa da equacao.

delta)

H

<

74192

Introdugdo a Programacao

Resultado de trés execucoes do programa code/capS/equacao.c

Entre os coeficientes A, B e C, nesta ordem: 1.0 -5.0 6.0
Raizes: 3.000000 e 2.000000

Entre os coeficientes A, B e C, nesta ordem: 1.0 -6.0 9.0
Delta = 0, uma raiz: 3.000000

Entre os coeficientes A, B e C, nesta ordem: 4.0 -3.0 7.0
Delta negativo, nao existem raizes

Podemos ver neste exemplo fungdes para calcular o valor do A e das duas raizes da equacdo. O
programa obtém o valor do A e verifica se a equag@o tem nenhuma, uma ou duas raizes, e imprime o
resultado de acordo com isso. Embora cada fun¢do seja usada apenas uma vez, o programa principal
¢ mais claro e mais facil de entender porque cada fun¢do faz uma parte do processo necessario, ao
invés de ter todo o cédigo junto na fun¢do main. Fungdes sdo importantes ndo s para reutilizar
codigo e diminuir esfor¢co de programacao, mas também para melhorar a modulariza¢ao do programa
e tornd-lo mais fécil de ser lido. Em situacdes préticas, muitas vezes € necessario ler um codigo que
jé foi produzido antes e entendé-lo, seja para consertar defeitos encontrados ou para extender suas
funcionalidades. Tornar um programa mais legivel auxilia e reduz o custo relacionado a manutengdo
do mesmo.

Entretanto, este dltimo exemplo pode parecer estranho do ponto de vista da modularizagdo, ja
que duas de suas funcdes sdo quase idénticas. As fungdes que calculam o valor das raizes,
raiz_positiva e raiz_negativa, mudam apenas em uma operacdo. Podemos pensar em
COmo reescrever o programa para usar apenas uma fungdo ao invés de duas funcdes quase idénticas.
A repeticao desnecessaria de codigo pode ser um problema para a manuten¢ido de um programa.

A chave para criar uma sé fung¢do que calcula os dois valores € criar um novo parametro que indica
qual das duas raizes deve ser calculada. Vamos usar um parametro chamado sinal que indica, pelo
seu valor, se serd usada uma soma ou subtra¢iao no cdlculo da raiz. Se sinal for 1, serd usada uma
soma, e se for —1 serd usada uma subtragdo. O cddigo resultante € mais compacto e evita repetigdes:

Cadigo fonte
Calculo de raizes de uma equacio de segundo grau

#include <stdio.h>
#include <math.h>

float calculo_delta(float a, float b, float c) {
return (b » b) — (4 x a * c);

float raiz(float a, float b, float delta, int sinal) {
if (sinal == 1)
return (-b + sqrt(delta)) / 2 * a;
else
return (-b - sqrt(delta)) / 2 * a;

int main () {
float a, b, c;
float delta;

75792

20

21

22

23

24

25

26

27

28

29

30

31

32

3

Introdugdo a Programacao

printf ("Entre os coeficientes A, B e C, nesta ordem: ");
scanf ("$f %f %f", &a, &b, &c);

delta = calculo_delta(a, b, c);

if (delta < 0.0)
printf ("Delta negativo, nao existem raizes\n");
else if (delta == 0)
printf ("Delta = 0, uma raiz: %$f\n", raiz(a, b, delta, 1));
else
printf ("Raizes: %f e %f\n", raiz(a, b, delta, 1), raiz(a, b, <
delta, -1));

return O;

E comum quando escrevemos programas nos concentrarmos, inicialmente, em fazé-lo funcionar, ou
seja, resolver o problema desejado. Entretanto, € importante depois reler o cddigo escrito e revisa-lo
para tornd-lo mais claro, mais legivel e mais facil de manter. Esse processo de revisar o codigo de
um programa sem mudar sua funcionalidade é muito importante na programacao de computadores, e
normalmente recebe o nome de refatoracao.

5.5 Escopo de Variaveis

Quando trabalhamos com programas compostos por vdrias fun¢des, nos deparamos com questdes
relativas a visibilidade das varidveis em diferentes partes do programa. Ou seja, se uma varidvel é
visivel ou acessivel em certas partes de um programa.

Um programador iniciante poderia escrever o seguinte programa para calcular a média aritmética de
trés notas:

Codigo fonte
Calculo da média usando cédigo incorreto

#include <stdio.h>
float calc_media () {

return (notal + nota2 + nota3) / 3.0; // @
int main () {

float notal, nota2, nota3;

printf ("Entre as trés notas: ");
scanf ("%$f $f %f", ¬al, ¬a?2, ¬al);

printf ("Media: $f\n", calc_media());

return 0;

76 /92

Introdugdo a Programacao

Esta linha contém erros e o programa ndo sera compilado.

O raciocinio do programador € "se as varidveis notal, nota2 e nota3 existem na fun¢do main
e a funcdo calc_media é chamada dentro de main, as varidveis notal, nota2 e nota3 ndo
deveriam ser visiveis dentro de calc_media ?"

Acontece que isso ndo € valido na linguagem C, e qualquer compilador da linguagem vai acusar
erros de compilacio neste programa, avisando que as varidveis notal, nota2 e nota3 ndo foram
declaradas.

Para entender como funciona a visibilidade das varidveis em um programa na linguagem C, precisa-
mos falar sobre as regras de escopo desta linguagem. O escopo de uma varidvel € a parte do programa
na qual ela € visivel e pode ser acessada.

A linguagem C usa um conjunto de regras de escopo que recebe o nome de escopo estdtico ou escopo
léxico. Essas regras sdo bastante simples de entender e aplicar, como veremos a seguir.

Em programas na linguagem C existem dois tipos de escopo (regides de visibilidade):

* escopo global;

* escopos locais.

Existe apenas um escopo global e, como indicado pelo seu nome, ele contém elementos que sdao
visiveis em todo o programa. Ja os escopos locais sdo varios e particulares: basicamente, cada fungao
define um escopo local que corresponde com o corpo da fungao.

Desta forma, varidveis declaradas no escopo global (ou seja, "fora"de qualquer fun¢do) sdo visiveis
em todo programa, enquanto varidveis declaradas dentro de uma funcao sdo visiveis apenas dentro
da mesma fun¢do. No exemplo anterior, as varidveis notal, nota2 e nota3 sdo visiveis apenas
dentro da func@o main, e por isso ndo podem ser acessadas dentro da funcdo calc_media.

Isso pode ser resolvido mudando as varidveis notal, nota2 e nota3 para o escopo global, ou seja,
tornando-as varidveis globais, como no seguinte programa:

Cédigo fonte
Calculo de raizes de uma equaciao de segundo grau

#include <stdio.h>
float notal, nota2, nota3; // @
float calc_media () {

return (notal + nota2 + nota3) / 3.0; // ©

int main () {
printf ("Entre as trés notas: ");
scanf ("$f $f $f", ¬al, ¬a2, ¬al); // ©

printf ("Media: %$f\n", calc_media());

return 0;

77192

Introdugdo a Programacao

@ Declaragdo das varidveis notal, nota2 e nota3 como varidveis globais. Note que elas estdo
declaradas "fora"de qualquer funcgdo.

® Cddigo dentro de calc_media que usa as varidveis globais. Neste programa, as variaveis
estdo visiveis e ndo ocorrerd um erro durante a compilagao.

© Cddigo dentro de main que usa as varidveis globais. Varidveis globais sao visiveis em todo o
programa, incluindo na funcdo principal.

Este programa agora compila corretamente e funciona para o cdlculo da média. Mas € importante
observar que esse tipo de pratica ndo é recomendada. Entre as boas praticas da programacao estd a
sugestdo de usar varidveis globais apenas quando absolutamente necessdrio. Como varidveis globais
podem ser acessadas e ter seu valor alterado por qualquer parte do programa, fica dificil saber que
partes podem influenciar ou serem influenciadas pelas varidveis globais, o que torna todo o programa
mais dificil de entender. Para o exemplo das notas, € melhor e mais de acordo com boas préticas de
programacgdo comunicar as notas para a fun¢do calc_media usando pardmtros, como segue:

Cédigo fonte
Calculo de raizes de uma equaciao de segundo grau

#include <stdio.h>

float calc_media(float nl, float n2, float n3) {
return (nl + n2 + n3) / 3.0;

int main () {

float notal, nota2, nota3;

printf ("Entre as trés notas: ");
scanf ("%$f %$f %f", ¬al, ¬a?2, ¬al);

printf ("Media: %$f\n", calc_media (notal, nota2, nota3));

return 0;

Este cédigo funciona corretamente e evita o uso desnecessario de varidveis globais.

5.5.1 Escopo dos Parametros

Uma pergunta que pode surgir (especialmente apds o exemplo anterior) € “qual o escopo dos parame-
tros das fungdes?” A resposta € simples: para questdes de visibilidade, o escopo dos parametros das
fungdes € o escopo local da funcdo da qual eles pertencem. Ou seja, os parametros de uma fun¢do
funcionam exatamente como varidveis locais declaradas dentro da funcao.

5.5.2 Sombreamento e Sobreposicao de Escopos

O que acontece se duas varidveis tiverem o mesmo nome em um sé programa? A resposta depende
de onde as varidveis em questao sdo declaradas.

78792

20

21

22

23

24

Introdugdo a Programacao

Nao podem existir duas varidveis de mesmo nome em um mesmo €Scopo; um programa que tente
declarar duas varidveis de mesmo nome no mesmo escopo ocasionard um erro quando for compilado.
Assim, ndo podem existir duas varidveis globais de nome x ou duas varidveis de nome y em uma
mesma funcao.

Em escopos diferentes a regra muda: varidveis de mesmo nome podem existir em um programa se
forem declarados em escopos distintos. Isso é bastante util: imagine um programa com 20 ou 30
mil linhas de cédigo (o que hoje em dia é considerado um programa de pequeno a médio porte); um
programa deste tamanho precisa usar um grande numero de varidveis, se cada uma delas precisasse
ter um nome diferente de todas as outras, seria muito dificil dar nomes a varios milhares de variaveis.
Imagine que um programa deste tamanho pode ter mais de mil lacos for, cada um com uma varidvel
de controle, e cada uma dessas varidveis teria que ter um nome diferente. Por isso, as regras de
escopo também sdo tteis para estabelecer espagos locais onde os nomes nao entram em conflitos com
os nomes de outros escopos locais.

Quando temos duas varidveis de mesmo nome em diferentes escopos locais, ou seja, duas funcdes
diferentes, o resultado € simples, jd que essas varidveis de mesmo nome nunca seriam visiveis no
mesmo local do programa. Mas e se tivermos duas varidveis de mesmo nome, sendo uma varidvel
local e uma global? Neste caso, dentro da funcio que declara a varidvel com mesmo nome da global,
existirdo duas varidveis que poderiam ser visiveis com o mesmo nome. O que acontece nesses casos é
chamado de sombreamento: a varidvel do escopo local esconde a varidvel do escopo global. Vamos
ilustrar essa regra com um exemplo:

Coédigo fonte
Exemplo de sombreamento de variaveis globais

#include <stdio.h>
int x = 5; // @
void f£() {
int x = 60; // @
int y = x « x; // ©
printf("x = %d, y = %d\n", x, y);
int g() {
int y = x » x; // ©
return y;
int main () {
£0) 7
printf("g = $d\n", g());

return 0;

® Declaragdo da varidvel global x.

79/92

1

2

3

Introdugdo a Programacao

® Declaracio da varidvel local x na fungdo f.
© Declaragdo da varidvel local y na fungdo f.

© Declaracio da varidvel local y na fungdo g.

Vemos no exemplo que existe uma varidvel global chamada x e uma varidvel local x na funcio f.
A fungdo f também tem uma varidvel local chamada y, e ha uma variavel local de mesmo nome na
fungdo g. As varidveis chamadas y em f e g ndo interferem, pois sdo escopos totalmente diferentes.

J4 as varidveis chamadas x interferem, j4 que uma estd no escopo global e outra estd no escopo local
da funcdo f£. A questdo é: o que € impresso pelo programa? Isso depende dos valores de x dentro
da funcdo f e na funcdo g (que usa x para calcular o valor de y, que € retornado). A execucdo do
programa imprime o seguinte:

Resultado da execucio do programa code/cap5/sombra.c

x = 60, y = 3600
g = 25

A primeira linha € o que € impresso na fungdo £. Como existe uma varidvel local x declarada em f,
dentro da fungdo f a varidvel x tem o valor 60, como declarado; o valor de y calculado em f €, entdo,
60 x 60 = 3600. Ja na funcdo g ndo existe uma varidvel x local, entdo o valor de x dentro de g é o
valor da varidvel global x, que € igual a 5; desta forma, y em g tem valor 5 X 5 = 25. Isso explica a
saida do programa como visto acima.

Nota

Uma consequéncia da regra de sombreamento é que dentro de fungdes que tenham variaveis
locais que escondem variaveis globais de mesmo nome, é impossivel acessar ou utilizar
as variaveis globais escondidas. No exemplo anterior, dentro da fungao f é impossivel ter
acesso a variavel global x.

5.6 Passagem de Parametros

Com o que vimos até agora sobre parametros de fungdes, eles funcionam de maneira simples: o
codigo que chama uma func¢do especifica expressdes para cada um dos argumentos da fungdo. Os
valores de cada expressdo sdo calculados e transmitidos como o valor dos parametros declarados na
funcao.

Entretanto, isso nio € suficiente para todos os casos em que podemos querer usar parametros. Por
exemplo, digamos que temos uma situacdo em que € necessario trocar o valor de duas varidveis, e
que isso € necessdrio vdrias vezes ao longo do programa. Para evitar repeticao, a melhor solucdo é
escrever uma fungdo que realiza a troca do valor de duas varidveis. O exemplo a seguir mostra o que
acontece quando tentamos fazer isso apenas com o que vimos até agora:

Cédigo fonte
Tentativa de trocar o valor de duas variaveis usando uma funcéo

#include <stdio.h>

void troca_variaveis (int a, int b) {

80/92

Introdugdo a Programacao

int temp = a;
a = b;
b temp;

printf ("Dentro de troca_variaveis: a = %d, b = %d\n", a, b);

int main () {
int x = 5;
int yv = 7;

printf ("Antes da troca: x = %d, y = %d\n", x, vy);

troca_variaveis (x, Vy);

printf ("Depois da troca: x = %d, y = %d\n", x, V);

Resultado da execuciao do programa

Antes da troca: x =5, y =7
Dentro de troca_variaveis: a = 7, b =5
Depois da troca: x =5, y = 7

Como se vé no resultado da execugdo do programa, embora as varidveis a e b realmente troquem de
valor dentro da funcdo troca_variaveis, isso ndo afeta o valor das varidveis x € y em main.
Isso acontece porque, normalmente, os parametros em C sdo passados por valor, ou seja, apenas o
valor de x e y sdo copiados para a e b. Precisamos que as varidveis na funcdo t roca_variaveis,
de alguma maneira, afetem as varidveis que foram usadas como parametro, e para isso € necessario
usar o modo de passagem de pardmetros chamado de passagem por referéncia. A seguir, vamos ver
em maiores detalhes como funcionam esses dois modos de passagem de parametros.

5.6.1 Passagem por Valor
A passagem de parametros por valor € a situagdo padrdo na linguagem C. Este modo de passagem de
parametros comunica apenas valores entre o cdigo chamador e a funcao chamada.

A passagem por valor funciona da seguinte forma: para uma func¢do £ com N parametros, uma cha-
mada de f deve conter N expressdes como argumentos (se o nimero de argumentos nao corresponder
ao numero de parametros declarados, o compilador acusard um erro no programa). Entdo o seguinte
processo de chamada de funcao acontece:

1. O valor de cada uma das N expressoes usadas como argumento € calculado e guardado;

2. N varidveis locais sdo criadas para a fun¢do chamada, uma para cada parametro da funcao, e
usando o nome declarado na fungao;

3. Os valores calculados no passo 1 sdo atribuidos as varidveis criadas no passo 2.

4. O corpo da fun¢do f € executado.

Como as varidveis criadas para os parametros sdo locais, elas deixam de existir quando a funcdo
chamada termina, e isso ndo tem nenhum efeito nas expressoes que foram usadas para atribuir valor
aos parametros ao inicio da fun¢do. Isso significa que o programa para troca de valor de varidveis

81/92

Introdugdo a Programacao

mostrado acima funciona de maneira similar ao seguinte programa (no qual colocamos o cédigo da
fun¢do troca_variaveis diretamente na fun¢do main):

Cédigo fonte
Troca do valor de duas variaveis usando outra variavel temporaria

#include <stdio.h>

int main () {
int x = 5;
int v = 7;

printf ("Antes da troca: x = %d, y = %d\n", x, Vv);

// troca_variaveis

int a = x, b = vy;

int temp = a;

a = b;

b = temp;

printf ("Dentro de troca_variaveis: a = %d, b = %d\n", a, Db);

// fim de troca_variaveis

printf ("Depois da troca: x = %d, y = %d\n", x, V);

Neste caso, fica claro que as varidveis x e y sdo usadas apenas para obter o valor inicial das varidveis
a e b, e portanto a mudanca de valor das duas ultimas ndo deve afetar x e y.

A passagem de pardmetros por valor € simples e funciona bem na maioria dos casos. Mas em algumas
situacOes pode ser desejdvel ter uma forma de afetar varidveis externas a uma determinada funcio e,
para isso, usa-se a passagem de parametros por referéncia.

5.6.2 Passagem por Referéncia

A passagem de parametros por referéncia funciona passando para a funcdo chamada referéncias para
varidveis ao invés de valores de expressoes. Isso permite a funcdo chamada afetar as varidveis usadas
como argumento para a fungdo.

Vamos ilustrar como isso funciona demonstrando como criar uma func¢ao que troca o valor de duas
variaveis e realmente funciona:

Cédigo fonte
Funcio para trocar o valor de duas varidveis usando passagem por referéncia
#include <stdio.h>
void troca_variaveis (int xa, int *b) { // @
int temp = xa;

xa = *b; // @
*b = temp;

printf ("Dentro de troca_variaveis: a = %d, b = %d\n", =xa, xb);

82/92

Introdugdo a Programacao

int main () {
int x = 5;
int y = 7

4

o\

printf ("Antes da troca: x = %d, y = %d\n", x, y);

troca_variaveis (&x, &y); // ©

printf ("Depois da troca: x = %d, y = %d\n", x, V);

® Definicdo do procedimento. Os parametros a e b sdo declarados usando int =« ao invés de
simplesmente int. Isso indica passagem por referéncia.

© Ao usar as varidveis a e b que foram passadas por referéncia, € necessario usar a e b para
acessar ou modificar seu valor.

©® Nachamada da funcdo troca_variaveis € preciso passar referéncias para as varidveis x e
vy, 1850 € conseguido usando &x € &v.

Resultado da execucao do programa code/capS/troca_ref.c

Antes da troca: x = 5, y =7
Dentro de troca_variaveis: a = 7, b =5
Depois da troca: x =7, y =5

A primeira coisa a notar € que sdo necessdrias algumas mudancas sintdticas para usar parametros
por referéncia. A declaracdo dos parametros no inicio da fungdo agora define os pardmetros a e b
como tendo tipo int *. Quando esses parametros sdo usados na funcdo t roca_variaveis, eles
precisam ser precedidos de asterisco (xa ao invés de a). E para chamar a funcdo, € preciso passar
referéncias para as varidveis x e y ao invés de passar seu valor, por isso usamos &x € &y na chamada.

De maneira simplificada, a passagem por referéncia funciona da seguinte forma: ao escrever um
argumento como &x para a funcdo troca_variaveis, ndo estamos passando o valor de x
para a funcdo, mas sim uma referéncia para a propria varidvel x. Isso significa que, dentro de
troca_varidveis, o parametro a se torna um nome diferente para a mesma varidvel x; desta
forma, alteracoes feitas em a (através da sintaxe »a) sdo alteracdes também no valor da varidvel ori-
ginal x. E por isso que o programa acima funciona, como pode ser visto no resultado da execucdo:
a funcdo troca_variaveis recebe referéncias para as varidveis x € y, € por isso pode alterar o
valor destas variaveis diretamente, trocando o valor das duas.

A passagem de pardmetros por referéncia € usada quando uma fungao precisa alterar o valor de uma
varidvel que existe fora da propria funcio e que nao necessariamente ¢ uma variavel global. O mesmo
efeito de ter uma func¢do alterando uma varidvel externa poderia ser atingido usando varidveis globais
ao invés de passagem por referéncia, mas com grande perda de flexibilidade. Além disso, o uso
desnecessdrio de varidveis globais ndo é recomendado, como comentado antes.

5.6.2.1 Realizando troca de valores com variaveis globais

Uma outra forma de trocar os valores de duas varidveis, dentro de uma funcao, poderia ser elabo-
rada utilizando varidveis globais. Por exemplo, poderiamos trocar os valores das varidveis x € y no
exemplo anterior se ambas fossem alteradas para serem varidveis globais:

83/92

Introdugdo a Programacao

Cédigo fonte
Funcio para trocar o valor de duas variaveis globais

#include <stdio.h>

int x =5; // ©
int v = 7;
void troca_variaveis() { // ©
int temp = x;
X =Y
y = temp;
printf ("Dentro de troca_variaveis: x = %d, y = %d\n", x, y);
}
int main () {

printf ("Antes da troca: x = %d, y = %d\n", x, y);
troca_variaveis () ;
printf ("Depois da troca: x = %d, y = %d\n", x, vy);

® x ey agora sdo varidveis globais.

©® troca_variaveis ndo utiliza parimetros, ja que acessa diretamente as varidveis globais.

Resultado da execuciao do programa

Antes da troca: x =5, y =7
Dentro de troca_variaveis: x = 7, y =5
Depois da troca: x =7, y = 5

O programa funciona, mas note que agora troca_variaveis so6 altera o valor de duas varidveis
especificas, x e y, enquanto que a versao usando passagem por referéncia era geral e podia trocar o
valor de quaisquer duas varidveis inteiras. Se um programa precisa trocar os valores de varios pares
de varidveis, em vdrios locais diferentes, seria preciso criar uma funcdo de troca para cada par, e
fazer todas as varidveis serem globais. Isso acarretaria em muita repeti¢io, e muito uso desnecessario
de varidveis globais que tornariam a manutencdo do cddigo muito mais dificil. Neste caso, € muito
mais recomendado usar a passagem por referéncia para chegar a um cédigo mais geral, mais facil de
manter € com menos repeticao.

Nota

A passagem por referéncia vem sido usada neste livro ha varios capitulos, pois a fungao
scanf (Sec¢éo[2.10.2)[28]) usa esse modo de passagem de pardmetros. Em toda chamada

a scanf passamos referéncias para as variaveis que vao receber os valores, e ndo os

valores dessas variaveis. Isso faz sentido ja que scanf precisa alterar o valor das variaveis

passadas como parametro, e a0 mesmo tempo scanf nao utiliza o valor original dessas

variaveis para nada.

84 /92

Introdugdo a Programacao

Nota

Com a passagem por referéncia e por valor na linguagem C acontece algo semelhante ao
% que vimos com 0s conceitos de procedimento e funcdo: a rigor na linguagem C sé existe a

passagem por valor, mas a passagem por referéncia pode ser obtida pelo uso de ponteiros,

um conceito avancado da linguagem C. Como se trata de um conceito avangado, ndo vamos

detalhar mais sobre eles aqui neste livro.

5.7 Protétipos e Declaracao de Funcoes

Em todos os exemplos que vimos neste capitulo até agora, nds sempre definimos uma fungdo antes
de chama-la em outra fun¢do. Nesses exemplos, a fun¢do main sempre aparece no final do arquivo,
ja que as chamadas para as outras fungdes apareciam apenas em main.

Mas em muitos casos pode ser necessario chamar uma fun¢do que € definida posteriormente no ar-
quivo, sem precisar mudar as fun¢des de lugar. O mesmo ocorre em programas maiores, quando
usamos varios arquivos de cédigo-fonte para um programa (mas este caso ndo serd detalhado aqui).

Se tentarmos usar uma funcdo antes de sua defini¢do vamos observar um erro de compilacdo. No
exemplo abaixo, a inten¢do € definir uma fun¢do que imprime a situacao de um aluno em uma disci-
plina cuja média € 7.0. Para isso € necessdrio passar para a funcdo as trés notas do aluno na disciplina.
Mas se definirmos a fun¢io apds main, como abaixo:

Cédigo fonte
Chamando uma func¢ao antes de sua definicao

#include <stdio.h>

int main() {
float notal, nota2, nota3;

printf ("Entre as trés notas: ");
scanf ("%$f $f %f", ¬al, ¬a2, ¬a3l);

situacao (notal, nota2, nota3l); // @
return 0;

void situacao (float nl, float n2, float n3) { // ©
float media = (nl + n2 + n3) / 3.0;

printf ("Media %f, ", media);
if (media >= 7.0)
printf ("Aluno aprovado\n");
else if (media < 4.0)
printf ("Aluno reprovado por media\n");
else
printf ("Aluno na prova final");

©® A funcdo main chama situacao antes de sua defini¢do.

85/92

Introdugdo a Programacao

A definicdo de situacao comega apds a fungdo main.

Ao tentar compilar esse programa, um erro similar ao seguinte serd acusado:
Resultado da execuciao do programa

situacao.c:12:6: error: conflicting types for ’situacao’
void situacao (float nl, float n2, float n3) { // ©

Isso acontece porque o compilador nao pode identificar se a funcao foi realmente definida em algum

lugar e, principalmente, se o tipo dos parametros e o tipo do retorno da fun¢do estdo sendo usados
corretamente.

Esse problema pode ser resolvido através do uso de protétipos para declarar uma fungio antes que
seja definida. Um protétipo de func@o € uma declaragcdo que especifica as seguintes informacdes:

1. O tipo de retorno da fungdo;

2. O nome da funcao;

3. O nimero de parametros;

4. Os tipos de cada um dos parametros.

Com essas informagdes, o compilador pode identificar se a funcao estd sendo usada de maneira correta
com relag@o aos tipos, e evita 0s erros anteriores.

Para consertar o erro no exemplo anterior basta adicionar uma linha com o protétipo da fungao:
Cédigo fonte

Usando protoétipos de funcoes

#include <stdio.h>

// Prototipo da funcao situacao
volid situacao (float, float, float); // @

int main () {
float notal, nota2, nota3;

printf ("Entre as trés notas: ");
scanf ("$f %$f %f", ¬al, ¬a?2, ¬al);

situacao (notal, nota2, nota3l); // ©

vold situacao (float nl, float n2, float n3) {
float media = (nl + n2 + n3) / 3.0;

printf ("Media %f, ", media);
if (media >= 7.0)

printf ("Aluno aprovado\n");
else if (media < 4.0)

printf ("Aluno reprovado por media\n");
else

printf ("Aluno na prova final");

86 /92

Introdugdo a Programacao

® Protétipo da funcdo situacao. Note que o protétipo inclui o tipo de retorno (void), o nome
da funcdo, que a fun¢do aceita trés parametros, e que todos eles possuem tipo £loat. Nao
€ preciso especificar o nome dos parametros em um prototipo, mas € possivel especificar os
nomes, se desejado; incluir os nomes dos parametros pode ser dtil como uma forma simples de
documentacio.

S

A chamada a situacao em main agora pode acontecer sem problema.

Resultado da execuciao do programa

Entre as trés notas: 6.8 5.2 9.0
Media 7.000000, Aluno aprovado

Nesse exemplo, seria possivel consertar o problema simplesmente movendo a fun¢do situacao
completa para antes da funcdo main, mas em programas maiores o uso de protétipos toma grande
importancia.

5.8 Funcoes Recursivas

Uma func¢do pode ser chamada a partir de qualquer outra fun¢do no mesmo programa. Dessa forma,
podemos pensar em uma fun¢do chamando a si mesma. Isso € possivel e ttil em muitos casos.
Quando uma fung¢do £ chama a si mesma em algum ponto, dizemos que £ € uma funcao recursiva.
Recursividade se refere a um objeto auto-referente, ou seja, que referencia a si proprio; isso inclui as
fungdes recursivas mas também outros tipos de objetos.

Um exemplo € o cdlculo do fatorial de um nimero. O fatorial de um nimero inteiro positivo N (cuja
notacdo € N!) é definido como o produto de todos os nimeros de 1 até N:

N!'=Nx(N—1)x---x2x1

Por exemplo, o fatorial de 3é 3! =3x2x1=6,eofatorialde 4 é 4! =4 x3x2x 1 =24, eassim
por diante. Para nimeros N maiores que 1, sempre podemos fazer a seguinte relagao:

N!'=Nx(N—1)!

ou seja, 4! =4 x 3! =4 x 6 = 24. Isso indica a estrutura recursiva do célculo do fatorial: o fatorial de
um ndmero N € igual a N vezes o fatorial do nimero anterior a N, N-1.

Seguindo essa ideia, podemos escrever uma funcdo recursiva que calcula o valor do fatorial de um
nimero. Como a funcio chama a si mesma, € muito importante saber quando a cadeia de chamadas
da funcdo a ela mesma termina. No caso do fatorial, quando queremos calcular o fatorial do nimero
1 ou do nimero 0, podemos responder diretamente: 1! = 0! = 1, sem usar a recursividade. Esse
€ o chamado caso-base da recursdao. Sem isso, a fun¢do nunca pararia de chamar a si mesmo, e
o programa seria finalizado com algum erro dependente do sistema operacional e do compilador
utilizados.

O programa com a func¢do que calcula o fatorial € o seguinte:
Codigo fonte

Calculo do fatorial usando uma funcao recursiva

87/92

Introdugdo a Programacao

#include <stdio.h>

// prototipo

int fatorial (int); // @
int main () {
int n;
printf ("Entre o numero para calcular o fatorial: ");

scanf ("%d", &n);
printf ("$d! = %d\n", n, fatorial (n));

return O;

int fatorial (int n) {

if (n == 0 || n == 1)

return 1; // @
else

return n * fatorial(n - 1); // ©

@ Protétipo da fungdo fatorial.
Caso-base na fun¢do fatorial: para nigual a0 ou 1, retorna 1.

©® Casorecursivona fungdo fatorial: se n for maior que 1, retorne n multiplicado pelo fatorial
den - 1.

Resultado de trés execucoes do programa code/capS/fatorial.c

Entre o numero para calcular o fatorial: 4
41 = 24

Entre o numero para calcular o fatorial: 5
5! =120

Entre o numero para calcular o fatorial: 6
6! = 720

O cddigo calcula o fatorial de um niimero inteiro recursivamente. Se o ndmero for O ou 1, a resposta é
direta: 1. Se o nimero for maior do que 0 ou 1, a resposta € obtida pela multiplicagdo do nimero pelo
fatorial do nimero anterior a ele. Note que esse processo sempre termina se o parametro n da fungao
fatorial for um inteiro positivo, pois em cada chamada recursiva o argumento da fung¢do fatorial sera
um numero menor que o anterior, até eventualmente chegar a 1, cuja resposta € direta. Como a func¢ao
tem um parametro declarado como inteiro, o compilador C nao permitiria passar como parametro um
nimero nao-inteiro, entdo, isso nao pode criar problema para essa funcio recursiva. Entretanto, um
erro que pode acontecer neste caso € se o usudrio especificar um nimero negativo:

Calculo do fatorial usando niimero negativo, usando o programa code/cap5/fatorial.c

88/92

Introdugdo a Programacao

Entre o numero para calcular o fatorial: -4
Segmentation fault: 11

A falha de segmentacao (segmentation fault) mostrada quando se passa um argumento negativo para
a funcdo fatorial € o resultado da recursdo infinita que ocorre na fun¢do: como em cada etapa
o nimero € diminuido de um, um ndmero negativo nunca vai chegar a 1 (ou 0) e portanto nunca vai
parar no caso-base. Mesmo a no¢do matematica do fatorial ndo estd definida para nimeros negativos.
Uma forma de consertar o programa acima seria imprimir um erro quando fatorial fosse chamado
com um argumento negativo, ou retornar um valor qualquer, sem chamar a fun¢do recursivamente.
Uma forma de fazer isso seria mudando o teste do caso base:

Codigo fonte
Calculo do fatorial com alteracao do teste do caso base

#include <stdio.h>

// prototipo
int fatorial (int);

int main () {
int nj;

printf ("Entre o numero para calcular o fatorial: ");
scanf ("%d", &n);

printf ("$d! = %d\n", n, fatorial (n));

return 0;

int fatorial (int n) {

if (n <= 1) // @
return 1;

else
return n * fatorial(n - 1);

® Caso-base da fungdo fatorial. O teste agora € se o parametro € menor ou igual a 1, o que
inclui os nimeros negativos. Neste caso, a funcdo retorna 1 sem fazer chamadas recursivas.

Resultado de duas execucoes do programa code/cap5/fatorial2.c

Entre o numero para calcular o fatorial: 5

5! =120

Sandman: funcoes andrei$./fat

Entre o numero para calcular o fatorial: -4
-4 =1

Neste caso, a func@o sempre retorna 1 para nimeros negativos, o que € um resultado estranho, mas
como o fatorial ndo estd definido para nimeros negativos, isso ndo chega a ser um grande problema.

89/92

Introdugdo a Programacao

A recursividade é um conceito de programacdo considerado avangado, mas se torna bastante im-
portante em programas mais complexos. Alguns paradigmas de programagdo como a programagdo
funcional e a programagdo logica sdo bastante baseadas no uso de funcdes recursivas, € muitos pro-
cessos se tornam muito mais faceis de implementar usando func¢des recursivas. Por isso, apesar de
ndo entrarmos em mais detalhes sobre func¢des recursivas aqui, € importante ter em mente que esse €
um dos conceitos que se tornam importantes para a evolu¢dao de um programador.

5.9 Recapitulando

Neste capitulo, vimos uma importante ferramenta para a criacdo de programas na linguagem C: fun-
¢coes. As funcdes (e os procedimentos, que sdo tratados na linguagem C como funcdes) possibilitam
a reutilizacdo de trechos de cddigo em vdrias partes de um programa, e permitem isolar determi-
nadas componentes do programa em unidades mais autocontidas, melhorando a modularizacao do
programa. E raro que um programa nio-trivial na linguagem C néo faca uso de fungdes.

Vimos exemplos do uso de procedimentos (fun¢des que ndo retornam valores) com e sem parametros.
Vimos também como usar parametros para fungdes e como retornar valores a partir de uma fungao.

As regras que regem a visibilidade de varidveis locais, globais e parametros de funcdes foram apre-
sentadas, assim como os diferentes modos de passagem de parametros e como utilizd-los: passagem
por valor e por referéncia.

Também vimos como declarar fungdes usando prototipos, para poder utilizar essas fungdes antes de
sua defini¢ao (ou em arquivos diferentes de onde elas estio definidas). Um exemplo simples de funcao
recursiva foi mostrado, como forma de introdug@o ao conceito.

Compreender o contetido deste capitulo € extremamente importante para aprender a programar bem
na linguagem C.

5.10 Exercicios Propostos

1. Escreva uma funcdo que calcula a média final de um aluno que fez prova final em uma disci-
plina. A funcio deve receber a média parcial do aluno (média das notas nas provas regulares da
disciplina) e a nota obtida na prova final. O cédlculo para a média final é

MF = w onde MF é a média final, MP é a média parcial e PF é a nota da prova

final. Escreva um programa que utiliza esta fun¢do, pedindo os dados necessarios ao usudrio e
imprimindo o valor da média final na tela.

2. As vezes é itil limpar a "tela"antes de imprimir informag@es adicionais no console. Uma forma
de limpar a tela € imprimir mais de 24 linhas em branco (dependendo do tamanho do console).
Em geral, imprimir 30 linhas em branco deve ser suficiente. Escreva uma funcio (procedi-
mento) que limpe a tela imprimindo 30 linhas em branco.

3. Escreva uma funcdo que recebe dois parametros a e b e troca o valor de a com o valor de b se
o valor de a for maior do que o de b; o objetivo € ter, ao final, o menor dos dois valores em a e
o maior em b. Por exemplo,sea = 5eb = 3, entdo os valores das duas varidveis devem ser
trocados, mas se a = 2 eb = 7, entldo a ordem j4 estd correta e ndo € necessdrio trocar os
valores. Utilize passagem de pardmetros por referéncia para poder afetar o valor das varidveis.
Escreva um programa para testar a funcao.

90/92

Introdugdo a Programacao

4. O que € impresso pelo seguinte programa?
Cadigo fonte
#include <stdio.h>

int x = 5;
int vy = 9;

int f(int x) {

int z = x * X;

return z * y;
int main () {
int y = 3;

printf ("%d \n", x);
printf ("%d \n", f(y));

return 0;

Feedback sobre o capitulo

[3°) Voce pode contribuir para melhoria dos nossos livros. Encontrou algum erro? Gostaria de
submeter uma sugestao ou critica?
Para compreender melhor como feedbacks funcionam consulte o guia do curso.

91/92

https://github.com/edusantana/guia-geral-ead-computacao-ufpb/blob/master/livro/capitulos/livros-contribuicao.adoc

Introdugdo a Programacao

Capitulo 6

Indice Remissivo

A mddulos, [64]
argumento, [6§] matrizes, 59|
atribuicdo, [26] N
B Nio, 33
break, NULO, [57]
C (0)
Constantes, 22] Ou, 33
Constantes simbdlicas, 23|
continue, 49| p
parametro, [68]
D Passagem de Parametros,
do-while, 4] Passagem por Referéncia, [82]
Passagem por Valor, [8T]
E procedimentos, [63]
E,[33]
Enquanto, 2] S
Entrada padro, [T7] Saida padrio, [I7]
escopo, [77] Se, 33|
ESCREVA, 33| stdio, 27]
Expressdes 16gicas, [34] strings, [57]
. switch,
for, 3] \%
funcdo recursiva, [87] varidveis globais, [83]
Funcdes, [63] vetor, [52]
funcoes, [64] W
| while, @7
if, 34, 37]
if-else, 3§

incremento, 26|

indentagdo, [24] 39

L
Laco infinito, 6|
LEIA, B3]

M

92/92

	Algoritmos
	Introdução
	O que é um algoritmo?
	Características de um algoritmo
	Formas de representação
	Descrição Narrativa
	Fluxograma
	Linguagem Algorítmica

	Recapitulando
	Exercícios Propostos

	Introdução à Programação
	Introdução
	Níveis das Linguagens de Programação
	Tradutores e Interpretadores
	Paradigmas de Programação
	Linguagem C
	Núcleo de um programa
	Memória e Variáveis
	Identificadores
	Tipos de dados primitivos
	Declaração de variáveis
	Constantes simbólicas

	Comentários e indentação
	Matemática Básica
	Entrada e saída de dados
	Função printf()
	Função scanf()

	Recapitulando
	Exercícios Propostos

	Estruturas de Controle
	Introdução
	Estrutura Sequencial
	Estrutura de Decisão
	Decisão simples
	Expressões lógicas
	Exercício resolvido
	Verificação da condição com expressões aritméticas na Linguagem C

	Decisão composta
	Exercício resolvido

	Comando de decisão múltipla

	Estrutura de Repetição
	Comando while
	Exercício resolvido

	Comando do-while
	Comando for
	Laço infinito
	Exercício Resolvido
	Comandos de desvio
	Comando break
	Comando continue

	Recapitulando
	Exercícios Propostos

	Arranjos
	Introdução
	Vetores
	Declaração de Vetores
	Acessando os elementos de um vetor
	Exercício resolvido

	Strings
	Lendo e imprimindo Strings
	Manipulando strings
	Exercício resolvido

	Matrizes
	Recapitulando
	Exercícios Propostos

	Funções
	O que são funções?
	Um exemplo

	Parâmetros
	Retorno de Valores com Funções
	Funções, Procedimentos e o Tipo void

	Um Exemplo Matemático: Equação de Segundo Grau
	Escopo de Variáveis
	Escopo dos Parâmetros
	Sombreamento e Sobreposição de Escopos

	Passagem de Parâmetros
	Passagem por Valor
	Passagem por Referência
	Realizando troca de valores com variáveis globais

	Protótipos e Declaração de Funções
	Funções Recursivas
	Recapitulando
	Exercícios Propostos

	Índice Remissivo

