

Aprenda Arduino
Uma abordagem prática

Cláudio Luís Vieira Oliveira
Humberto Augusto Piovesana Zanetti

Cristina Becker Matos Nabarro
Júlio Alberto Vansan Gonçalves

Aprenda Arduino
Uma abordagem prática

Copyright © 2018, Cláudio Luís Vieira Oliveira, Humberto Augusto

Piovesana Zanetti, Cristina Becker Matos Nabarro e Júlio Alberto

Vansan Gonçalves

Editoração, fotografias, ilustrações e revisão ortográfica:

Cláudio Luís Vieira Oliveira, Humberto Augusto Piovesana Zanetti,
Cristina Becker Matos Nabarro e Júlio Alberto Vansan Gonçalves

Capa:

Claudia Baptistella Oliveira

Todos os direitos reservados e protegidos pela Lei 9610 de 19/02/1998. Todas as
informações contidas nesta obra são de exclusiva responsabilidade dos autores.
Nenhuma parte desta obra pode ser reproduzida ou transmitida por qualquer
meio, sem prévia autorização por escrito dos autores. O mesmo se aplica às
características gráficas e à editoração eletrônica desta obra.
Alguns nomes de empresas e respectivos produtos e/ou marcas foram citados
apenas para fins didáticos, não havendo qualquer vínculo dos mesmos com a
obra.
Dentro dos códigos de programação, algumas palavras não foram acentuadas
por questões técnicas relacionadas à/s linguagens de programação utilizadas.
Os autores acreditam que todas as informações apresentadas nesta obra estão
corretas. Contudo, não há qualquer tipo de garantia de que o uso das mesmas
resultará no esperado pelo leitor, principalmente quando se tratar de códigos de
programação. Caso seja(m) necessária(s), os autores disponibilizarão errata(s)
no site www.profclaudio.com.br.

Dados Internacionais de Catalogação na Publicação (CIP)

O482a Oliveira, Cláudio Luís Vieira Oliveira

Aprenda Arduino – Uma abordagem prática / [texto de
Cláudio Luís Vieira Oliveira, Humberto Augusto Piovesana
Zanetti, Cristina Becker Matos Nabarro e Júlio Alberto
Vansan Gonçalves]. – Duque de Caixas: Katzen Editora,
2018.

181p.

ISBN: 978-85-52946-03-8

1. Informática. 2. Arduino (Controlador
Programável). I. Título.

CDD: 005.133

Impresso no Brasil / Printed in Brazil
3-18

Sobre os Autores

Cláudio Luís Vieira Oliveira
Mestre em Sistemas de Computação pela Pontifícia
Universidade Católica de Campinas e bacharel em Análise
de Sistemas pela Universidade Metodista de Piracicaba.
Possui mais de 26 anos de experiência na área de Ciência
da Computação. Coordenador de Curso e Professor da
Faculdade de Tecnologia (FATEC) de Jundiaí é também
Professor nas Faculdades de Tecnologia (FATEC) de
Bragança Paulista e Campinas.

Humberto Augusto Piovesana Zanetti
Doutorando em Tecnologia pela Faculdade de Tecnologia
da Universidade Estadual de Campinas (FT - UNICAMP) e
Mestre em Ciência da Computação pela Faculdade de
Campo Limpo Paulista (FACCAMP). Desde 2005 atuando no
ensino técnico e superior. Atualmente professor na Escola
Técnica Rosa Perrone Scavone (Itatiba, SP) e na Faculdade
de Tecnologia de Jundiaí (FATEC). Na UNICAMP é
integrante do LIAG (Laboratório de Informática,
Aprendizagem e Gestão).

Cristina Becker Matos Nabarro
Mestranda em Ciência da Computação pela FACCAMP
(2017), especialista em Engenharia de Projetos em
Sistemas de Informação pela Faculdade e Centro de
Educação Tecnológica Radial. Bacharel em Administração
com ênfase em Análise de Sistemas pela Faculdade Radial
São Paulo, atua há mais de 20 anos na área de TI. É docente
da Fatec de Bragança Paulista e da Fatec de Guarulhos e,

atualmente, também é coordenadora do curso de Gestão
de Tecnologia da Informação da Fatec Bragança Paulista.

Júlio Alberto Vansan Golçalves
Mestrando em Ciência da Computação pela FACCAMP
(2018), Graduado em Ciência da Computação pelo Centro
Universitário Anhanguera (2005). Pós graduado pela UNIP
(2013) MBA em Gestão Empresarial, Programa Especial de
Formação Pedagógica em Informática - Equivalente à
Licenciatura Plena, pela Faculdade Paulista São José (2015).
Atua há mais de 20 anos na área de TI. É docente na ETEC
Prof. Carmine Biagio Tundisi (Atibaia, SP), ETEC Vasco
Antônio Venchiarutti (Jundiaí, SP), ETEC Benedito Storani
(Jundiaí, SP), ETEC Rosa Perrone Scavone (Itatiba, SP) e na
Faculdade de Tecnologia de Jundiaí (FATEC).

Conheça Também...

Escrito por Cláudio Luís Vieira Oliveira e Humberto
Augusto Piovesana Zanetti, o livro Arduino Descomplicado
– Aprenda com projetos de eletrônica e programação,
apresenta aos leitores uma abordagem prática,
descomplicada e divertida. Para ajudar ainda mais a
compreensão e a execução dos 37 projetos propostos
nesta obra, utilizaremos módulos, cujo objetivo é trazer
uma solução pronta e com baixa abstração, sem que haja a
necessidade de ter conhecimentos sobre a montagem de
circuitos para usar os componentes eletrônicos. Assim, o
foco passa a ser as funcionalidades e os recursos de
programação. Para a
programação, duas
abordagens são
adotadas: linhas de
código e progra-
mação em blocos.
Na programação em
linhas de código,
aplicaremos a
linguagem padrão
do Arduino, a
linguagem Wiring. Já
na programação em
blocos, adotaremos
a ferramenta Snap!,
que cada vez mais
ganha adeptos e
está adaptada à
plataforma Arduino.

Conheça Também...

O livro Arduino Descomplicado – Como Elaborar
Projetos de Eletrônica, escrito por Cláudio Luís Vieira
Oliveira e Humberto Augusto Piovesana Zanetti, apresenta
os conceitos básicos e avançados que envolvem o Arduino,
considerado o principal marco na história do hardware
livre. O Arduino cria uma ponte entre os mundos das
ideias, da eletrônica e computação, possibilitando que uma
ideia saia do papel e se transforme em realidade de
maneira rápida e simples. A prototipação rápida é um
convite à experimentação. Este livro traz, ainda, a história
da ferramenta e analisa conhecimentos de eletrônica

básica. Orienta quanto
à criação do primeiro
projeto, destacando os
principais compo-
nentes e o processo de
montagem do circuito.
Discorre sobre
entradas e saídas
digitais e analógicas,
porta serial, displays,
sensores e módulos.
Por fim, explica os
conceitos de motores
e servo-motores,
Android e a
documentação de
projetos com o
programa Fritzing.

Conheça Também...

“O Fantástico
Mundo do Arduino”,
escrito por Ângela
Cristina de Oliveira
Lühmann e Cláudio Luís
Vieira Oliveira, é um livro
de tecnologia desenvol-
vido para o público
infantojuvenil e também
adultos que estão
iniciando seus estudos em
lógica de programação e
eletrônica. Ele conta a
história de três crianças e
seu pequeno robô,
construído por eles
mesmos. No decorrer da história, a Turma da Casa da
Árvore como são chamados, cria projetos que ensinam de
uma forma divertida, interativa e didática, as primeiras
noções de programação e eletrônica, além de auxiliar no
desenvolvimento do raciocínio lógico e matemático.
Nesta obra são explorados conceitos de Computação Física,
através do mundialmente conhecido Arduino, sendo este
utilizado em conjunto com o ambiente de programação
Scratch for Arduino (S4A), que está fundamentado sobre o
intuitivo conceito de blocos de montagem criado pelo
Massachusetts Institute of Technology (MIT). O S4A não
exige conhecimento prévio de outras linguagens de
programação, sendo ideal para pessoas que estão
começando a programar.

Conheça Também...

O livro Arduino
Simples e Divertido,
também de autoria de
Cláudio Luís Vieira Oliveira
e Humberto Augusto
Piovesana Zanetti,
permite explorar todo o
potencial do Arduino
através de 40 projetos
desenvolvidos com os
módulos da GBK Robotics.

Os módulos da
GBK Robotics simplificam
a montagem dos projetos
permitindo, desta forma,
que se dê um foco maior

nas funcionalidades e nos recursos de programação. Serão
utilizados diversos módulos durante todo o livro, iniciando
com um simples pisca-pisca, e evoluindo para entradas por
botões, sensores (de luminosidade, termômetro,
infravermelho, entre outros), controle remoto, display de
led e, até mesmo, um pequeno robô.

Desperte seu espírito criativo e comece a ler este
livro, que em poucas páginas, você irá perceber o quanto o
Arduino é simples de usar e, principalmente, muito
divertido!

Acesse www.profclaudio.com.br para conhecer mais sobre
estes livros e também para saber como adquirir seu exemplar!

Índice

O que é o Arduino? .. 13

Conceitos de Eletrônica.. 17

Tensão, Corrente e Resistência 17

Principais Componentes ... 19

Projetos e Desafios ... 25

Projeto 1 – Controle de um LED 25

Desafio 1 – Controle de Semáforo 29

Projeto 2 – Potenciômetro ... 35

Projeto 3 – LDR ... 43

Projeto 4 – Buzzer... 50

Projeto 5 – Botão .. 55

Desafio 2 – Controle de Estufa 61

Projeto 6 – LCD (Liquid Crystal Display 16x2) 63

Desafio 3 – Controle de Estufa com LCD 70

Projeto 7 – Uso do Sensor de Temperatura 72

Projeto 8 – Termistor ... 78

Desafio 4 – Termômetro Digital Completo 83

Projeto 9 – Sensor Ultrassônico (HC-SR04) 85

Desafio 5 – Sensor de Estacionamento 89

Projeto 10 – Piezo Elétrico ... 91

Projeto 11 – Relógio com LCD .. 96

Projeto 12 – Display de Led de 7 Segmentos 104

Projeto 13 – Display de Led de 7 Segmentos e 4 Dígitos

 .. 114

Projeto 14 – Servo Motor ... 120

Projeto 15 – Sensor Óptico Reflexivo 126

Projeto 16 – Teclado com Divisor de Tensão 133

Projeto 17 – Infravermelho .. 136

Projeto 18 – Contador Binário 148

Projeto 19 – Contador Binário com Chave Rotativa 153

Desafio 6 – Contador Hexadecimal 163

Projeto 20 – Utilizando Entradas Analógicas como Portas

Digitais .. 164

Projeto 21 – Utilizando INPUT_PULLUP 169

Projeto 22 – Sensor de Presença.................................. 173

Desafio 7 – Sensor de Presença com Temporizador 176

Projeto 23 – LED RGB ... 177

Referências Bibliográficas .. 180

Aprenda Arduino – Uma abordagem prática

13

Capítulo 1:
O que é o Arduino?

O Arduino é uma versátil plataforma de

prototipagem eletrônica, de hardware e software aberto,
de baixo custo e muito fácil de usar, mesmo para pessoas
que possuem pouco ou nenhum conhecimento de
eletrônica. Quando falamos em Arduino devemos ter em
mente três conceitos: hardware que é a placa que possui
como componente central um microcontrolador da família
ATmega; software que consiste em uma linguagem de
programação e um ambiente de desenvolvimento
derivados do Processing. O terceiro conceito é a
comunidade, composta por um grande número de pessoas
que compartilham os seus conhecimentos e projetos na
Internet, disseminando a plataforma.

A placa Arduino é muito parecida com um

computador de pequeno porte, sendo composta pelo
microcontrolador, memória RAM, memória secundária
(memória flash), clock e comunicação USB entre outras
funcionalidades. Na Figura 1.1 temos o modelo mais
popular dos Arduinos que é o Uno R3, porém, para os
projetos deste livro qualquer outro modelo de Arduino
pode ser usado sem restrições.

Aprenda Arduino – Uma abordagem prática

14

Figura 1.1: Placa Arduino Uno R3

O Arduino Uno R3 apresenta 14 pinos que podem

ser utilizados como entradas ou saídas digitais (pinos 0 a
13), sendo que os pinos 3, 5, 6, 9, 10 e 11 também podem
utilizar Pulse Width Modulation (PWM) para gerar um
conjunto de valores inteiros entre 0 e 255. Os pinos de A0 a
A5 correspondem às entradas analógicas, que recebem
uma tensão entre 0 e 5V e o produzem em uma escala de 0
a 1023. Também temos os pinos 3,3V, 5V e GND (Terra)
permitem alimentar os componentes dos circuitos
conectados ao Arduino. Possui um microprocessador
ATmega328, com uma memória RAM de 2KB, memória
Flash de 32KB e clock de 16MHz.

O ambiente de desenvolvimento do Arduino pode
ser gratuitamente baixado do site www.arduino.cc. Neste
site e em muitos outros, também estão disponíveis as
instruções para realizar a instalação em diversos sistemas
operacionais, além de fóruns para tirar dúvidas e obter
maiores informações.

Aprenda Arduino – Uma abordagem prática

15

 O ambiente de programação (Figura 1.2) é muito
simples e intuitivo. Um programa, que no Arduino é
chamado de sketch, apresenta duas funções básicas:
setup() e loop().

Figura 1.2: Ambiente de Desenvolvimento do Arduino

 A função setup() deverá conter o código que irá
executar apenas uma vez, quando o sketch iniciar.
Normalmente colocamos nesta função as definições iniciais
do programa.

 A função loop() irá executar continuamente as
instruções que estão lá até que outro sketch seja carregado

Aprenda Arduino – Uma abordagem prática

16

na memória “flash” do Arduino. É importante notar que no
Arduino é possível armazenar e executar um sketch por
vez, desta forma, sempre quando transferimos um sketch
esse irá substituir o programa que estava anteriormente
carregado na memória. Também observe que como o
sketch fica armazenado na memória “flash”, que é
permanente, mesmo quando desligamos o Arduino, o
programa continua armazenado e irá entrar novamente em
execução quando o Arduino for ligado novamente.

 Note também que, nestas duas funções, a palavra
reservada void indica que as funções não apresentam um
valor de retorno, sendo usadas exclusivamente para
realizar a execução de um conjunto de instruções.

Aprenda Arduino – Uma abordagem prática

17

Capítulo 2:
Conceitos de Eletrônica

A construção de projetos com o Arduino envolve o

conhecimento básico de Eletrônica, o qual irá permitir
identificar os componentes que serão utilizados e também
entender o seu funcionamento.

Tensão, Corrente e Resistência

A eletrônica está fundamentada sobre os conceitos
de tensão, corrente e resistência. Podemos entender como
tensão a energia potencial armazenada em uma pilha ou
bateria que irá fluir quando um circuito for fechado entre
os polos de maior e menor potencial (sentido
convencional). Observe na Figura 2.1 que, como analogia,
podemos pensar na água armazenada em dois recipientes
conectados por um cano. A água irá fluir do recipiente com
maior quantidade de água para o menor.

Figura 2.1: Diferença de Potencial

Aprenda Arduino – Uma abordagem prática

18

Em eletrônica o princípio é o mesmo, por exemplo,
os polos positivos e negativos de uma pilha indicam o
sentido na qual a corrente elétrica irá fluir. Desta forma,
podemos definir que a corrente elétrica é a movimentação
ordenada de cargas elétricas num condutor. Para fins de
análise, podemos notar na Figura 2.2 que a corrente
elétrica poderá circular em dois sentidos: a) sentido real,
que é resultante do movimento de cargas negativas ou; b)
sentido convencional – resultante do movimento de cargas
positivas.

Figura 2.2: Sentido Real (a) e Sentido Convencional (b)

A movimentação das cargas elétricas através do

condutor pode encontrar elementos que oferecem certa
resistência a passagem dessas cargas. Na figura acima, por
exemplo, a resistência a passagem da corrente elétrica faz
com que a lâmpada gere calor no seu filamento e fique
incandescente. É esse mesmo efeito que permite que a
água de um chuveiro seja aquecida ao passar pela
resistência.

A Lei de Ohm estabelece a relação entre tensão (V),
corrente (I) e resistência (R), onde:

I = V / R

Aprenda Arduino – Uma abordagem prática

19

A tensão é expressa em Volts (V), a corrente em
Amperes (A) enquanto a resistência em Ohms (Ω). Desta
forma, considerando o circuito elétrico (Figura 2.3) no qual
temos uma tensão de 5V aplicada sobre uma resistência de
220 Ω o que irá produzir uma corrente de 0,022A ou 22mA.

Figura 2.3: Aplicação da Lei de Ohm

Principais Componentes

 Um circuito eletrônico é formado por diversos
componentes com finalidades distintas, vamos a seguir
aprender a identificar os mais utilizados.

 Os resistores (Figura 2.4), conforme já explicado
acima, tem a função limitar a corrente elétrica, eles são
necessários do modo a evitar que determinados
componentes eletrônicos recebam uma tensão ou corrente
maior do que eles podem suportar evitando, desta forma,
que os mesmos sejam danificados. São componentes não
polarizados, ou seja, podem ser instalados em qualquer

Aprenda Arduino – Uma abordagem prática

20

sentido no circuito elétrico, sem preocupação com os polos
negativos ou positivos.

Figura 2.4: Resistor

O valor de um resistor pode ser determinado

através de uma tabela código de cores, conforme ilustra a
Figura 2.5.

Figura 2.5: Código de Cores para Resistores

Aprenda Arduino – Uma abordagem prática

21

Os capacitores (Figura 2.6) são componentes que
permitem armazenar energia para uma utilização rápida.
Por exemplo, se compararmos um capacitor com uma pilha
temos que o capacitor pode descarregar toda sua carga em
uma pequena fração de segundo, já a pilha demoraria
vários minutos para descarregar. Uma aplicação típica de
capacitores e no flash de câmera, a pilha (ou bateria)
carrega o capacitor por vários segundos, e então o
capacitor descarrega toda a carga armazenada para que a
lâmpada do flash seja acionada imediatamente. Existem
diversos tipos de capacitores sendo alguns polarizados e
outros não, a unidade de medida de um capacitor é o Farad
(F).

Figura 2.6: Tipos de Capacitores

 Um diodo (Figura 2.7) é um componente
semicondutor que permite que a corrente flua em apenas
um sentido. É um componente polarizado, desta forma, o
terminal Cátodo que é identificado por uma faixa deve
estar sempre conectado ao polo negativo (ou terra) do
circuito, enquanto o Ânodo que é o outro terminal deverá
estar conectado ao polo positivo.

Aprenda Arduino – Uma abordagem prática

22

Figura 2.7: Diodo

O diodo emissor de luz ou simplesmente LED

(Figura 2.8) é uma variação do diodo e apresenta, como
principal característica, a emissão de luz quando uma
corrente flui através do mesmo. É um componente
polarizado, desta forma, o Cátodo (lado chanfrado) sempre
deve estar conectado ao polo negativo (ou terra) do
circuito, se conectado invertido pode ser danificado.

Figura 2.8: Diodo Emissor de Luz (LED)

Aprenda Arduino – Uma abordagem prática

23

Os transistores (Figura 2.9) são componentes
semicondutores e foram os principais responsáveis pela
revolução da eletrônica e da informática na década de
1960, pois, permitiram substituir as válvulas nos
equipamentos. Um transistor é praticamente cem vezes
menor que uma válvula, não necessita de tempo para
aquecimento, consome menos energia, sendo muito mais
rápido e confiável. Apresenta inúmeras aplicações, sendo
as principais, a atuação como uma “chave” eletrônica e
amplificador de sinal.

Figura 2.9: Transistor

 Um transistor possui três terminais, sendo
nomeados como base, coletor e emissor e para identificá-
los devemos ter o modelo utilizado e consultar as
respectivas especificações (datasheet).

Os circuitos integrados (Figura 2.10) consistem em
transistores e vários outros componentes eletrônicos
miniaturizados e montados num único chip. A integração
em larga escala permite colocar cerca de 1 milhão de
transístores por mm² proporcionando um alto nível de
miniaturização dos circuitos eletrônicos além de uma
grande redução de custos.

Aprenda Arduino – Uma abordagem prática

24

Figura 2.10: Circuito Integrado

Uma protoboard (Figura 2.11) permite a montagem

provisória de circuitos eletrônicos permitindo a reutilização
dos componentes, consiste em uma matriz de contatos
interconectados através dos quais os componentes são
interligados.

Figura 2.11: Protoboard

 Os pinos dos componentes devem ser conectados
sempre em linhas diferentes, enquanto conexões entre
componentes diferentes devem ocorrer em uma mesma
linha.

Aprenda Arduino – Uma abordagem prática

25

Capítulo 3:
Projetos e Desafios

Neste capítulo desenvolvemos uma sequência de

projetos e desafios que abordam os conceitos de entradas
e saídas digitais e analógicas e o uso de dispositivos
sensores e atuadores.

Projeto 1 – Controle de um LED

O objetivo deste projeto é utilizar uma porta digital
do Arduino para controlar o funcionamento de um Diodo
Emissor de Luz (LED). Um nível 1 (HIGH) colocado no pino
irá acender o LED, enquanto um nível 0 (LOW) vai apagar o
LED.

Material necessário:

• 1 Arduino.

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom).

• 1 Led (qualquer cor).

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

26

Passo 1: Montagem do circuito

Figura 3.1: Opções de Montagem do Projeto

Aprenda Arduino – Uma abordagem prática

27

Observe a Figura 3.1 e de acordo com o modelo de
protoboard que estiver usando:

a. Conecte o pino GND do Arduino à linha de

alimentação negativa (preta ou azul) da protoboard.
b. Coloque o resistor de 220 ohms (ou 330 ohms)

entre a linha de alimentação negativa e qualquer
outra linha da protoboard.

c. Coloque o LED com o Cátodo (lado chanfrado)
conectado ao resistor.

d. Conecte o Ânodo do LED ao pino 13 do Arduino.

Passo 2: Programa

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

int LED = 13; // Pino onde o LED foi conectado

void setup() {
 pinMode(LED, OUTPUT); // Definir pino como
 // saída
}

void loop() {
 digitalWrite(LED, HIGH); // Colocar nível 1 no
 // pino (liga o LED)
 delay(2000); // Aguardar por 2 segundos
 digitalWrite(LED, LOW); // Colocar nível 0 no
 // pino (apaga o LED)
 delay(2000);
}

Aprenda Arduino – Uma abordagem prática

28

Passo 3: Compilação e transferência do programa para o
Arduino

Observe a Figura 3.2 e após salvar o sketch
(programa), faça a compilação e, em seguida, conecte o
Arduino à porta USB do computador. Finalizando,
pressione o botão Carregar (Transferir) para fazer a
transferência do sketch para o Arduino.

Figura 3.2: Ambiente de Desenvolvimento do Arduino

Aprenda Arduino – Uma abordagem prática

29

Desafio 1 – Controle de Semáforo

a) Semáforo de Veículos

Objetivo:

Aplicando o conceito de Saídas Digitais, abordado
no Projeto 1, reproduzir o funcionamento de um sinal de
trânsito.

Material necessário:

• 1 Arduino.

• 3 Resistores de 220 ohms (vermelho, vermelho,
marrom) ou de 330 ohms (laranja, laranja, marrom).

• 3 LEDs (1 vermelho, 1 verde e 1 amarelo).

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

30

Montagem do circuito

Figura 3.3: Semáforo de Veículos

Aprenda Arduino – Uma abordagem prática

31

Realize a montagem do cuircuito, conforme ilustra a
Figura 3.3:

a. Conecte o pino GND do Arduino à linha de

alimentação negativa (azul) do protoboard.
b. Coloque 5 resistores de 220 ohms (ou 330 ohms)

entre com uma ligação na linha de alimentação
negativa e qualquer outra linha do protoboard.

c. Coloque os 3 LEDs com o Cátodo (lado chanfrado)
conectado em cada um dos resistores.

d. Conecte o Ânodo dos LEDs na seguinte ordem: pino
13 do Arduino em um LED vermelho, pino 12 do
Arduino em um LED amarelo e pino 11 do Arduino
em um LED verde.

b) Semáforo de Veículos e Pedestres

Objetivo:

Reproduzir um cenário similar ao de um semáforo
de veículos e pedestres. Supondo o estado inicial do
cenário com semáforo de veículos (VEÍCULO) sendo
vermelho (PARE) e o semáforo de pedestres (PEDESTRE)
sendo verde (SIGA), deve-se programar a sequência de
luzes indicando os estados do semáforo de veículos
sincronizado com os estados do semáforo de pedestres.
Algumas especificações a serem seguidas:

• O sinal vermelho e sinal verde de VEÍCULO tem
duração de 10 segundos cada.

• O sinal amarelo de VEÍCULO tem duração de 2
segundos.

Aprenda Arduino – Uma abordagem prática

32

• O sinal vermelho de PEDESTRE ficará acesso
durante todo o tempo que o sinal vermelho e sinal
amarelo de VEÍCULO estiverem acessos, impedindo
a passagem de pedestres enquanto os carros
transitam.

• O sinal verde de PEDESTRE ficará acesso durante
todo o tempo que o sinal vermelho de VEÍCULO
ficar acesso, indicando que os pedestres estão livres
para atravessar.

• Antes transição do sinal verde para o vermelho de
PEDESTRE, faltando 2 segundos para a transição, o
sinal verde pisca rapidamente 2 vezes indicando aos
pedestres que se tornará vermelho.

Material necessário:

• 1 Arduino.

• 5 Resistores de 220 ohms (vermelho, vermelho,
marrom) ou de 330 ohms (laranja, laranja, marrom).

• 5 Leds (2 vermelhos, 2 verdes e 1 amarelo).

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

33

Montagem do circuito

Figura 3.4: Semáforo de Veículos e Pedestres

Aprenda Arduino – Uma abordagem prática

34

Conforme ilustra a Figura 3.4 realize os seguintes
passos:

a. Conecte o pino GND do Arduino à linha de

alimentação negativa (azul) do protoboard.
b. Coloque 5 resistores de 220 ohms (ou 330 ohms)

entre com uma ligação na linha de alimentação
negativa e qualquer outra linha do protoboard.

c. Coloque 5 LEDs com o Cátodo (lado chanfrado)
conectado em cada um dos resistores.

d. Conecte o Ânodo dos LEDs na seguinte ordem: pino
13 do Arduino no LED vermelho (vermelho de
VEÍCULO), pino 12 do Arduino no LED amarelo
(amarelo de VEÍCULO), pino 11 do Arduino no LED
verde (verde de VEÍCULO), pino 9 do Arduino no
LED vermelho (vermelho de PEDESTRE) e pino 10 do
Arduino no LED verde (verde de PEDESTRE).

Aprenda Arduino – Uma abordagem prática

35

Projeto 2 – Potenciômetro

O objetivo deste projeto é controlar a frequência de
acender e apagar (frequência de pisca-pisca) e a
intensidade da luminosidade de um LED. Nesse workshop
teremos dois experimentos para alcançar esses objetivos.
Um potenciômetro um resistor variável no formato de um
botão giratório que fornece um valor analógico. Se
girarmos o potenciômetro, alteramos a resistência em cada
lado do contato elétrico que vai conectado ao terminal
central do botão. Essa mudança implica em uma mudança
no valor analógico de entrada. Quando o cursor for levado
até o final da escala, teremos 0 volts e assim obtendo o
valor 0 na entrada analógica. Quando giramos o cursor até
o outro extremo da escala, teremos 5 volts e assim tendo o
valor 1023 na entrada analógica. Outro conceito que
podemos notar é a utilização dos pinos digitais com a
marcação “~” (til) como, por exemplo, o pino digital “~9”
usado no Programa N° 2.

Material necessário:

• 1 Arduino.

• 1 Potenciômetro.

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom)
para o Led.

• 1 LED de qualquer cor.

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

36

Passo 1: Montagem do circuito

Conforme ilustra a Figura 3.5:

a. Conecte o pino 5v do Arduino à linha de
alimentação positiva (vermelha) do protoboard.

b. Conecte o pino GND do Arduino à linha de
alimentação negativa (preta) do protoboard.

c. Conecte um LED utilizando um resistor de 220 ohms
(ou 330 ohms).

d. Conecte o LED no pino digital 13.
e. Conecte o potenciômetro na protoboard com o

botão de girar virado para você.
f. Conecte o pino da esquerda do potenciômetro na

linha de alimentação GND.
g. Conecte o pino da direita do potenciômetro na

linha de alimentação positiva.
h. Conecte o pino do centro do potenciômetro no pino

analógico A1 do Arduino.

Aprenda Arduino – Uma abordagem prática

37

Figura 3.5: Possibilidades de Montagem do Projeto

Aprenda Arduino – Uma abordagem prática

38

Passo 2: Programa N° 1 – Controlando a frequência do
pisca-pisca

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

// Liga e desliga um LED na frequência
// determinada pelo potenciômetro.

// Pino de entrada ligado ao potenciômetro
int POT = A1;

// Pino conectado ao LED
int LED = 13;

// Variável que armazenará o valor do
// obtido do potenciômetro
int valor = 0;

void setup() {
 pinMode(LED, OUTPUT);
}

void loop() {
 valor = analogRead(POT);
 digitalWrite(LED, HIGH);
 delay(valor);
 digitalWrite(LED, LOW);
 delay(valor);
}

Aprenda Arduino – Uma abordagem prática

39

Passo 3: Montagem do circuito

Figura 3.6: Opções de Montagem do Projeto

Aprenda Arduino – Uma abordagem prática

40

Conforme ilustra a Figura 3.6:

a. Conecte o pino 5v do Arduino à linha de
alimentação positiva (vermelha) do protoboard.

b. Conecte o pino GND do Arduino à linha de
alimentação negativa (preta) do protoboard.

c. Conecte um LED utilizando um resistor de 220 ohms
(ou 330 ohms).

d. Conecte o LED no pino digital 9.
e. Conecte o potenciômetro na protoboard com o

botão de girar virado para você.
f. Conecte o pino da esquerda do potenciômetro na

linha de alimentação GND.
g. Conecte o pino da direita do potenciômetro na

linha de alimentação positiva.
h. Conecte o pino do centro do potenciômetro no pino

analógico A1 do Arduino.

Passo 4: Programa N° 2 – Controle da intensidade da
luminosidade

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

// Controla a intensidade da luminosidade de um
// LED através de frequência determinada pelo
// potenciômetro.

int POT = A1;
int LED = 9;
int valor = 0;

void setup() {
 Serial.begin(9600);

Aprenda Arduino – Uma abordagem prática

41

 pinMode(LED, OUTPUT);
}

void loop() {
 valor = analogRead(POT);
 if(valor > 0) {
 // Acende o led com intensidade proporcional
 // ao valor obtido
 analogWrite(LED, (valor/4));

 // Exibe no Serial Monitor o valor obtido
 // do potenciômetro
 Serial.println(valor);
 }
}

Dicas - Como funciona a PWM?

A Modulação por Largura de Pulso (Pulse Width
Modulation - PWM) é uma técnica que consiste em
fornecer um sinal analógico através de meios digitais. A
forma de onda do sinal digital consiste em uma onda
quadrada que alterna seu estado em nível lógico alto e um
nível lógico baixo (pode ser representado por
ligado/desligado ou pelo sistema binário 1 e 0).

A razão entre o período de pico e o período total da

onda é chamada de Duty Cycle (Figura 3.7). Podemos,
então, entender que para termos uma onda quadrada real
(que possui picos e vales iguais) é necessário que o Duty
Cycle seja de 50%, ou seja, 50% de pico e 50% de vale.

Aprenda Arduino – Uma abordagem prática

42

Figura 3.7: Razão de Ciclo

No Arduino UNO, as portas digitais que permitem

PWM são as portas 3, 5, 6, 9, 10 e 11. Essas portas são
facilmente identificadas pelo símbolo "~" abaixo de cada
porta.

Fonte: Tradução e imagem de “PWM” disponível
em http://arduino.cc/en/Tutorial/PWM.

Aprenda Arduino – Uma abordagem prática

43

Projeto 3 – LDR

O objetivo deste projeto é controlar o estado de um
LED (aceso ou apagado) através da verificação de
luminosidade do ambiente utilizando um sensor de
luminosidade LDR. O LDR (Light Dependent Resistor) é um
componente que varia a sua resistência conforme o nível
de luminosidade que incide sobre ele. A resistência do LDR
varia de forma inversamente proporcional à quantidade de
luz incidente sobre ele. Quanto maior a luminosidade,
menor será a resistência, por outro lado, no Arduino, maior
será o valor presente na entrada analógica. Quanto menor
for a luminosidade, maior será a resistência, ou seja,
menor será o valor na entrada analógica do Arduino. Para
essa experiência, vamos supor que o nível limite de
luminosidade para que o LED se acenda como sendo um
valor menor que 100 na entrada analógica. Para monitorar
o valor gerado pelo LDR vamos estabelecer a comunicação
serial entre o Arduino e o computador e, em seguida,
utilizar o Serial Monitor da IDE do Arduino para monitorar.

Material necessário:

• 1 Arduino.

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom)2.

• 1 LED (qualquer cor) 2.

• 1 LDR1 2.

• 1 Resistor de 10k ohms (marrom, preto laranja)
para o LDR1 2.

• 1 Protoboard2.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

44

1 Podem ser substituídos pelo módulo P13-LDR da GBK
Robotics.
2 Podem ser substituídos pelo módulo P7-Sensor de
Luminosidade da GBK Robotics.

Passo 1: Montagem do circuito

Conforme ilustra a Figura 3.8:

a. Conecte o pino 5v do Arduino à linha de
alimentação positiva (vermelha) da protoboard.

b. Conecte o pino GND do Arduino à linha de
alimentação negativa (preta) da protoboard.

c. Coloque o resistor de 220 ohms (ou 330 ohms)
entre a linha de alimentação negativa e qualquer
outra linha da protoboard.

d. Coloque o LED com o Cátodo (lado chanfrado)
conectado ao resistor de 220 ohms (ou 330 ohms);

e. Conecte o Ânodo do LED ao pino 13 do Arduino.
f. Coloque o resistor de 10k ohms entre a linha de

alimentação negativa e qualquer outra linha da
protoboard.

g. Conecte uma das extremidades do LDR na linha o
resistor de 10k ohms.

h. Conecte uma extremidade do jumper entre o LDR e
o resistor. A outra extremidade conecte no pino
analógico A0;

i. Conecte a outra extremidade do LDR à linha de
alimentação positiva (vermelha).

Aprenda Arduino – Uma abordagem prática

45

Figura 3.8: Disposição dos Componentes e Ligações

Aprenda Arduino – Uma abordagem prática

46

Variação de Montagem 1

Módulo P13-LDR da GBK Robotics

Figura 3.9: Módulo P13-LDR

Este projeto pode ser montado substituindo o LDR e o
Resistor de 10k ohms pelo módulo P13-LDR (Figura 3.9) da
GBK Robotics, neste caso:
a. Conecte o pino GND do Arduino à linha de alimentação

negativa (preta) da protoboard.
b. Coloque o resistor de 220 ohms (ou 330 ohms) entre a

linha de alimentação negativa e qualquer outra linha da
protoboard.

c. Coloque o LED com o Cátodo (lado chanfrado)
conectado ao resistor de 220 ohms (ou 330 ohms).

d. Conecte o Ânodo do LED ao pino 13 do Arduino.
e. Conecte o pino 5v do Arduino ao pino +5Vcc do módulo

P13.
f. Conecte o pino GND do módulo P13 à linha de

alimentação negativa da protoboard.
g. Conecte o pino analógico A0 do Arduino ao pino Sinal A

do módulo P13.

IMPORTANTE: Não há alterações no sketch (programa).

Aprenda Arduino – Uma abordagem prática

47

Variação de Montagem 2

Módulo P7-Sensor de
Luminosidade da GBK Robotics

Figura 3.10: Módulo P7-Sensor de Luminosidade

Este projeto pode ser montado substituindo o LED, o LDR,
os Resistores de 220 ohms (ou 330 ohms) e 10k ohms e a
Protoboard pelo módulo P7-Sensor de Luminosidade
(Figura 3.10) da GBK Robotics, neste caso:
a. Conecte o pino 5v do Arduino ao pino 5Vcc do módulo

P7.
b. Conecte o pino GND do módulo P7 a um dos pinos de

GND do Arduino.
c. Conecte o pino analógico A0 do Arduino ao pino Sinal

Analog. do módulo P7.
d. Conecte o pino Led1 do módulo P7 ao pino digital 13 do

Arduino.

IMPORTANTE: Os pinos Led2 e Led3 no módulo P7 não são
ligados e não há alterações no sketch (programa).

Aprenda Arduino – Uma abordagem prática

48

Passo 2: Programa

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

// Pino no qual o LED está conectado
int LED = 13;

// Pino no qual o LDR está conectado
int LDR = A0;

// Variável que receberá o valor lido do LDR
int entrada = 0;

void setup() {
 // Iniciar e definir a velocidade de
 // comunicação da porta serial
 Serial.begin(9600);
 pinMode(LED, OUTPUT);
}

void loop() {
 entrada = analogRead(LDR);

 // Valor que será exibido no Serial Monitor do
 // ambiente de desenvolvimento do Arduino
 Serial.println(entrada);

 if (entrada < 500)
 digitalWrite(LED, HIGH); // Acender o LED
 else
 digitalWrite(LED, LOW); // Apagar o LED
 delay(100);
}

Aprenda Arduino – Uma abordagem prática

49

Passo 3: Serial Monitor

Clique no botão mostrado em destaque na Figura
3.11 para abrir a janela do Monitor Serial.

Figura 3.11: Botão para Abrir o Monitor Serial

Aprenda Arduino – Uma abordagem prática

50

Projeto 4 – Buzzer

O objetivo deste projeto é acionar um buzzer
utilizando as funções tone() e noTone(). Buzzer é um
dispositivo para geração de sinais sonoros (beeps), como
aqueles encontrados em computadores. Para a emissão do
som, o buzzer vibra através de um oscilador. Essa oscilação
é determinada por uma frequência, que por sua vez define
um som específico. Nesse experimento será usado 2 modos
de uso da função tone() e uma pequena variação de sons
representando notas musicais. A função tone() possui 2
sintaxes: tone(pino, frequência) e tone(pino, frequência,
duração), onde pino referencia qual é o pino que irá gerar
a frequência (ligado ao positivo do buzzer), a frequência é
definida em hertz e a duração (opcional) é em
milissegundos. Caso opte pela sintaxe sem duração é
necessário usar a função noTone(pino) para parar a
frequência enviada pelo pino definido.

Material necessário:

• 1 Arduino.

• 1 Buzzer*.

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom)
para o buzzer*.

• 1 Protoboard*.

• Jumper cable.

* Podem ser substituídos pelo módulo P15-Buzzer da GBK
Robotics.

Aprenda Arduino – Uma abordagem prática

51

Passo 1: Montagem do circuito

Figura 3.12: Ligação do Buzzer ao Arduino

Conforme ilustra a Figura 3.12:

a. Coloque o buzzer na protoboard.
b. Conecte o pino GND do Arduino ao pino negativo

do buzzer.

Aprenda Arduino – Uma abordagem prática

52

c. Coloque o resistor de 220 ohms (ou 330 ohms)
ligado ao pino positivo do buzzer.

d. Nesse resistor, conecte um jumper até a porta
digital 8 do Arduino.

Variação de Montagem

Módulo P15-Buzzer da GBK
Robotics

Figura 3.13: Módulo P15-Buzzer

Este projeto pode ser montado substituindo o buzzer, o
resistor de 220 ohms (ou 330 ohms) e a protoboard pelo
módulo P15-Buzzer (Figura 3.13) da GBK Robotics, neste
caso:
a. Conecte o pino GND do Arduino ao pino GND do

módulo P15.
b. Conecte o pino 8 do Arduino ao pino Sinal do módulo

P15.

IMPORTANTE: Não há alterações no sketch (programa).

Aprenda Arduino – Uma abordagem prática

53

Passo 2: Programa N° 1 – Uso das funções tone(pino,
frequência) e noTone(pino)

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

// Pino ao qual o buzzer está conectado
int buzzer = 8;

void setup() {
 pinMode(buzzer, OUTPUT);
}

void loop() {
 tone(buzzer, 1200); //Define pino e frequência
 delay(500);
 noTone(buzzer); //Desliga o buzzer
 delay(500);
}

Passo 3: Programa N° 2 – Uso da função tone(pino,

frequência, duração)

No ambiente de desenvolvimento do Arduino digite
o sketch (programa) a seguir:

// Pino ao qual o buzzer está conectado
int buzzer = 8;

void setup() {
 pinMode(buzzer, OUTPUT);
}

void loop() {

Aprenda Arduino – Uma abordagem prática

54

 // Define pino, a frequência e duração
 tone(buzzer, 1200, 500);
 delay(1000);
}

Passo 4: Programa N° 3 – Notas musicais com buzzer

No ambiente de desenvolvimento do Arduino digite
o sketch (programa) a seguir:

// Pino ao qual o buzzer está conectado
int buzzer = 8;

int numNotas = 10;
// Vetor contendo a frequência de cada nota
int notas[] = {261, 277, 294, 311, 330, 349,
370, 392, 415, 440};
// Notas: C, C#, D, D#, E, F, F#, G, G#, A
/*
C=Dó D=Ré E=Mi F=Fá G=Sol A=Lá B=Si
As notas sem o “#”, são as notas naturais
(fundamentais).
Aquelas com o “#”, são chamadas “notas
sustenidas” (por exemplo: C#=Dó Sustenido).
*/
void setup() {
 pinMode(buzzer, OUTPUT);
}

void loop() {
 for (int i = 0; i < numNotas; i++) {
 tone(buzzer, notas[i]);
 delay(500);
 }
 noTone(buzzer);
}

Aprenda Arduino – Uma abordagem prática

55

Projeto 5 – Botão

O objetivo deste projeto é utilizar um botão para
acender, apagar e, posteriormente, também controlar a
luminosidade de um LED.

Material necessário:

• 1 Arduino.

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom)
para o LED.

• 1 Resistor de 10k ohms (marrom, preto laranja)
para o botão.

• 1 LED (qualquer cor) .

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

56

Passo 1: Montagem do circuito

Conforme o tipo de protoboard usado realize a
montagem adotando, como referência, a Figura 3.14.

Figura 3.14: Conexões Necessárias

Aprenda Arduino – Uma abordagem prática

57

Passo 2: Programa-Ligando e desligando um LED através
do botão

Neste programa, enquanto o botão estiver
pressionado o LED ficará acesso, caso contrário, o LED fica
apagado. Para implementá-lo, acesse o ambiente de
desenvolvimento do Arduino e digite o sketch (programa) a
seguir:

// Pino ao qual o LED está conectado
int LED = 9;
// Pino ao qual o Botão está conectado
int BOTAO = 7;
int valor;

void setup() {
 // Definir o pino como saída
 pinMode(LED, OUTPUT);
 // Definir o pino com entrada
 pinMode(BOTAO, INPUT);
}

void loop() {
 // Obtém LOW (botão não pressionado) ou
 // HIGH (botão pressionado)
 valor = digitalRead(BOTAO);

 digitalWrite(LED, valor);
 delay (500);
}

Aprenda Arduino – Uma abordagem prática

58

Passo 3: Programa-Ligando e desligando um LED através
do botão (com troca de estado)

Neste outro programa ao pressionar e soltar o
botão o LED acenderá, a pressionar e soltar o botão
novamente o LED vai apagar e assim sucessivamente.
Desenvolva o programa acessando o ambiente de
desenvolvimento do Arduino e digitando o seguinte sketch.

// Pino ao qual o LED está conectado
int LED = 9;
// Pino ao qual o Botão está conectado
int BOTAO = 7;
int valor;
int anterior = 0;
int estado = LOW;
void setup() {
 pinMode(LED, OUTPUT);
 pinMode(BOTAO, INPUT);
}

void loop() {
 valor = digitalRead(BOTAO);
 if (valor == HIGH && anterior == LOW) {
 estado = !estado;
 }
 digitalWrite(LED, estado);
 anterior = valor;
 delay (50);
}

Aprenda Arduino – Uma abordagem prática

59

Passo 4: Programa-Ligando, desligando e alterando a
intensidade luminosa de um LED

Nesta implementação, através de um pino capaz de
utilizar valores analógicos (PWM), poderemos ligar,
desligar e obter uma variação de luminosidade. O LED
começa com seu estado “apagado”. Com um pressionar no
botão, altera-se o estado do LED para “acesso”. Caso
permaneça com o botão pressionado por mais de 5
segundos, poderá ser identificada uma variação de
luminosidade. Crie o sketch a seguir no ambiente de
desenvolvimento do Arduino.

// Pino ao qual o LED está conectado
int LED = 9;
// Pino ao qual o Botão está conectado
int BOTAO = 7;
int valor = LOW;
int valorAnterior = LOW;
// 0 = LED apagado, 1 = LED aceso
int estado = 0;
int brilho = 128;
unsigned long inicio;

void setup() {
 pinMode(LED, OUTPUT);
 pinMode(BOTAO, INPUT);
}

void loop() {
 valor = digitalRead(BOTAO);
 if ((valor == HIGH) && (valorAnterior==LOW)) {
 estado = 1 - estado;
 // Obtém a quantidade de milisegundos após
 // o Arduino ser inicializado
 inicio = millis();

Aprenda Arduino – Uma abordagem prática

60

 delay (10);
 }

 // Verifica se o botão está pressionado
 if ((valor==HIGH) && (valorAnterior==HIGH)) {
 // Verifica se o botão está pressionado por
 // mais de 0,5 segundos
 if (estado==1 && (millis()-inicio) > 500) {
 brilho++;
 delay(10);
 if (brilho > 255)
 brilho = 0;
 }
 }
 valorAnterior = valor;

 if (estado == 1) {
 // Define o nível de luminosidade do LED
 analogWrite(LED, brilho);
 }
 else {
 analogWrite(LED, 0); // Apaga o LED
 }
}

Aprenda Arduino – Uma abordagem prática

61

Desafio 2 – Controle de Estufa

Objetivo:

O objetivo deste projeto é controlar a luminosidade
de uma estufa através de sensores e controles de abertura
e fechamento de telas que controlam a entrada de luz solar
em um ambiente simulado. Essa estufa foi projetada para
plantas ornamentais, que precisam de baixa luminosidade
para seu crescimento ideal. Antes da construção real da
estufa é necessário criar uma base de teste. Para essa base
de testes são definidos os seguintes parâmetros:

• Um LDR será utilizado para verificar a luminosidade
do local. A partir dele deverá ser avaliada a
luminosidade mais alta possível do local (o valor
mais alto alcançado). Esse valor tem que ser
verificado através do Serial Monitor durante algum
tempo e será usado como referência (valor máximo
de luminosidade do local). Por exemplo, se o maior
valor captado pelo LDR for 835, esse será o valor
máximo (referente a 100% de luminosidade).

• Três LEDs irão representar o status de luminosidade
do local: o LED vermelho será acesso quando a
luminosidade do local estiver entre 80% a 100% da
luminosidade máxima do local; o LED amarelo será
acesso quando a luminosidade estiver entre 50% a
79% da luminosidade máxima do local; e o LED
verde indica uma luminosidade ideal, abaixo dos
50%.

• Um buzzer irá representar o controle das telas.
Quando o LED estiver vermelho, as 3 telas de

Aprenda Arduino – Uma abordagem prática

62

proteção deverão ser fechadas, para impedir a
entrada de luz solar e assim reduzindo a
luminosidade. Com isso, o buzzer deve apitar 3
sinais breves, sendo cada um dos sinais indicativo
que uma tela está fechada. Se o LED estiver
amarelo, serão emitidos 2 apitos breves (2 telas
fechadas). Quando o LED estiver verde, 1 apito será
ouvido (1 tela fechada).

• O sistema também terá um botão de liga/desliga.
Durante o dia (período que o sistema deverá estar
ligado) é necessário clicar uma vez no botão (push
button). Pressionar novamente o botão indica o
desligamento do sistema, ou seja, o sistema não
estará mais ativo.

Aprenda Arduino – Uma abordagem prática

63

Projeto 6 – LCD (Liquid Crystal Display 16x2)

O objetivo deste projeto é aprender a montagem de
um display LCD 16x2 controlado pelo Arduino utilizando a
biblioteca LiquidCrystal.h. Essa biblioteca possui funções
que auxiliam nas configurações e tratamento dos dados a
serem enviados ao LCD. A montagem do display deve ser
de acordo com sua especificação (datasheet), onde cada
um dos pinos possui uma função específica (ver no passo 1
– Montagem do circuito). Para ver todas as funções
disponíveis na biblioteca LiquidCrystal.h acesse o site
oficial da biblioteca, que está disponível em
http://arduino.cc/en/Reference/LiquidCrystal.

Material necessário:

• 1 Arduino.

• 1 LCD 16x2.

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom).

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

64

Passo 1: Montagem do circuito

Figura 3.15: Conexão do Display LCD ao Arduino

Aprenda Arduino – Uma abordagem prática

65

Conforme ilustra a Figura 3.15, realizar a seguinte
sequência de montagem:

• Pino 1 do LCD ligado ao GND do Arduino.

• Pino 2 do LCD ligado ao 5V do Arduino.

• Pino 3 do LCD ligado ao pino central do
potenciômetro (controle de contraste).

• Pino 4 do LCD ligado ao pino digital 12 do Arduino.

• Pino 5 do LCD ligado ao GND do Arduino.

• Pino 6 do LCD ligado ao pino digital 11 do Arduino.

• Pino 11 do LCD ligado ao pino digital 5 do Arduino.

• Pino 12 do LCD ligado ao pino digital 4 do Arduino.

• Pino 13 do LCD ligado ao pino digital 3 do Arduino.

• Pino 14 do LCD ligado ao pino digital 2 do Arduino.

• Pino 15 do LCD ligado ao 5v do Arduino com um
resistor de 220 ohms (controle do brilho).

• Pino 16 do LCD ligado ao GND do Arduino.

Aprenda Arduino – Uma abordagem prática

66

Na tabela a seguir apresentamos as dunções de
cada um dos pinos do Display de Cristal Líquido:

Fonte: labdegaragem.com

Passo 2: Programa N° 1 – Exibição simples de texto

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

#include <LiquidCrystal.h>

// LCD - Modelo ACM 1602K
// Pin Sigla Função Conectar
// 1 Vss Ground GND
// 2 Vdd +5V VCC
// 3 Vo LCD contrast adjust Potenciômetro
// 4 RS Register select Arduino 12

Aprenda Arduino – Uma abordagem prática

67

// 5 R/W Read/write GND
// 6 E Enable Arduino 11
// 7 DB0 Data bit 0 NC
// 8 DB1 Data bit 1 NC
// 9 DB2 Data bit 2 NC
// 10 DB3 Data bit 3 NC
// 11 DB4 Data bit 4 Arduino 5
// 12 DB5 Data bit 5 Arduino 4
// 13 DB6 Data bit 6 Arduino 3
// 14 DB7 Data bit 7 Arduino 2
// + BL+ Alimentação (+) Resistor de 1k
// para VCC
// - BL- Alimentação (-) GND

#define TEMPO_ATUALIZACAO 500

LiquidCrystal lcd (12, 11, 5, 4, 3, 2);

void setup() {
 pinMode(12, OUTPUT);
 pinMode(11, OUTPUT);

 // Inicia o LCD com dimensões 16 x 2 (Colunas
 // x Linhas)
 lcd.begin (16, 2);
}

void loop() {
 lcd.clear();
 lcd.setCursor(0, 0); // Linha 0 e Coluna 0
 lcd.print("Ola");
 lcd.setCursor(0, 1); // Linha 1 e Coluna 0
 lcd.print("FATECINO");
 delay(TEMPO_ATUALIZACAO);
}

Aprenda Arduino – Uma abordagem prática

68

Passo 3: Programa N° 2 – Rolagem (scroll) do texto

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

#include <LiquidCrystal.h>

// LCD - Modelo ACM 1602K
// Pin Sigla Função Conectar
// 1 Vss Ground GND
// 2 Vdd +5V VCC
// 3 Vo LCD contrast adjust Potenciômetro
// 4 RS Register select Arduino 12
// 5 R/W Read/write GND
// 6 E Enable Arduino 11
// 7 DB0 Data bit 0 NC
// 8 DB1 Data bit 1 NC
// 9 DB2 Data bit 2 NC
// 10 DB3 Data bit 3 NC
// 11 DB4 Data bit 4 Arduino 5
// 12 DB5 Data bit 5 Arduino 4
// 13 DB6 Data bit 6 Arduino 3
// 14 DB7 Data bit 7 Arduino 2
// + BL+ Alimentação (+) Resistor de 1k
// para VCC
// - BL- Alimentação (-) GND

#define TEMPO_ATUALIZACAO 500

LiquidCrystal lcd (12, 11, 5, 4, 3, 2);
int inicio = 0, tamanho = 1;
boolean alterar = false;

void setup() {
 pinMode(12, OUTPUT);
 pinMode(11, OUTPUT);

Aprenda Arduino – Uma abordagem prática

69

 // Inicia o LCD com dimensões 16 x 2 (Colunas
 // x Linhas)
 lcd.begin (16, 2);
}

void loop() {
 lcd.clear(); // Limpa o display de LCD
 String nome = "Fatecino-Clube de Arduino";
 if (tamanho < 16) {
 // Posiciona o cursor nas coordenadas
 // especificadas
 lcd.setCursor(16 - tamanho, 0);

 // Exibe no LCD
 lcd.print(nome.substring(inicio, tamanho));
 tamanho++;
 }
 else {
 if (!alterar) {
 alterar = !alterar;
 tamanho = 16;
 lcd.setCursor(0, 0);
 }
 lcd.print(nome.substring(inicio, inicio +
tamanho));
 inicio++;
 }
 if (inicio > nome.length()) {
 inicio = 0;
 tamanho = 1;
 alterar = !alterar;
 }
 delay(TEMPO_ATUALIZACAO);
}

Aprenda Arduino – Uma abordagem prática

70

Desafio 3 – Controle de Estufa com LCD

O objetivo deste projeto é controlar a luminosidade
de uma estufa através de sensores e controles de abertura
e fechamento de telas que controlam a entrada de luz solar
em um ambiente simulado. Essa estufa foi projetada para
plantas ornamentais, que precisam de baixa luminosidade
para seu crescimento ideal. Antes da construção real da
estufa é necessário criar uma base de teste. Para essa base
de testes são definidos os seguintes parâmetros:

• Um LDR será utilizado para verificar a luminosidade
do local. A partir dele deverá ser avaliada a
luminosidade mais alta possível do local (o valor
mais alto alcançado). Esse valor tem que ser
verificado através do Serial Monitor durante algum
tempo e será usado como referência (valor máximo
de luminosidade do local). Por exemplo, se o maior
valor captado pelo LDR for 835, esse será o valor
máximo (referente a 100% de luminosidade).

• Três LEDs irão representar o status de luminosidade
do local: o LED vermelho será acesso quando a
luminosidade do local estiver entre 80% a 100% da
luminosidade máxima do local; o LED amarelo será
acesso quando a luminosidade estiver entre 50% a
79% da luminosidade máxima do local; e o LED
verde indica uma luminosidade ideal, abaixo dos
50%.

• Será utilizado um display LCD 16x2 para mostrar
todos os estados do sistema. Quando o LED
vermelho estiver acesso no display mostrará
“Luminosidade Alta. Valor do LDR: XXX”. Caso o LED

Aprenda Arduino – Uma abordagem prática

71

amarelo esteja acesso, o display terá que mostrar
“Luminosidade Média. Valor do LDR: XXX”. E
quando o LED verde estiver acesso, mostrará
“Luminosidade Baixa. Valor do LDR: XXX”. OBS.: No
lugar de “XXX” deverá aparecer o valor atual do
LDR.

• Um buzzer irá representar o controle das telas.
Quando o LED estiver vermelho, as 3 telas de
proteção deverão ser fechadas, para impedir a
entrada de luz solar e assim reduzindo a
luminosidade e o display mostrará “3 telas
fechadas”. Com isso, o buzzer deve apitar 3 sinais
breves, sendo cada um dos sinais indicativo que
uma tela está fechada. Se o LED estiver amarelo,
serão emitidos 2 apitos breves (2 telas fechadas) e o
display mostrará “2 telas fechadas”. Quando o LED
estiver verde, 1 apito será ouvido (1 tela fechada) e
o display mostrará “1 tela fechada”.

• O sistema também terá um botão de liga/desliga.
Durante o dia (período que o sistema deverá estar
ligado) é necessário clicar uma vez no botão (push
button). Pressionar novamente o botão indica o
desligamento do sistema, ou seja, o sistema não
estará mais ativo.

Aprenda Arduino – Uma abordagem prática

72

Projeto 7 – Uso do Sensor de Temperatura

O objetivo deste projeto é enviar os dados de um
sensor de temperatura (LM35 ou DHT11) para a saída
serial.

Material necessário:

• 1 Arduino.

• 1 LM35 (ou DHT11).

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

73

Passo 1: Montagem do circuito (com o LM35)

Realize as conexões conforme ilustra a Figura 3.16.

Figura 3.16: Ligação do Arduino ao LM35

Aprenda Arduino – Uma abordagem prática

74

Passo 2: Programa para o LM35

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

// Pino Analógico que vai ser ligado ao
// terminal 2 do LM35
const int LM35 = A0;

// Tempo de atualização em ms (milissegundos)
const int ATRASO = 5000;

// Base de conversão para Graus Celsius:
// ((5/1023) * 100)
const float BASE_CELSIUS =
 0.4887585532746823069403714565;

void setup() {
 Serial.begin(9600);
}

void loop() {
 Serial.print("Temperatura: ");
 Serial.print(lerTemperatura());
 Serial.println("\260C");
 delay(ATRASO);
}

float lerTemperatura() {
 return (analogRead(LM35) * BASE_CELSIUS);
}

Aprenda Arduino – Uma abordagem prática

75

Passo 3: Montagem do circuito (com o DH11)

Monte o projeto conforme mostra a Figura 3.17.

Figura 3.17: Conexão do Arduino ao DHT11

Aprenda Arduino – Uma abordagem prática

76

Passo 4: Programa para o DHT11

Baixe a biblioteca a partir do link:
http://hobbyist.co.nz/sites/default/files/WeatherStation/D
HT.zip. Descompacte o conteúdo do arquivo DHT.zip na
pasta Arduino\libraries\ localizada na pasta Documentos.
Em seguida, inicie o ambiente de desenvolvimento do
Arduino e digite o sketch.

#include <dht.h>

// Pino analógico ligado ao terminal 2 do DHT11
const int DHT11 = A0;

//Tempo de atualização entre as leituras em ms
const int ATRASO = 2000;

dht sensor;

float temperatura, umidade;

void setup() {
 Serial.begin(9600);
}

void loop() {
 // Obtém os dados do sensor
 sensor.read11(DHT11);

 // Obtém a temperatura
 temperatura = sensor.temperature;

 // Obtém a umidade
 umidade = sensor.humidity;

 // Enviar a temperatura e a umidade através

Aprenda Arduino – Uma abordagem prática

77

 // da saída serial
 Serial.print("Temperatura: ");
 Serial.print(temperatura);
 Serial.print(';');
 Serial.print("\260C, Umidade: ");
 Serial.print(umidade);
 Serial.print(';');
 Serial.println("%");
 delay(ATRASO);
}

Passo 5: Conversão para Fahrenheit e Kelvin

Utilizando as fórmulas a seguir, alterar o programa
para exibir a temperatura em Fahrenheit e Kelvin.

• F = (C * 9)/ 5 + 32

• K = C + 273.15

Passo 6: Exibição da temperatura em um display de LCD

Utilizando como base o Projeto-6 (Uso do LCD),
enviar os dados de temperatura para um display de LCD.

Dica: Como imprimir o símbolo de graus no display
de LCD? Tente usar lcd.write(B11011111);

Aprenda Arduino – Uma abordagem prática

78

Projeto 8 – Termistor

O objetivo deste projeto é obter a temperatura
ambiente através da leitura dos dados recebidos de um
termistor. Há dois tipos de termistores:

• Termistor PTC (Positive Temperature
Coefficient): Este tipo de termistor tem o
coeficiente de temperatura positivo, ou seja, a
resistência aumenta com o aumento da
temperatura.

• Termistor NTC (Negative Temperature
Coefficient): Já este é o inverso do anterior e seu
coeficiente de temperatura é negativo. Com isto
sua resistência diminui com o aumento da
temperatura.

Material necessário:

• 1 Arduino.

• 1 Termistor NTC de 10k ohms*.

• 1 Resistor de 10k ohms (marrom, preto, laranja)
para o termistor*.

• 1 Protoboard*.

• Jumper cable.

* Podem ser substituídos pelo módulo P10-Sensor de
Temperatura com NTC da GBK Robotics.

Aprenda Arduino – Uma abordagem prática

79

Passo 1: Montagem do circuito

Figura 3.18: Ligação do Termistor ao Arduino

Conforme ilustra a Figura 3.18:

a. Coloque o termistor na protoboard.
b. Conecte o pino 5V do Arduino a um dos terminais

do termistor.
c. Conecte o resistor de 10k ohms ao outro pino do

termistor.
d. Conecte o pino GND do Arduino ao outro pino do

resistor de 10k ohms.
e. Ligue o pino A0 do Arduino junto com o resistor de

10k ohms e o terminal do termistor.

Aprenda Arduino – Uma abordagem prática

80

Variação de Montagem

Módulo P10-Sensor de
Temperatura com NTC da GBK

Robotics

Figura 3.19: Módulo P10-Sensor de Temperatura

Este projeto pode ser montado substituindo o termistor, o
resistor de 10k ohms e a protoboard pelo módulo P10-
Sensor de Temperatura com NTC (Figura 3.19) da GBK
Robotics, neste caso:
a. Conecte o pino GND do Arduino ao pino GND do

módulo P10.
b. Conecte o pino 5V do Arduino ao pino +5Vcc do módulo

P10.
c. Conecte o pino A0 do Arduino ao pino Sinal-A do

módulo P10.

IMPORTANTE: Não há alterações no Sketch (programa).

Aprenda Arduino – Uma abordagem prática

81

Passo 2: Programa

A biblioteca Thermistor pode ser baixada através do
link: http://www.fatecjd.edu.br/fatecino/arq_projetos/bibl
ioteca-thermistor.zip. Após sua instalação, inicie o
ambiente de desenvolvimento do Arduino e digite o sketch
mostrado a seguir.

#include <Thermistor.h>

Thermistor termistor(A0);

void setup() {
 Serial.begin(9600);
}

void loop() {
 int temperatura = termistor.getTemp();
 Serial.print("A temperatura e: ");
 Serial.print(temperatura);
 Serial.println("°C");
 delay(1000);
}

Passo 3: Conversão para Fahrenheit e Kelvin

Utilizando as fórmulas a seguir, alterar o programa
para exibir a temperatura em Fahrenheit e Kelvin.

• F = (C * 9)/ 5 + 32

• K = C + 273.15

Aprenda Arduino – Uma abordagem prática

82

Passo 4: Exibição da temperatura em um display de LCD

Utilizando como base o Projeto-6 (Uso do LCD),
enviar os dados de temperatura para um display de LCD.

Dica: Como imprimir o símbolo de graus no display
de LCD? Tente usar lcd.write(B11011111);

Aprenda Arduino – Uma abordagem prática

83

Desafio 4 – Termômetro Digital Completo

A proposta deste projeto é unir os conceitos já
abordados sobre o uso de sensores de temperatura
(Projetos 7 e 8), display de LCD (Projeto 6) e botão (Projeto
5) para montar um termômetro digital que permita
escolher a escala de temperatura a ser exibida (Celsius,
Fahrenheit ou Kelvin). Quando o sensor DHT-11 for
utilizado no projeto também poderá ser exibida a umidade
relativa do ar.

Na Figura 3.20 é mostrada uma sugestão de

montagem utilizando o sensor DHT-11, podendo ser
adaptada para uso do LM-35 ou também para termistores.

Aprenda Arduino – Uma abordagem prática

84

Figura 3.20: Ligações do Termômetro Digital

Aprenda Arduino – Uma abordagem prática

85

Projeto 9 – Sensor Ultrassônico (HC-SR04)

O objetivo deste projeto é utilizar o sensor
ultrassônico HC-SR04 para medir distâncias entre o sensor
e um objeto. O sensor HC-SR04 permite detectar objetos
que lhe estão distantes entre 1 cm e 200 cm. Este sensor
emite um sinal ultrassônico que reflete em um objeto e
retorna ao sensor, permitindo deduzir a distância do objeto
ao sensor tomando o tempo da trajetória do sinal. A
velocidade do sinal no ar é de aproximadamente 340 m/s
(velocidade do som). O sensor possui 4 pinos, sendo:

• VCC - Alimentação de 5V (+).

• TRIG - Pino de gatilho (trigger) .

• ECHO - Pino de eco (echo) .

• GND – Terra (-).

Figura 3.21: Funcionamento do Sensor Ultrassônico

O pino ligado ao trigger (TRIG) normalmente deve

estar em nível baixo. Para iniciar uma leitura de distância, o
mesmo deve ser colocado em nível alto por 10
microsegundos e retornar para nível baixo em seguida.
Neste momento, 8 pulsos de 40kHz são emitidos e no pino
de eco (ECHO) será gerado um sinal em nível alto
proporcional à distância do sensor ao objeto. Em seguida,

Aprenda Arduino – Uma abordagem prática

86

basta verificar o tempo em que o pino ECHO permaneceu
em nível alto e utilizar a fórmula de cálculo de distância
(em centímetros): distância = duração/58.

Material necessário:

• 1 Arduino.

• 1 sensor HC-SR04.

• 1 Protoboard.

• Jumper cable.

Passo 1: Montagem do circuito

Figura 3.22: Conexão do HC-SR04 ao Arduino

Aprenda Arduino – Uma abordagem prática

87

Conforme ilustra a Figura 3.22, realize as seguintes
ligações:

• Pino GND do HC-SR04 ligado ao GND do Arduino.

• Pino VCC do HC-SR04 ligado ao 5V do Arduino.

• Pino TRIG do HC-SR04 ligado ao pino 13 do Arduino.

• Pino ECHO do HC-SR04 ligado ao pino 12 do
Arduino.

Passo 2: Programa

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

// Pino 12 irá receber o pulso do echo
int echoPino = 12;

// Pino 13 vai enviar o pulso para gerar o echo
int trigPino = 13;

long duracao = 0;
long distancia = 0;

void setup() {
 // Iniciar a porta serial com velocidade de
 // 9600 bits por segundo
 Serial.begin(9600);
 pinMode(echoPino, INPUT);
 pinMode(trigPino, OUTPUT);
}

void loop() {
 // Pino trigger com um pulso baixo LOW
 // (desligado)
 digitalWrite(trigPino, LOW);

Aprenda Arduino – Uma abordagem prática

88

 // Delay (atraso) de 10 microssegundos
 delayMicroseconds(10);

 // Pino trigger com pulso HIGH (ligado)
 digitalWrite(trigPino, HIGH);

 // Delay (atraso) de 10 microssegundos
 delayMicroseconds(10);

 // Pino trigger com um pulso baixo LOW
 // (desligado) novamente
 digitalWrite(trigPino, LOW);

 // A função pulseInt verifica o tempo que o
 // pino ECHO ficou HIGH
 // Calculando, desta forma, a duração do
 // tráfego do sinal
 duracao = pulseIn(echoPino,HIGH);

 // Cálculo: distância = duração / 58.
 distancia = duracao / 58;

 Serial.print("Distancia em cm: ");
 Serial.println(distancia);
 delay(100);
}

Passo 3: Exibição da distância em um display de LCD

Utilizando como base o Projeto-6 (Uso do LCD),
enviar os dados da distância para um display de LCD, tanto
em centímetros quanto em polegadas. Para o cálculo de
polegadas utilize: distância = duração/37.

Aprenda Arduino – Uma abordagem prática

89

Desafio 5 – Sensor de Estacionamento

O objetivo deste projeto é criar um sistema de
estacionamento para carros (conhecidos também como
parking sensor system). Esse sistema auxilia o motorista no
momento de estacionar seu carro em vagas que exijam
manobras em marcha ré. Na traseira do carro existem
sensores (em nosso projeto será APENAS UM SENSOR) que
medem a distância de objetos e/ou carros estacionados,
mostrando ao motorista a distância em centímetro, além
de sinais luminosos e sonoros. O projeto deverá ter as
seguintes especificações:

• Um sensor ultrassônico HC-SR04 será usado para
medir a distância entre o carro e o obstáculo. Para
uma visualização dessa distância, terá que ser feita
uma medição em centímetros, pois terá o valor
sendo exibido em um display e utilizado para
conferência de vários status do sistema.

• Três LEDs irão representar o status de proximidade
com obstáculos: o LED vermelho será acesso
quando o objeto estiver a uma distância menor do
que 5 cm do sensor; o LED amarelo quando o
obstáculo estiver em uma distância maior ou igual a
5 cm até igual a 10 cm de distância do sensor; e o
LED verde acesso indicará uma distância ainda
segura, acima de 10 cm de distância do sensor.

• Um buzzer irá dar os sinais sonoros de proximidade.
Quanto mais perto do obstáculo mais curto será o
intervalo dos “bips” emitidos pelo buzzer. Por
exemplo, se o obstáculo estiver à 10 cm de
distância, serão emitidos “bips” a cada 1000 ms

Aprenda Arduino – Uma abordagem prática

90

(emite um “bip” – aguarda 1000 ms – emite um
“bip” – aguarda 1000 ms -...). O intervalo dos “bips”
irá diminuir quanto mais próximo o obstáculo
estiver do sensor. Se distância for de 9 cm o
intervalo será de 900ms, se for 8 cm será de 800
ms, e assim por diante. Quanto menor o intervalo
da emissão de som, mas alerta o motorista terá que
ficar, pois indicará uma possível colisão. Esse sinal
sonoro só se iniciará quando a distância for menor
ou igual a 10 cm.

• Será utilizado um display LCD 16x2 para mostrar
todos os estados do sistema. Quando o LED verde
estiver acesso o display mostrará “SEGURO: XX cm”.
Caso o LED amarelo esteja acesso, o display terá
que mostrar “ATENCAO: XX cm”. E quando o LED
vermelho estiver acesso e a distância for maior que
2 cm, mostrará “CUIDADO: XX cm”. E por fim, se o
LED vermelho estiver acesso e a distância for menor
ou igual a 2 cm, o display mostrará “PARE!!!”.

Aprenda Arduino – Uma abordagem prática

91

Projeto 10 – Piezo Elétrico

O objetivo desse projeto é utilizar um piezo elétrico
para identificar uma batida (pressão sobre o piezo) e
acionar o toque em um buzzer. Um piezo elétrico possui a
capacidade de converter uma oscilação mecânica (pressão
sobre ele) em um sinal elétrico. O inverso desse princípio,
ou seja, converter um sinal elétrico em oscilação mecânica
é o que ocorre em um buzzer. A pressão sobre o piezo gera
uma pequena corrente elétrica, por isso possuem
polaridade, sendo o centro prateado polo positivo (ligado
ao fio vermelho) e a borda dourada, o negativo (ligado ao
fio preto). Essa corrente elétrica atinge um limiar,
dependendo da pressão, e é a partir dele é que verificamos
se houve ou não um toque nele. Esse limiar deve ser
ajustado para definir a sensibilidade necessária do toque e
um valor analógico será lido pelo Arduino.

Material necessário:

• 1 Arduino.

• 1 Buzzer*.

• 1 Piezo elétrico.

• 1 Resistor de 1k ohms (marrom, preto, vermelho) .

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom)* .

• 1 Protoboard.

• Jumper cable.

* Podem ser substituídos pelo módulo P15-Buzzer da GBK
Robotics.

Aprenda Arduino – Uma abordagem prática

92

Passo 1: Montagem do circuito

Figura 3.23: Ligação do Arduino ao Buzzer e ao Piezo

Aprenda Arduino – Uma abordagem prática

93

Realize a sequência de montagem ilustrada pela
Figura 3.23:

a. Conecte o GND do Arduino na alimentação GND da

protoboard.
b. Conecte um resistor de 1k ohms no sentido

horizontal da protoboard.
c. Conecte os fios do piezo nas extremidades desse

resistor.
d. Conecte um jumper no GND da protoboard e na

linha do negativo do piezo.
e. Conecte um jumper no positivo do piezo e no pino

A0 do Arduino.
f. Conecte o pino GND do Arduino ao pino negativo

do buzzer já colocado na protoboard.
g. Coloque o resistor de 220 ohms (ou 330 ohms)

ligado ao pino positivo do buzzer.
h. Nesse resistor, conecte um jumper até a porta

digital 7 do Arduino.

Aprenda Arduino – Uma abordagem prática

94

Variação de Montagem

Módulo P15-Buzzer da GBK
Robotics

Figura 3.24: Módulo P15-Buzzer

Este projeto pode ser montado substituindo o buzzer e o
resistor de 220 ohms (ou 330 ohms) pelo módulo P15-
Buzzer (Figura 3.24) da GBK Robotics, neste caso:
a. Conecte o GND do Arduino na alimentação GND da

protoboard.
b. Conecte um resistor de 1k ohms no sentido horizontal

da protoboard.
c. Conecte os fios do piezo nas extremidades desse

resistor.
d. Conecte um jumper no GND da protoboard e na linha

do negativo do piezo.
e. Conecte um jumper no positivo do piezo e no pino A0

do Arduino.
f. Conecte o pino GND do módulo P15 na linha de

alimentação GND da protoboard.
g. Conecte o pino 7 do Arduino ao pino Sinal do módulo

P15.

IMPORTANTE: Não há alterações no sketch (programa).

Aprenda Arduino – Uma abordagem prática

95

Passo 2: Programa

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

int BUZZER = 7 ;
int PIEZO = A0;
int LIMIAR = 50; // Valor do limiar, que
define se houve toque ou não!
int VALOR_PIEZO = A0; // Valor que será lido
pelo piezo

void setup() {
 pinMode(BUZZER, OUTPUT);
 pinMode(BUZZER, INPUT);
 Serial.begin(9600);
}

void loop() {
 VALOR_PIEZO = analogRead(PIEZO);

 // Verifica se o valor lido pela pressão no
piezo ultrapassa o limiar
 if (VALOR_PIEZO >= LIMIAR) {
 // Ativa o buzzer e mostra uma mensagem no
Monitor Serial
 tone(BUZZER, 1600, 200);
 Serial.println("Bip!");
 }
 delay(100);
}

Aprenda Arduino – Uma abordagem prática

96

Projeto 11 – Relógio com LCD

O objetivo deste projeto é criar um relógio digital a
partir de um módulo Real Time Clock (RTC) e um display
LCD 16x2. Neste projeto usaremos as bibliotecas RTClib.h e
LiquidCrystal.h. A biblioteca RTClib.h, disponível para
download em https://github.com/adafruit/RTClib, irá
fornecer as funções necessárias para a utilização do
módulo RTC DS-1307. Por outro lado, a biblioteca
LiquidCrystal.h possui funções que auxiliam nas
configurações e tratamento dos dados a serem enviados ao
LCD. A montagem do display deve ser de acordo com sua
especificação (datasheet), onde cada um dos pinos
apreenta uma função específica (ver no Passo 2 –
Montagem do circuito). Para ver todas as funções
disponíveis na biblioteca LiquidCrystal.h acesse o site
oficial da biblioteca, que está disponível em
http://arduino.cc/en/Reference/LiquidCrystal.

Material necessário:

• 1 Arduino.

• 1 Real Time Clock (RTC DS-1307).

• 1 LCD 16x2.

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom) .

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

97

Passo 1: Importar a Biblioteca RTCLib

A biblioteca RTCLib não faz parte da distribuição
padrão da IDE do Arduino, desta forma, torna-se
necessário importá-la antes de utilizar o RTC pela primeira
vez. Para isso, no menu “Sketch”, escolha a opção
“Importar Biblioteca” e, “Add Library”, conforme ilustrado
pela Figura 3.25.

Figura 3.25: Adicionar uma Biblioteca

Em seguida, observe a Figura 3.26 e selecione o

arquivo compactado (ZIP) que contém a biblioteca a ser
importada, ou seja:

Aprenda Arduino – Uma abordagem prática

98

Figura 3.26: Selecionar o Arquivo Zip ou a Pasta

Após importar a biblioteca a mesma estará

disponível para uso dentro da opção do menu “Importar
Biblioteca”, conforme podemos observar na Figura 3.27.

Figura 3.27: Seleção da Biblioteca RTClib

Aprenda Arduino – Uma abordagem prática

99

Passo 2: Montagem do circuito

Figura 3.28: Ligação do Relógio em Tempo Real (RTC)

Aprenda Arduino – Uma abordagem prática

100

Com base na Figura 3.28, realizar esta sequência de
montagem:

• Pino 1 do LCD ligado ao GND do Arduino.

• Pino 2 do LCD ligado ao 5V do Arduino.

• Pino 3 do LCD ligado ao pino central do
potenciômetro (controle de contraste).

• Pino 4 do LCD ligado ao pino digital 12 do Arduino.

• Pino 5 do LCD ligado ao GND do Arduino.

• Pino 6 do LCD ligado ao pino digital 11 do Arduino.

• Pino 11 do LCD ligado ao pino digital 5 do Arduino.

• Pino 12 do LCD ligado ao pino digital 4 do Arduino.

• Pino 13 do LCD ligado ao pino digital 3 do Arduino.

• Pino 14 do LCD ligado ao pino digital 2 do Arduino.

• Pino 15 do LCD ligado ao 5V do Arduino com um
resistor de 220 ohms (controle do brilho).

• Pino 16 do LCD ligado ao GND do Arduino.

• Pino SDA do RTC ligado ao pino analógico A4 do
Arduino.

• Pino SCL do RTC ligado ao pino analógico A5 do
Arduino.

• Pino GND do RTC ligado ao pino GND do Arduino.

• Pino VCC do RTC ligado ao 5V do Arduino.

Aprenda Arduino – Uma abordagem prática

101

Passo 3: Programa

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

#include <Wire.h>
#include <RTClib.h>
#include <LiquidCrystal.h>

#define TEMPO_ATUALIZACAO 1000

// RTC - Real Time Clock
// Conectar SCL (RTC) em A5 (Arduino) e
// SDA (RTC) em A4 (Arduino).

RTC_DS1307 RTC;

// LCD - Modelo ACM 1602K
// Pin Sigla Função Conectar
// 1 Vss Ground GND
// 2 Vdd +5V VCC
// 3 Vo LCD contrast adjust Potenciômetro
// 4 RS Register select Arduino 12
// 5 R/W Read/write GND
// 6 E Enable Arduino 11
// 7 DB0 Data bit 0 NC
// 8 DB1 Data bit 1 NC
// 9 DB2 Data bit 2 NC
// 10 DB3 Data bit 3 NC
// 11 DB4 Data bit 4 Arduino 5
// 12 DB5 Data bit 5 Arduino 4
// 13 DB6 Data bit 6 Arduino 3
// 14 DB7 Data bit 7 Arduino 2
// + BL+ Alimentação (+) Resistor de 1k
// para VCC
// - BL- Alimentação (-) GND

Aprenda Arduino – Uma abordagem prática

102

LiquidCrystal lcd (12, 11, 5, 4, 3, 2);

int dia, mes, ano, hora, minuto, segundo,
dia_semana;
char semana[][4] = {"DOM", "SEG", "TER", "QUA",
"QUI", "SEX", "SAB"};

void setup () {
 // Inicializa comunicação serial
 Serial.begin(9600);

 // Inicializa o protocolo Wire
 Wire.begin();

 // Inicializa o módulo RTC
 RTC.begin();

 // Verifica se o modulo esta funcionando
 if (! RTC.isrunning()) {
 Serial.println("O RTC não está
executando!");
 }

 // Ajusta o relógio com a data e hora na qual
 // o programa foi compilado
 // RTC.adjust(DateTime(__DATE__, __TIME__));

 pinMode(12, OUTPUT);
 pinMode(11, OUTPUT);
 lcd.begin (16, 2);
}

void loop () {
 //Recupera data e hora atual
 DateTime now = RTC.now();
 dia = now.day();
 mes = now.month();

Aprenda Arduino – Uma abordagem prática

103

 ano = now.year();
 hora = now.hour();
 minuto = now.minute();
 segundo = now.second();
 dia_semana = now.dayOfWeek();

 lcd.clear();
 if (dia < 10)
 lcd.print("0");
 lcd.print(dia, DEC);
 lcd.print("/");
 if (mes < 10)
 lcd.print("0");
 lcd.print(mes, DEC);
 lcd.print("/");
 lcd.print(now.year(), DEC);
 lcd.setCursor(13, 0); // Coluna, Linha
 lcd.print(semana[dia_semana]);
 lcd.setCursor(0, 1); // Coluna, Linha
 if (hora < 10)
 lcd.print("0");
 lcd.print(hora, DEC);
 lcd.print(":");
 if (minuto < 10)
 lcd.print("0");
 lcd.print(minuto, DEC);
 lcd.print(":");
 if (segundo < 10)
 lcd.print("0");
 lcd.print(segundo, DEC);
 delay(TEMPO_ATUALIZACAO);
}

Aprenda Arduino – Uma abordagem prática

104

Projeto 12 – Display de Led de 7 Segmentos

O objetivo deste projeto é demonstrar a utilização
de um display de led de 7 segmentos controlado
diretamente a partir das portas digitais do Arduino.

Material necessário:

• 1 Arduino.

• 1 Display de Led de 7 Segmentos Cátodo ou Ânodo
Comum (1 dígito)*.

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom)*.

• 1 Protoboard*.

• Jumper cable.

* Podem ser substituídos pelo módulo P11-Display Simples
da GBK Robotics.

Aprenda Arduino – Uma abordagem prática

105

Passo 1: Displays de Led de 7 Segmentos

Os displays de led de sete segmentos (Figura 3.29)
são bastante comuns e muitos utilizados para exibir,
principalmente, informações numéricas. Podem ser de dois
tipos:

Figura 3.29: Tipos de Displays de LEDs de 7 Segmentos

Aprenda Arduino – Uma abordagem prática

106

Passo 2: Montagem do circuito

Figura 3.30: Ligação do Display de 7 Segmentos

Aprenda Arduino – Uma abordagem prática

107

Adotando como referência a Figura 3.30, realizar a
sequência de montagem:

• Pino 1 (segmento e) do display ligado ao 6 do
Arduino.

• Pino 2 (segmento d) do display ligado ao 5 do
Arduino.

• Pino 3 (Gnd, se Cátodo comum ou Vcc se Ânodo
comum) do display ligado ao resistor de 220 ohms.

• Resistor de 220 ohms ligado ao Gnd (se Cátodo
comum) ou Vcc (se Ânodo comum) do Arduino.

• Pino 4 (segmento c) do display ligado ao 4 do
Arduino.

• Pino 5 (ponto decimal) do display ligado ao 9 do
Arduino.

• Pino 6 (segmento b) do display ligado ao 3 do
Arduino.

• Pino 7 (segmento a) do display ligado ao 2 do
Arduino.

• Pino 9 (segmento f) do display ligado ao 7 do
Arduino.

• Pino 10 (segmento g) do display ligado ao 8 do
Arduino.

Aprenda Arduino – Uma abordagem prática

108

Variação de Montagem

Módulo P11-Display Simples da
GBK Robotics

Figura 3.31: Módulo P11-Display Simples

Este projeto pode ser montado substituindo o Display de
Led de 7 Segmentos, o resistor de 220 ohms (ou 330 ohms)
e a protoboard pelo módulo P11-Display Simples (Figura
3.31) da GBK Robotics, neste caso:
a. Conecte o pino 5V do Arduino ao pino +5Vcc do módulo

P11.
b. Conecte o pino 2 do Arduino ao pino 2 do módulo P11.
c. Conecte o pino 3 do Arduino ao pino 3 do módulo P11.
d. Conecte o pino 4 do Arduino ao pino 4 do módulo P11.
e. Conecte o pino 5 do Arduino ao pino 5 do módulo P11.
f. Conecte o pino 6 do Arduino ao pino 6 do módulo P11.
g. Conecte o pino 7 do Arduino ao pino 7 do módulo P11.
h. Conecte o pino 8 do Arduino ao pino 8 do módulo P11.
i. Conecte o pino 9 do Arduino ao pino 9 do módulo P11.

IMPORTANTE: Para o módulo P11 nos sketchs (programas)
a seguir adotar a configuração para Ânodo comum.

Aprenda Arduino – Uma abordagem prática

109

Passo 3: Programa N° 1 – Exibindo a Letra “A”

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

int SEG_A = 2;
int SEG_B = 3;
int SEG_C = 4;
int SEG_D = 5;
int SEG_E = 6;
int SEG_F = 7;
int SEG_G = 8;
int PONTO = 9;
int ATRASO = 1000;

void setup() {
 for (int pino = SEG_A; pino <= PONTO; pino++)
{
 pinMode(pino, OUTPUT);
 // Para displays de Cátodo comum:
 digitalWrite(pino, LOW);
 // Para displays de Ânodo comum:
 // digitalWrite(pino, HIGH);
 }
}

void loop() {
 // Para displays de Cátodo comum:
 digitalWrite(SEG_A, HIGH);
 digitalWrite(SEG_B, HIGH);
 digitalWrite(SEG_C, HIGH);
 digitalWrite(SEG_E, HIGH);
 digitalWrite(SEG_F, HIGH);
 digitalWrite(SEG_G, HIGH);

 // Para displays de Ânodo comum:
 // digitalWrite(SEG_A, LOW);

Aprenda Arduino – Uma abordagem prática

110

 // digitalWrite(SEG_B, LOW);
 // digitalWrite(SEG_C, LOW);
 // digitalWrite(SEG_E, LOW);
 // digitalWrite(SEG_F, LOW);
 // digitalWrite(SEG_G, LOW);

 delay(ATRASO);
}

Passo 4: Programa N° 2 – Animação Simples

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

int SEG_A = 2;
int SEG_B = 3;
int SEG_C = 4;
int SEG_D = 5;
int SEG_E = 6;
int SEG_F = 7;
int SEG_G = 8;
int PONTO = 9;

int ATRASO = 150;

void setup() {
 for (int pino = SEG_A; pino <= PONTO; pino++)
{
 pinMode(pino, OUTPUT);
 // Para displays de Cátodo comum:
 digitalWrite(pino, LOW);
 // Para displays de Ânodo comum:
 // digitalWrite(pino, HIGH);
 }
}

void loop() {

Aprenda Arduino – Uma abordagem prática

111

 for (int pino = SEG_A; pino < SEG_G; pino++) {
 // Para displays de Cátodo comum:
 digitalWrite(pino, HIGH);
 // Para displays de Ânodo comum:
 // digitalWrite(pino, LOW);
 if (pino > SEG_A) {
 // Para displays de Cátodo comum:
 digitalWrite(pino - 1, LOW);
 // Para displays de Ânodo comum:
 // digitalWrite(pino - 1, HIGH);
 }
 else {
 // Para displays de Cátodo comum:
 digitalWrite(SEG_F, LOW);
 // Para displays de Ânodo comum:
 // digitalWrite(SEG_F, HIGH);
 }
 delay(ATRASO);
 }
}

Passo 5: Programa N° 3 – Contagem Regressiva

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

// Matriz com os dígitos de 0 a 9.
byte digitos[10][7] = {
 { 1,1,1,1,1,1,0 }, // = 0
 { 0,1,1,0,0,0,0 }, // = 1
 { 1,1,0,1,1,0,1 }, // = 2
 { 1,1,1,1,0,0,1 }, // = 3
 { 0,1,1,0,0,1,1 }, // = 4
 { 1,0,1,1,0,1,1 }, // = 5
 { 1,0,1,1,1,1,1 }, // = 6
 { 1,1,1,0,0,0,0 }, // = 7
 { 1,1,1,1,1,1,1 }, // = 8

Aprenda Arduino – Uma abordagem prática

112

 { 1,1,1,0,0,1,1 } // = 9
};

void setup() {
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);
 pontoDecimal(false);
}

void pontoDecimal(boolean ponto) {
 digitalWrite(9, ponto);
}

void escrever(int digito) {
 int pino = 2;
 for (int segmento = 0; segmento < 7;
segmento++) {
 // Para Cátodo Comum:
 digitalWrite(pino,
digitos[digito][segmento]);
 // Para Ânodo Comum - apenas inverter o
 // valor através do operador not (!):
 // digitalWrite(pino,
 // !digitos[digito][segmento]);
 pino++;
 }
 pontoDecimal(false);
}

void limpar() {
 byte pino = 2;

Aprenda Arduino – Uma abordagem prática

113

 for (int segmento = 0; segmento < 7;
segmento++) {
 // Para Cátodo Comum:
 digitalWrite(pino, LOW);
 // Para Ânodo Comum:
 // digitalWrite(pino, HIGH);
 pino++;
 }
}

void loop() {
 for (int cont = 9; cont >= 0; cont--) {
 escrever(cont);
 boolean ponto = true;
 for (int i = 0; i < 4; i++) {
 delay(250);
 pontoDecimal(ponto);
 ponto = !ponto;
 }
 }
 limpar();
 delay(1000);
}

Aprenda Arduino – Uma abordagem prática

114

Projeto 13 – Display de Led de 7 Segmentos

e 4 Dígitos

O objetivo deste projeto é demonstrar a utilização
do display de led de 7 segmentos e 4 dígitos controlado
através do CI MAX 7219 ou 7221.

Material necessário:

• 1 Arduino.

• 1 Display de Led de 7 Segmentos (4 dígitos).

• 1 Circuito Integrado (CI) MAX 7219 ou 7221.

• 1 Resistor de 100k ohms (marrom, preto, amarelo).

• 1 Protoboard.

• Jumper cable.

Passo 1: Uso de displays com múltiplos dígitos

 Você já deve ter observado que quando precisamos
utilizar displays de leds que apresentam mais do que um
dígito, os portas disponíveis no Arduino não serão
suficientes ou mesmo que sejam suficientes, não
permitirão colocar novas funcionalidades ao seu projeto
como, por exemplo, um sensor de temperatura ou um
módulo de relógio em tempo real (RTC). Desta maneira,
para otimizar o uso das portas do Arduino devemos utilizar
um driver para displays de led sendo, o mais popular, o
Maxim 7219 ou 7221, cuja pinagem pode ser observada na
Figura 3.32.

Aprenda Arduino – Uma abordagem prática

115

Figura 3.32: Pinos do Maxim 7219 ou 7221

Aprenda Arduino – Uma abordagem prática

116

Passo 2: Montagem do circuito

Realize as ligações indicadas na Figura 3.33.

Figura 3.33: Ligação do Display com Múltiplos Dígitos

Aprenda Arduino – Uma abordagem prática

117

Passo 3: Programa N° 1

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

// Este sketch exibe o número 1234 em um display
// de led de 7 segmentos com 4 dígitos

// Utilizar a biblioteca LedControl
#include "LedControl.h"

/* O pino 11 do Arduino deve ser conectado ao
 * pino DATA IN do primeiro MAX7219/21
 * O pino 10 do Arduino deve ser conectado ao
 * pino CLK do primeiro MAX7219/21
 * O pino 9 do Arduino deve ser conectado ao
 * pino LOAD (/CS) do primeiro MAX7219/21
 * O quarto parâmetro indica que há apenas um
 * MAX7219/21 conectado ao Arduino
 */
LedControl lc = LedControl(11, 10, 9, 1);

void setup() {
 // Retira o MAX7219/21 do modo de economia
 // de energia
 lc.shutdown(0, false);
 // Define a intensidade do brilho dos leds
 lc.setIntensity(0, 2);
 lc.clearDisplay(0);
}

void loop() {
 lc.setChar(0, 2, '0', false);
 lc.setChar(0, 2, '1', false);
 lc.setChar(0, 3, '2', false);
 lc.setChar(0, 4, '3', false);
}

Aprenda Arduino – Uma abordagem prática

118

Passo 4: Programa N° 2

Acesse o ambiente de desenvolvimento do Arduino
e digite o seguinte sketch.

// Este sketch exibe os números inteiros entre
// -999 e 999 em um display de led de
// 7 segmentos com 4 dígitos

// Utilizar a biblioteca LedControl
#include "LedControl.h"

/* O pino 11 do Arduino deve ser conectado ao
 * pino DATA IN do primeiro MAX7219/21
 * O pino 10 do Arduino deve ser conectado ao
 * pino CLK do primeiro MAX7219/21
 * O pino 9 do Arduino deve ser conectado ao
 * pino LOAD (/CS) do primeiro MAX7219/21
 * O quarto parâmetro indica que há apenas um
 * MAX7219/21 conectado ao Arduino
 */
LedControl lc = LedControl(11, 10, 9, 1);
int i = -999;

void setup() {
 lc.shutdown(0, false);
 lc.setIntensity(0, 2);
 lc.clearDisplay(0);
}

void loop() {
 exibirInteiro(i++);
}

void exibirInteiro(int valor) {
 int unidade;
 int dezena;

Aprenda Arduino – Uma abordagem prática

119

 int centena;
 boolean negativo = false;

 if(valor < -999 || valor > 999)
 return;

 if(valor < 0) {
 negativo = true;
 valor = valor * (-1);
 }

 unidade = valor % 10;
 valor = valor / 10;
 dezena = valor % 10;
 valor =valor / 10;
 centena = valor;

 if (negativo) {
 // Imprime o sinal negativo no display
 // que está mais a esquerda
 lc.setChar(0, 1, '-', false);
 }
 else {
 // Imprime um espaço no lugar do sinal
 // negativo
 lc.setChar(0, 1 , ' ', false);
 }

 // Exibe o número dígito a dígito
 lc.setDigit(0, 2, (byte)centena, false);
 lc.setDigit(0, 3, (byte)dezena, false);
 lc.setDigit(0, 4, (byte)unidade, false);
 delay(100);
}

Aprenda Arduino – Uma abordagem prática

120

Projeto 14 – Servo Motor

O objetivo destes projetos é mostrar o uso da
biblioteca “Servo.h” (já existente na IDE Arduino) para a
manipulação de servo motores. Um servo motor é um
motor que tem sua rotação limitada através de uma
angulação, podendo variar entre de 0º a 180º para indicar
seu posicionamento. São muito utilizados em modelos de
controle remoto, como em carrinhos, para girar o eixo de
direção ou em barcos, para direcionamento do leme.
Outras aplicações interessantes são em direcionamento
automatizado de antenas e em articulações de braços
robóticos.

A biblioteca “Servo.h” apresenta um conjunto de
métodos, como o attach(), para definir qual é o pino está
conectado, e o write(), para “escrever” o valor do ângulo
no motor. Para a utilização desses métodos da biblioteca é
preciso criar um objeto do tipo “servo”, procedimento
similar ao do experimento usando o display LCD e a
biblioteca “LiquidCrystal.h”.

Material necessário:

• 1 Arduino.

• 1 Servo motor RC padrão.

• 1 Potenciômetro 10K (resistor variável).

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

121

Passo 1: Montagem do circuito

Figura 3.34: Conexão do Servo Motor

Aprenda Arduino – Uma abordagem prática

122

Adotando, como referência, a Figura 3.34 realize as
seguintes ligações:

• Cabo de alimentação GND do servo motor (cabo
preto) na alimentação GND da protoboard.

• Cabo de alimentação de 5V do servo motor
(vermelho ou outra cor, logo ao lado do preto) na
alimentação 5V da protoboard.

• Cabo de sinal do servo motor (amarelo) no pino
digital 6 do Arduino.

• Pino positivo do potenciômetro na alimentação 5V
da protoboard.

• Pino negativo do potenciômetro na alimentação
GND da protoboard.

• Pino do meio (sinal) do potenciômetro no pino
analógico A0 do Arduino.

• Pino 5V do Arduino na trilha positiva da protoboard.

• Pino GND do Arduino na trilha negativa da
protoboard.

Passo 2: Programa N° 1

Neste programa vamos utilizar o potenciômetro
para variar a angulação do servo motor. Quanto maior o
valor proveniente do sinal do potenciômetro maior o
ângulo, e vice-versa. Como a variação do potenciômetro é
de 0 a 1023 e o do servo motor é de 0 a 180, utilizamos a
função map(), como o objetivo de converter o range
(intervalo de variação) do potenciômetro com o do servo
motor. A função map() é definida como:

map(valor, deMin, deMax, paraMin, paraBaixo)

Aprenda Arduino – Uma abordagem prática

123

Onde:

• valor: valor a ser convertido.

• deMin: valor mínimo do intervalo do valor.

• deMax: valor máximo do intervalo do valor.

• paraMin: valor mínimo do intervalo a ser
convertido.

• paraMax: valor máximo do intervalo a ser
convertido.

Basicamente a função map() faz uma “regra de 3”,

para determinar o valor de um intervalo em outro
intervalo. Em nosso programa usamos map(valorPot, 0,
1023, 0, 180), e podemos entender como “o valor do
potenciômetro que está no intervalo de 0 a 1023, será em
convertido em um valor equivalente no intervalo de 0 a
180”. Vamos implementar o sketch a seguir para
demonstrar o uso do servo motor.

#include "Servo.h"

Servo servo;
int Pinpotenciometro = 0;
int PinservoMotor = 6;
int valorPot;
int valorMotor=0;

void setup() {
servo.attach(PinservoMotor);
Serial.begin(9600);
}

void loop() {
 valorPot = analogRead(Pinpotenciometro);
 valorMotor = map(valorPot, 0, 1023, 0, 180);

Aprenda Arduino – Uma abordagem prática

124

 servo.write (valorMotor);
 Serial.print(valorMotor);
 delay(20);
}

Passo 3: Programa N° 2

Mantenha a mesma montagem, apenas despreze o
potenciômetro, já que não será usado. Nesse próximo
programa, quando digitado a letra ‘D’ ou ‘d’ no Serial
Monitor para fazer com que o servo motor diminua sua
angulação, de 15º em 15º. Caso digitado ‘A’ ou ‘a’ aumenta
sua angulação. No Serial Monitor, digite a letra e aperte
ENTER ou o botão “Enviar”. Acesse o ambiente de
desenvolvimento do Arduino e digite o sketch (programa) a
seguir para implementá-lo.

#include "Servo.h"

Servo servo;
int PinservoMotor = 6;
char tecla;
int valorMotor=0;

void setup() {
 servo.attach(PinservoMotor);
}

void loop() {
 tecla = Serial.read();
 if (tecla == 'D' || tecla == 'd') {
 valorMotor = valorMotor - 15;
 if (valorMotor >=180) {
 valorMotor = 180;
 }

Aprenda Arduino – Uma abordagem prática

125

 }
 else if (tecla == 'A' || tecla == 'a') {
 valorMotor = valorMotor + 15;
 if (valorMotor <= 0) {
 valorMotor = 0;
 }
 }
 servo.write(valorMotor);
 delay(20);
}

Aprenda Arduino – Uma abordagem prática

126

Projeto 15 – Sensor Óptico Reflexivo

Este projeto irá utilizar um Sensor Óptico Reflexivo
TCRT5000 para implementar um interruptor de
proximidade. Desta forma, não será necessário que a
pessoa toque o sensor para acender ou apagar um Led.
Esse tipo de circuito é muito útil quando desejamos manter
a pessoa “isolada” do circuito elétrico evitando choques
indesejáveis.

Um Sensor Óptico Reflexivo consiste em um diodo
emissor (ou Led) de infravermelho, igual ao utilizado em
controles remotos e um foto transistor que irá receber o
sinal quando houver uma reflexão, ou seja, quando um
obstáculo estiver à frente do sensor. No exemplo que
iremos desenvolver vamos utilizar o modelo TCRT5000
(Figura 3.35), porém, o projeto pode ser facilmente
alterado para utilizar outro modelo similar.

Figura 3.35: Vista lateral e superior do Sensor Óptico

Reflexivo TCRT5000

Aprenda Arduino – Uma abordagem prática

127

No quadro a seguir estão relacionados os pinos do
sensor com as respectivas funções.

Pino Nome Função

1 Coletor (T+) Coletor do fototransistor

2 Emissor (T-) Emissor do fototransistor

3 Ânodo (D+) Ânodo do led infravermelho

4 Cátodo (D-) Cátodo do led intravermelho

Material necessário:

• 1 Arduino.

• 1 Sensor Óptico Reflexivo TCRT5000*.

• 1 Resistor de 220 ohms (vermelho, vermelho,

marrom) ou de 330 ohms (laranja, laranja, marrom)

para a ligação do LED.

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom) ou de 330 ohms (laranja, laranja, marrom)
para ligação ao Sensor Óptico Reflexivo*.

• 1 Resistor de 10k ohms (marrom, preto, laranja)* .

• 1 Protoboard.

• Jumper cable.

* Podem ser substituídos pelo módulo P12-Sensor de
Obstáculos da GBK Robotics.

Aprenda Arduino – Uma abordagem prática

128

Montagem do circuito

Figura 3.36: Interruptor de proximidade

Adotando como referência a Figura 3.36 realize os

seguintes passos para montar o hardware que será usado
neste projeto:

a) Inserir o sensor óptico reflexivo na protoboard.
b) Conectar o pino 4 (D-) do sensor na linha de

alimentação negativa (preta ou azul) da protoboard.

Aprenda Arduino – Uma abordagem prática

129

c) Inserir um resistor de 220 ohms (ou 330 ohms) na
protoboard e conecte um dos seus terminais no
pino 3 (D+) do sensor.

d) Conecte o outro terminal do resistor de 220 ohms
(ou 330 ohms) na linha de alimentação positiva
(vermelha) da protoboard.

e) Insira o resistor de 10k ohms na protoboard e
conecte um dos seus terminais ao pino 2 (T-) do
sensor.

f) Conecte o mesmo terminal do resistor de 10k ohms
ao pino digital 7 do Arduino.

g) Conecte o outro terminal do resistor de 10k ohms à
linha de alimentação negativa (preta ou azul) da
protoboard.

h) Conecte o pino 1 (T+) do sensor a linha de
alimentação positiva (vermelha) da protoboard.

i) Insira o outro resistor de 220 ohms (ou 330 ohms)
na protoboard e conecte um dos seus terminais na
linha de alimentação negativa (preta ou azul) da
protoboard.

j) Insira na protoboard o led com o cátodo (lado
chanfrado e que possui o terminal mais curto)
conectado ao outro terminal do resistor de 220
ohms (ou 330 ohms).

k) Conecte o ânodo do led ao pino digital 13 do
Arduino.

l) Conecte o pino 5 Volts do Arduino à linha de
alimentação positiva (vermelha) da protoboard.

m) Conecte o pino Gnd do Arduino à linha de
alimentação negativa (preta ou azul) da protoboard.

Aprenda Arduino – Uma abordagem prática

130

Variação de Montagem

Módulo P12-Sensor de Obstáculos
da GBK Robotics

Figura 3.37: Módulo P12-Sensor de Obstáculos

Este projeto pode ser montado substituindo o Sensor
Óptico Reflexivo TCRT5000, um dos resistores de 220 ohms
(ou 330 ohms) e o resistor 10k ohms pelo módulo P12-
Sensor de Obstáculos (Figura 3.37), neste caso:
a. Conecte o pino Gnd do Arduino à linha de alimentação

negativa (preta ou azul) da protoboard.
b. Conecte o pino 5+ do módulo P12 ao pino 5V do

Arduino.
c. Conecte o pino GND do módulo P12 à linha de

alimentação negativa (preta ou azul) da protoboard.
d. Ligue o pino 7 do Arduino ao pino A0 do módulo P12.
e. Insira o resistor de 220 ohms (ou 330 ohms) na

protoboard e conecte um dos seus terminais na linha
de alimentação negativa (preta ou azul) da protoboard.

f. Insira na protoboard o led com o cátodo (lado
chanfrado e que possui o terminal mais curto)
conectado ao outro terminal do resistor de 220 ohms
(ou 330 ohms).

g. Conecte o ânodo do led ao pino digital 13 do Arduino.

IMPORTANTE: Não há alterações no sketch (programa).

Aprenda Arduino – Uma abordagem prática

131

Programa N° 1: Obtendo o valor através da entrada digital

Após montar o circuito, entre no ambiente de
desenvolvimento do Arduino e digite o sketch (programa) a
seguir.

int LED = 13;
// Pino digital que irá receber o sinal do
// fototransistor
int SENSOR = 7;
int valor;

void setup() {
 pinMode(LED, OUTPUT);
 pinMode(SENSOR, INPUT);
}

void loop() {
 //Obter o valor do sensor, LOW ou HIGH
 valor = digitalRead(SENSOR);

 digitalWrite(LED, valor);
 delay (100);
}

Programa N° 2: Obtendo o valor através da entrada

analógica

Entre no ambiente de desenvolvimento do Arduino
e digite o sketch (programa) a seguir.

int LED = 13;
// Pino analógico que irá receber o sinal do
// fototransistor
int SENSOR = A0;

Aprenda Arduino – Uma abordagem prática

132

int valor;

void setup() {
 Serial.begin(9600);
 pinMode(LED, OUTPUT);
}

void loop() {
 // Obter o valor do sensor
 // Que consiste em um valor entre 0 e 1023
 valor = analogRead(SENSOR);

 Serial.print("Valor: ");
 Serial.println(valor);

 if (valor > 300)
 digitalWrite(LED, HIGH);
 else
 digitalWrite(LED, LOW);
 delay (500);
}

Neste exemplo, observe que precisamos definir um

valor de liminar (300) para determinar se o LED será ou não
aceso. Se necessário, ajuste esse valor para as condições do
ambiente e também em relação à distância desejada.

Aprenda Arduino – Uma abordagem prática

133

Projeto 16 – Teclado com Divisor de Tensão

Neste projeto será aplicado o conceito de divisor de
tensão para obter o valor de vários botões através de uma
única porta analógica. A aplicação deste conceito permite
“poupar” o uso de portas do Arduino em projetos que
requerem a utilização de muitos botões.

Material necessário:

• 1 Arduino.

• 3 Interruptores táteis (push button).

• 3 Resistores de 10 kohms (marron, preto, laranja).

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

134

Montagem do circuito

Figura 3.38: Teclado com divisor de tensão

Adotando como referência a Figura 3.38 realize a

montagem do circuito que será usado neste projeto.

Aprenda Arduino – Uma abordagem prática

135

Programa

 No ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir.

const int TECLADO = A0;

void setup() {
 Serial.begin(9600);
}

void loop() {
 long valor = 0;

 for(int i = 0; i < 20; i++) {
 valor += analogRead(TECLADO);
 }
 valor /= 20;

 if (valor > 0) {
 Serial.print("Teclado = ");
 Serial.print(valor);
 if (valor > 1020)
 Serial.println(", Tecla 1");
 else if (valor > 505 && valor < 515)
 Serial.println(", Tecla 2");
 else if (valor > 335 && valor < 345)
 Serial.println(", Tecla 3");
 else
 Serial.println("");
 }
 delay(200);
}

Aprenda Arduino – Uma abordagem prática

136

Projeto 17 – Infravermelho

O objetivo deste projeto é demonstrar a utilização
de um receptor de infravermelho. O mesmo irá receber um
sinal de um controle remoto e controlará o acendimento
de um Led.

Material necessário:

• 1 Arduino.

• 1 Led (qualquer cor).

• 1 Receptor IR (infravermelho)*.

• 1 Transmissor IR (qualquer controle remoto).

• 1 Resistor de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom)
para o LED.

• 1 Protoboard.

• Jumper cable.

* Pode ser substituído pelo módulo P14-IR Receiver da GBK
Robotics.

Aprenda Arduino – Uma abordagem prática

137

Passo 1: Montagem do Circuito N° 1

Figura 3.39: Ligação do Receptor Infravermelho

Aprenda Arduino – Uma abordagem prática

138

Conforme ilustra a Figura 3.39:

a. Conecte o pino GND do Arduino à linha de
alimentação negativa (preta) da protoboard.

b. Conecte o pino 5 volts do Arduino à linha de
alimentação positiva (vermelha) da protoboard.

c. Coloque o resistor de 220 ohms (ou 330 ohms)
entre a linha de alimentação negativa e qualquer
outra linha da protoboard.

d. Coloque o led com o cátodo (lado chanfrado)
conectado ao resistor.

e. Conecte o ânodo do led ao pino 12 do Arduino.
f. Pino GND do receptor infravermelho na linha de

alimentação GND da protoboard.
g. Pino VCC do receptor infravermelho na linha de

alimentação positiva (5 volts) da protoboard.
h. Pino de dados do receptor infravermelho no pino

11 do Arduino.

Aprenda Arduino – Uma abordagem prática

139

Variação de Montagem

Módulo P14-IR Receiver da GBK
Robotics

Figura 3.40: Módulo P14-IR Receiver

Este projeto pode ser montado substituindo o receptor de
IR pelo módulo P14-IR Receiver (Figura 3.40), neste caso:
a. Conecte o pino GND do Arduino à linha de alimentação

negativa (preta) da protoboard.
b. Conecte o pino 5 volts do Arduino à linha de

alimentação positiva (vermelha) da protoboard.
c. Coloque o resistor de 220 ohms (ou 330 ohms) entre a

linha de alimentação negativa e qualquer outra linha da
protoboard.

d. Coloque o led com o cátodo (lado chanfrado)
conectado ao resistor.

e. Conecte o ânodo do led ao pino 12 do Arduino.
f. Conecte o pino GND do Arduino ao pino GND do

módulo P14.
g. Conecte o pino 5V do Arduino ao pino +5Vcc do módulo

P14.
h. Conecte o pino 11 do Arduino ao pino Sinal do módulo

P14.

IMPORTANTE: Não há alterações no sketch (programa).

Aprenda Arduino – Uma abordagem prática

140

Passo 2: Programa N° 1 – Acendendo e apagando um Led
através do controle remoto

Neste projeto utilizaremos a biblioteca IRremote a
qual está disponível para download em
http://vansan.com.br/arduino/IRremote.zip. Em seguida,
descompacte o conteúdo do arquivo IRremote.zip na pasta
Arduino\libraries que está dentro da pasta Documentos.
Note também que em algumas versões do ambiente de
desenvolvimento do Arquino podem ocorrer
incompatibilidades e conflitos com esta biblioteca. Nas
versões 1.6, 1.01 e 0022 a biblioteca funcionará
corretamente, porém a partir da versão 1.0.6 após a
importação da biblioteca pode ocorrer um erro no
momento da compilação. Este erro é ocasionado por uma
incompatibilidade com a biblioteca RobotIRremote e, para
resolver este problema, apague esta biblioteca acessando a
a pasta onde o Arduino está instalado e excluindo a pasta
RobotIRremote.

No ambiente de desenvolvimento do Arduino e

digite o sketch (programa) a seguir:

#include "IRremote.h"

int RECEPTOR = 11;
int LED = 12;
IRrecv controle(RECEPTOR);
decode_results resultado;
int estado = LOW;

void setup() {
 Serial.begin(9600);

Aprenda Arduino – Uma abordagem prática

141

 // Iniciar a recepção
 controle.enableIRIn();

 // O LED conectado ao pino 13 irá piscar
 // sempre que um sinal for recebido
 controle.blink13(true);

 pinMode(LED, OUTPUT);
}

void loop() {
 if (controle.decode(&resultado)) {
 if (resultado.decode_type == NEC) {
 Serial.print("NEC: ");
 }
 else if (resultado.decode_type == SONY) {
 Serial.print("SONY: ");
 }
 else if (resultado.decode_type == RC5) {
 Serial.print("RC5: ");
 }
 else if (resultado.decode_type == RC6) {
 Serial.print("RC6: ");
 }
 else if (resultado.decode_type == UNKNOWN) {
 Serial.print("Desconhecido ");
 }
 Serial.println(resultado.value, HEX);

 // Se necessário, alterar o valor das teclas
 // que irão apagar e acender o LED
 // respectivamente, conforme o modelo do
 // controle remoto
 if (resultado.value == 0x8B7D22D)
 estado = LOW;
 else if (resultado.value == 0x8B752AD)
 estado = HIGH;

Aprenda Arduino – Uma abordagem prática

142

 digitalWrite(LED, estado);

 // Obter o próximo valor
 controle.resume();
 }
}

Passo 3: Programa N° 2 – Alterando a frequência de
acendimento do LED

Após a leitura do controle remoto, podemos aplicar
este código que irá alterar a velocidade (frequência) que o
Led conectado ao pino 13 do Arduino irá piscar. Na linha
dos desvios condicionais, estamos usando valores em
hexadecimal, por isso colocamos o prefixo 0x. Por exemplo,
se o valor lido foi FF6897 o comando ficará if
(results.value==0xFF6897).

#include <IRremote.h>

int LED = 12;
int RECV_PIN = 11;

IRrecv irrecv(RECV_PIN);
decode_results results;
int estadoLed = LOW;
long tempoAnterior = 0;
long intervalo = 10000;

void setup() {
 Serial.begin(9600);
 irrecv.enableIRIn();
 pinMode(LED, OUTPUT);
}

Aprenda Arduino – Uma abordagem prática

143

void loop() {
 if (irrecv.decode(&results)) {
 Serial.println(results.value, HEX);
 // Se necessário, alterar o valor das teclas
 // de acordo com o modelo do controle remoto
 // Tecla 0
 if (results.value==0xFF6897)
 intervalo=50;
 // Tecla 1
 if (results.value==0xFF30CF)
 intervalo=100;
 // Tecla 2
 if (results.value==0xFF18E7)
 intervalo=300;
 // Tecla 3
 if (results.value==0xFF7A85)
 intervalo=500;
 // Tecla 4
 if (results.value==0xFF10EF)
 intervalo=1000;
 // Tecla 5
 if (results.value==0xFF38C7)
 intervalo=2000;
 // Tecla 6
 if (results.value==0xFF5AA5)
 intervalo=3000;
 // Tecla 7
 if (results.value==0xFF42BD)
 intervalo=4000;
 // Tecla 8
 if (results.value==0xFF4AB5)
 intervalo=5000;
 // Tecla 9
 if (results.value==0xFF52AD)
 intervalo=10000;
 irrecv.resume();
 }

Aprenda Arduino – Uma abordagem prática

144

 // Obtém o tempo atual em milissegundos
 unsigned long tempoAgora = millis();

 // Piscar o LED
 if(tempoAgora - tempoAnterior > intervalo) {
 tempoAnterior = tempoAgora;
 if (estadoLed == LOW)
 estadoLed = HIGH;
 else
 estadoLed = LOW;
 digitalWrite(LED, estadoLed);
 }
}

Passo 4: Montagem do Circuito N° 2

Monte o circuito conforme ilustra a Figura 3.41.

Figura 3.41: Receptor de IR Controlando 4 LEDs

Aprenda Arduino – Uma abordagem prática

145

Passo 5: Programa N° 3 – Controlando vários Leds

Observe que, neste programa, vamos utilizar um

controle remoto para determinar o funcionamento de 4
Leds.

#include <IRremote.h>

int led01 = 6;
int led02 = 5;
int led03 = 4;
int led04 = 3;
int RECV_PIN = 11;

IRrecv irrecv(RECV_PIN);
decode_results results;

void setup() {
 Serial.begin(9600);
 irrecv.enableIRIn();
 pinMode(led01, OUTPUT);
 pinMode(led02, OUTPUT);
 pinMode(led03, OUTPUT);
 pinMode(led04, OUTPUT);
}

void loop() {
 if (irrecv.decode(&results)) {
 Serial.println(results.value, HEX);

 // Se necessário, alterar o valor das teclas
 // de acordo com o modelo do controle remoto
 if (results.value==0xFF6897){
 // Tecla 0 desliga todos os Leds
 digitalWrite(led01, LOW);
 digitalWrite(led02, LOW);
 digitalWrite(led03, LOW);

Aprenda Arduino – Uma abordagem prática

146

 digitalWrite(led04, LOW);
 }
 else if (results.value==0xFF30CF) {
 // Tecla 1 Liga Led 1
 digitalWrite(led01,HIGH);
 }
 else if (results.value==0xFF18E7)
 // Tecla 2 Liga Led 2
 digitalWrite(led02,HIGH);
 }
 else if (results.value==0xFF7A85) {
 // Tecla 3 Liga Led 3
 digitalWrite(led03,HIGH);
 }
 else if (results.value==0xFF10EF) {
 // Tecla 4 Liga Led 4
 digitalWrite(led04,HIGH);
 }
 else if (results.value==0xFF38C7) {
 // Tecla 5 Desliga Led 1
 digitalWrite(led01,LOW);
 }
 else if (results.value==0xFF5AA5) {
 // Tecla 6 Desliga Led 2
 digitalWrite(led02,LOW);
 }
 else if (results.value==0xFF42BD) {
 // Tecla 7 Desliga Led 3
 digitalWrite(led03,LOW);
 }
 else if (results.value==0xFF4AB5) {
 // Tecla 8 Desliga Led 4
 digitalWrite(led04,LOW);
 }
 else if (results.value==0xFF52AD) {
 // Tecla 9 Liga Todos LEDs
 digitalWrite(led01, HIGH);

Aprenda Arduino – Uma abordagem prática

147

 digitalWrite(led02, HIGH);
 digitalWrite(led03, HIGH);
 digitalWrite(led04, HIGH);
 }
 irrecv.resume();
 }
}

Aprenda Arduino – Uma abordagem prática

148

Projeto 18 – Contador Binário

O objetivo deste projeto é utilizar três LEDs para
mostrar os números entre 0 e 7 no sistema de numeração
binário, ou seja 0 (Desligado - LOW) ou 1 (Ligado - HIGH).

Número LED 1 LED 2 LED 3

0 Low Low Low

1 Low Low High

2 Low High Low

3 Low High High

4 High Low Low

5 High Low High

6 High High Low

7 High High High

Material necessário:

• 1 Arduino.

• 3 Resistores de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom)
para o LED*.

• 3 LEDs (qualquer cor)*.

• 1 Protoboard*.

• Jumper cable.

* Podem ser substituídos pelo módulo P7-Sensor de
Luminosidade da GBK Robotics.

Aprenda Arduino – Uma abordagem prática

149

Passo 1: Montagem do circuito

Figura 3.42: Montagem do Contador Binário

Aprenda Arduino – Uma abordagem prática

150

Conforme ilustra a Figura 3.42:

a. Conecte o pino GND do Arduino à linha de
alimentação negativa (preta ou azul) da protoboard.

b. Coloque os três resistores de 220 ohms (ou 330
ohms) entre a linha de alimentação negativa e
qualquer outra linha da protoboard.

c. Coloque cada um dos três LEDs com o Cátodo (lado
chanfrado) conectado a um dos resistores de 220
ohms (ou 330 ohms).

d. Conecte o Ânodo do primeiro LED ao pino 11 do
Arduino.

e. Conecte o Ânodo do segundo LED ao pino 12 do
Arduino.

f. Conecte o Ânodo do terceiro LED ao pino 13 do
Arduino.

Aprenda Arduino – Uma abordagem prática

151

Variação de Montagem 1

Módulo P7-Sensor de
Luminosidade da GBK Robotics

Figura 3.43: Módulo P7-Sensor de Luminosidade

Este projeto pode ser montado substituindo os LEDs, os
Resistores de 220 ohms (ou 330 ohms) e a Protoboard pelo
módulo P7-Sensor de Luminosidade (Figura 3.43), neste
caso:
a. Conecte o pino GND do módulo P7 a um dos pinos de

GND do Arduino.
b. Conecte o pino Led1 do módulo P7 ao pino digital 11 do

Arduino.
c. Conecte o pino Led2 do módulo P7 ao pino digital 12 do

Arduino.
d. Conecte o pino Led3 do módulo P7 ao pino digital 13 do

Arduino.

IMPORTANTE: Não há alterações no sketch (programa).

Aprenda Arduino – Uma abordagem prática

152

Passo 2: Programa

Inicie o ambiente de desenvolvimento do Arduino e
digite o sketch (programa) a seguir:

int digito[8][3] = {
 { LOW, LOW, LOW }, // 0
 { LOW, LOW, HIGH }, // 1
 { LOW, HIGH, LOW }, // 2
 { LOW, HIGH, HIGH }, // 3
 { HIGH, LOW, LOW }, // 4
 { HIGH, LOW, HIGH }, // 5
 { HIGH, HIGH, LOW }, // 6
 { HIGH, HIGH, HIGH } // 7
};

int LED1 = 11;
int LED2 = 12;
int LED3 = 13;

int num = 0;

void setup() {
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(LED3, OUTPUT);
}

void loop() {
 digitalWrite(LED1, digito[num][0]);
 digitalWrite(LED2, digito[num][1]);
 digitalWrite(LED3, digito[num][2]);
 num++;
 if (num > 7)
 num = 0;
 delay (1000);
}

Aprenda Arduino – Uma abordagem prática

153

Projeto 19 – Contador Binário com Chave

Rotativa

O objetivo deste projeto é utilizar três LEDs para
mostrar os números entre 0 e 7 no sistema de numeração
binário, ou seja 0 (Desligado - LOW) ou 1 (Ligado - HIGH). A
chave rotativa (encoder) será utilizada para incrementar ou
decrementar o valor binário exibido pelos LEDs.

Material necessário:

• 1 Arduino.

• 3 Resistores de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom)
para o LED1.

• 3 LEDs (qualquer cor) 1.

• 1 Chave Rotativa (Encoder)2.

• 1 Protoboard3.

• Jumper cable.

1 Podem ser substituídos pelo módulo P7-Sensor de
Luminosidade da GBK Robotics.
2 Podem ser substituídos pelo módulo P17-Encoder da GBK
Robotics.
3 Caso os módulos P7 e P17 da GBK Robotics forem usados
em conjunto, a protoboard poderá ser substituída.

Aprenda Arduino – Uma abordagem prática

154

Passo 1: Montagem do circuito

Figura 3.44: Ligações dos LEDs e Chave Rotativa ao Arduino

Aprenda Arduino – Uma abordagem prática

155

Conforme mostrado na Figura 3.44 execute a
seguinte montagem:

a. Conecte o pino GND do Arduino à linha de
alimentação negativa (preta ou azul) da protoboard.

b. Coloque os três resistores de 220 ohms (ou 330
ohms) entre a linha de alimentação negativa e
qualquer outra linha da protoboard.

c. Coloque cada um dos três LEDs com o Cátodo (lado
chanfrado) conectado a um dos resistores de 220
ohms (ou 330 ohms).

d. Conecte o Ânodo do primeiro LED ao pino 11 do
Arduino.

e. Conecte o Ânodo do segundo LED ao pino 12 do
Arduino.

f. Conecte o Ânodo do terceiro LED ao pino 13 do
Arduino.

g. Coloque a chave rotativa (encoder) na protoboard e
ligue o pino 1 da na entrada analógica A2 do
Arduino.

h. Ligue o pino 2 da chave rotativa (encoder) à linha de
alimentação negativa (preta ou azul) da protoboard.

i. Ligue o pino 3 da chave rotativa (encoder) na
entrada analógica A3 do Arduino.

Aprenda Arduino – Uma abordagem prática

156

Variação de Montagem 1

Módulo P7-Sensor de
Luminosidade da GBK Robotics

Figura 3.45: Módulo P7-Sensor de Luminosidade

Este projeto pode ser montado substituindo os LEDs, os
Resistores de 220 ohms (ou 330 ohms) pelo módulo P7-
Sensor de Luminosidade (Figura 3.45), neste caso:
a. Conecte o pino GND do módulo P7 a um dos pinos de

GND do Arduino.
b. Conecte o pino Led1 do módulo P7 ao pino 11 do

Arduino.
c. Conecte o pino Led2 do P7 ao pino 12 do Arduino.
d. Conecte o pino Led3 do P7 ao pino 13 do Arduino.
e. Coloque a chave rotativa (encoder) na protoboard e

ligue o pino 1 na entrada analógica A2 do Arduino.
f. Ligue o pino 2 da chave rotativa (encoder) a um dos

pinos de GND do Arduino.
g. Ligue o pino 3 da chave rotativa (encoder) na entrada

analógica A3 do Arduino.

IMPORTANTE: Não há alterações no sketch (programa).

Aprenda Arduino – Uma abordagem prática

157

Variação de Montagem 2

Módulo P17-Encoder da GBK
Robotics

Figura 3.46: Módulo P17-Encoder

Este projeto pode ser montado substituindo a chave
rotativa (encoder) pelo módulo P17-Encoder (Figura 3.46)
da GBK Robotics, neste caso:
a. Conecte o pino GND do Arduino à linha de alimentação

negativa (preta ou azul) da protoboard.
b. Coloque os três resistores de 220 ohms (ou 330 ohms)

entre a linha de alimentação negativa e qualquer outra
linha da protoboard.

c. Coloque cada um dos três LEDs com o Cátodo (lado
chanfrado) conectado a um dos resistores de 220 ohms
(ou 330 ohms).

d. Conecte o Ânodo do primeiro LED ao pino 11 do
Arduino.

e. Conecte o Ânodo do segundo LED ao pino 12 do
Arduino.

Aprenda Arduino – Uma abordagem prática

158

f. Conecte o Ânodo do terceiro LED ao pino 13 do
Arduino.

g. Ligue o pino Sinal 1 do módulo P17 na entrada
analógica A2 do Arduino.

h. Ligue o pino GND do módulo P17 a um dos pinos de
GND do Arduino.

i. Ligue o pino Sinal 2 do módulo P17 na entrada
analógica A3 do Arduino.

IMPORTANTE: Não há alterações no sketch (programa).

Aprenda Arduino – Uma abordagem prática

159

Variação de Montagem 3

Módulo P7-Sensor de
Luminosidade e

Módulo P17-Encoder da GBK
Robotics

Figura 3.47: Módulos P7 e P17

Este projeto pode ser montado substituindo os LEDs, os
Resistores de 220 ohms (ou 330 ohms), a chave rotativa
(encoder) e a protoboard pelos módulos P7-Sensor de
Luminosidade e P17-Encoder (Figura 3.47), neste caso:
a. Conecte o pino GND do módulo P7 a um dos pinos de

GND do Arduino.
b. Conecte o pino Led1 do módulo P7 ao pino digital 11 do

Arduino.
c. Conecte o pino Led2 do módulo P7 ao pino digital 12 do

Arduino.
d. Conecte o pino Led3 do módulo P7 ao pino digital 13 do

Arduino.

Aprenda Arduino – Uma abordagem prática

160

e. Ligue o pino Sinal 1 do módulo P17 na entrada
analógica A2 do Arduino.

f. Ligue o pino GND do módulo P17 a um dos pinos de
GND do Arduino.

g. Ligue o pino Sinal 2 do módulo P17 na entrada
analógica A3 do Arduino.

IMPORTANTE: Não há alterações no sketch (programa).

Aprenda Arduino – Uma abordagem prática

161

Passo 2: Programa

Inicialmente, realize o download da biblioteca
RotaryEncoder disponível em
http://vansan.com.br/arduino/RotatoryEncoder.zip.

Em seguida, descompacte o conteúdo do arquivo
RotatoryEncoder.zip na pasta Arduino\libraries que está
dentro da pasta Documentos. Depois inicie o ambiente de
desenvolvimento do Arduino e digite o sketch (programa) a
seguir:

#include <RotaryEncoder.h>

int digito[8][3] = {
 { LOW, LOW, LOW }, // 0
 { LOW, LOW, HIGH }, // 1
 { LOW, HIGH, LOW }, // 2
 { LOW, HIGH, HIGH }, // 3
 { HIGH, LOW, LOW }, // 4
 { HIGH, LOW, HIGH }, // 5
 { HIGH, HIGH, LOW }, // 6
 { HIGH, HIGH, HIGH } // 7
};

int LED1 = 11;
int LED2 = 12;
int LED3 = 13;

RotaryEncoder encoder(A2, A3);

void setup() {
 Serial.begin(9600);

 // Habilitar a Interrupção 1 (Pin Change) para
 // as entradas analógicas.
 PCICR |= (1 << PCIE1);

Aprenda Arduino – Uma abordagem prática

162

 // Habilita a interrupção para os pinos
 // analógicos 2 e 3.
 PCMSK1 |= (1 << PCINT10) | (1 << PCINT11);

 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(LED3, OUTPUT);
}

// Rotina do Serviço de Interrupção 1 (Pin
// Change)
// Esta rotina apenas é chamada quando ocorre
// uma mudança de sinal nos pinos A2 e A3
ISR(PCINT1_vect) {
 encoder.tick();
}

void loop() {
 static int pos = 0;
 int novaPos = encoder.getPosition();
 if (pos != novaPos) {
 Serial.println(novaPos);
 pos = novaPos;
 if (pos >= 0 && pos <= 7) {
 digitalWrite(LED1, digito[pos][0]);
 digitalWrite(LED2, digito[pos][1]);
 digitalWrite(LED3, digito[pos][2]);
 }
 }
}

Aprenda Arduino – Uma abordagem prática

163

Desafio 6 – Contador Hexadecimal

Unindo os conceitos abordados no Projeto 12:
Display de LED e no Projeto 19: Chave Rotativa (Encoder)
elaborar um contador hexadecimal (0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F) de modo que o dígito exibido no display
de led de 7 segmentos seja incrementado ou
decrementado conforme a variação de posição da chave
rotativa (encoder).

Aprenda Arduino – Uma abordagem prática

164

Projeto 20 – Utilizando Entradas Analógicas

como Portas Digitais

Neste projeto será mostrado um recurso muito útil
no Arduino e um pouco fora dos padrões das
características divulgadas da placa, que é usar as entradas
analógicas (Analog In) como portas digitais. Esta situação é
muito prática quando precisamos de mais portas digitais do
que as 14 que o Arduino nos oferece. Para o Arduino Uno,
utilize os seguintes números para cada um dos terminais
analógicos: A0: 14, A1: 15, A2: 16, A3: 17, A4: 18 e A5: 19.

Material necessário:

• 1 Arduino.

• 1 Protoboard.

• Jumper cable.

• Resistores de 220 ohms à um 1k ohms.

• Leds (qualquer cor).

• 1 Resistor de 10k ohms (marrom, preto laranja)
para o botão.

• 1 Botão.

Aprenda Arduino – Uma abordagem prática

165

Montagem do Circuito N° 1

Figura 3.48: LED Conectado ao Pino A0 (ou 14) do Arduino

Adotando, como referência, a Figura 3.48 realize a

montagem do circuito que será usado neste projeto.

Aprenda Arduino – Uma abordagem prática

166

Programa N ° 1

No ambiente de desenvolvimento do Arduino digite
o seguinte programa:

int LED = A0; // A0 ou 14

// Tempo que o LED ficará aceso ou apagado.
int espera = 500;

void setup() {
 pinMode(LED, OUTPUT);
}

void loop() {
 digitalWrite(LED, HIGH);
 delay(espera);
 digitalWrite(LED, LOW);
 delay(espera);
}

Observe que na variável LED colocamos o valor A0,

mas também podemos usar o valor 14.

Aprenda Arduino – Uma abordagem prática

167

Montagem do Circuito N° 2

Realize as conexões indicadas na Figura 3.49.

Figura 3.49: Conexão do LED e do Botão ao Arduino

Aprenda Arduino – Uma abordagem prática

168

Programa N° 2

Digite o seguinte programa no ambiente de
desenvolvimento do Arduino:

int LED = A0; // A0 ou 14
int BOTAO = A3; // A3 ou 17

void setup() {
 pinMode(LED, OUTPUT);
 pinMode(BOTAO, INPUT);
 Serial.begin(9600);
}
void loop() {
 // Obtém o estado do Botão
 int estado = digitalRead(BOTAO);
 Serial.print(estado);
 if (estado==HIGH) {
 digitalWrite(LED, HIGH);
 Serial.println(" - Led Ligado");
 }
 else {
 digitalWrite(LED, LOW);
 Serial.println(" - Led Desligado");
 }
 delay(100);
}

Observe neste programa que a variável BOTAO está

com o valor A3 e na função setup foi declarada como
INPUT, ou seja uma entrada digital. Se habilitarmos o
monitor serial poderemos verificar o valor da variável
estado e uma mensagem informativa indicando se o LED
está aceso ou apagado.

Aprenda Arduino – Uma abordagem prática

169

Projeto 21 – Utilizando INPUT_PULLUP

Neste projeto vamos utilizar um recurso bastante
versátil e pouco conhecido, o Arduino apresenta resistores
internos para a das entradas digitais, desta forma não
precisaremos utilizar resistores externos para a ligação de
botões e outros sensores, assim economizamos
componentes nas montagens e projetos, criando projetos
mais simples. Esta funcionalidade pode ser ativada via
software, na função pinMode() onde ao invés de declarar
um botão como INPUT, colocaremos INPUT_PULLUP.

Material necessário:

• 1 Arduino.

• 1 Protoboard.

• Jumper cable.

• Resistores de 220 ohms à um 1k ohms para os Leds.

• Leds (qualquer cor).

• 1 Botão.

Aprenda Arduino – Uma abordagem prática

170

Montagem do Circuito

Figura 3.50: Ligação do LED e do Botão ao Arduino

Adotando como referência a Figura 3.50 realize a

montagem do circuito que será usado neste projeto.

Aprenda Arduino – Uma abordagem prática

171

Programa N° 1

No ambiente de desenvolvimento do Arduino digite
o seguinte sketch:

int LED = 13;
int BOTAO = 8;

void setup() {
 pinMode(LED, OUTPUT);

 //Habilitar os resistores internos
 pinMode(BOTAO, INPUT_PULLUP);

 Serial.begin(9600);
}

void loop() {
 // Obtém o estado do botão
 int estado = digitalRead(BOTAO);

 Serial.print("Valor da variável estado: ");
 Serial.print(estado);
 if (estado == LOW) {
 digitalWrite(LED, HIGH);
 Serial.println(" - Led Ligado");
 }
 else {
 digitalWrite(LED, LOW);
 Serial.println(" - Led Desligado");
 }
 delay(100);
}

Aprenda Arduino – Uma abordagem prática

172

Utilizando o monitor Serial, teremos a seguinte
saída, sem pressionar o botão:

Valor da variável estado: 1 - Led Desligado

Quando pressionar o botão:

Valor da variável estado: 0 - Led Ligado

Isto ocorre pois quando não estivermos

pressionando o botão, o resistor interno do micro
controlador, manterá a entrada em 1 ou HIGH e ao
pressionar, estaremos ligando o GND ou 0 diretamente na
porta, estamos aterrando a porta, e desta forma a variável
estadoBotao receberá o valor 0 ou LOW.

Aprenda Arduino – Uma abordagem prática

173

Projeto 22 – Sensor de Presença

Neste projeto apresentamos o sensor de presença
(Figura 3.51), este tipo de sensor utiliza infravermelho para
detectar algum movimento, no módulo pode-se ajustar a
sensibilidade e o tempo que o sinal será enviado ao
Arduino, ao se detectar algum movimento o sensor envia o
sinal 1 (HIGH) para o Arduino.

Figura 3.51: Sensor de Presença (PIR)

Material necessário:

• 1 Arduino.

• 1 Protoboard.

• Jumper cable.

• Resistores de 220 ohms à um 1k ohms para os LEDs.

• Leds (qualquer cor).

• 1 Modulo Sensor de Movimento Presença (PIR).

Aprenda Arduino – Uma abordagem prática

174

Montagem do Circuito

Figura 3.52: Ligação do Sensor e Outros Componentes ao

Arduino

Adotando como referência a Figura 3.52 realize a

montagem do circuito que será usado neste projeto.

Aprenda Arduino – Uma abordagem prática

175

Programa

Implemente o programa a seguir no ambiente de
desenvolvimento do Arduino.

int ledMovimento = 6;
int ledParado = 7;
int pinoPIR = 3; //Pino ligado ao sensor PIR
int acionamento;

void setup() {
 pinMode(ledMovimento, OUTPUT);
 pinMode(ledParado, OUTPUT);
 // Define pino onde o sensor foi ligado como
 // entrada
 pinMode(pinoPIR, INPUT);
 Serial.begin(9600);
}

void loop() {
 acionamento = digitalRead(pinoPIR);
 Serial.print("Acionamento: ");
 Serial.print(acionamento);
 if (acionamento == LOW) {
 // Sem movimento, LED verde é ligado
 digitalWrite(ledMovimento, LOW);
 digitalWrite(ledParado, HIGH);
 Serial.println(" - Sem Movimento");
 }
 else {
 // Em caso de movimento, ligar o LED
 // vermelho
 digitalWrite(ledMovimento, HIGH);
 digitalWrite(ledParado, LOW);
 Serial.println(" - Movimento Detectado");
 }
}

Aprenda Arduino – Uma abordagem prática

176

Desafio 7 – Sensor de Presença com

Temporizador

Neste desafio utilize os conhecimentos adquiridos
no Projeto 22 - Sensor de Presença, Projeto 21 - Utilizando
Entradas com INPUT_PULLUP e Projeto 3 - LDR para criar
um sensor de presença que acenda uma lâmpada de uma
área externa que será representando por um LED, onde
este LED apenas acenderá quando estiver escuro e for
detectado algum movimento ou for pressionado um botão.
O LED deverá ficar acesso por 10 segundos entes de
desligar.

Aprenda Arduino – Uma abordagem prática

177

Projeto 23 – LED RGB

O objetivo deste projeto é utilizar três portas PWM
do Arduino para determinar a intensidade de acendimento
de cada uma das cores (vermelho, verde e azul) de um LED
RGB.

Material necessário:

• 1 Arduino.

• 3 Resistores de 220 ohms (vermelho, vermelho,
marrom) ou 330 ohms (laranja, laranja, marrom).

• 1 Led RGB.

• 1 Protoboard.

• Jumper cable.

Aprenda Arduino – Uma abordagem prática

178

Passo 1: Montagem do circuito

Figura 3.53: Ligação do LED RGB ao Arduino

Aprenda Arduino – Uma abordagem prática

179

A montagem do circuito deve ser realizada
conforme ilustra a Figura 3.53.

Passo 2: Programa

Inicie o ambiente de desenvolvimento do Arduino e

digite o sketch (programa) a seguir:

// LED RGB
int VERMELHO = 9, AZUL = 6, VERDE = 5;

int iVermelho, iVerde, iAzul;

void setup() {
 pinMode (VERMELHO, OUTPUT);
 pinMode (VERDE, OUTPUT);
 pinMode (AZUL, OUTPUT);
}

void loop() {
 iVermelho = random(256);
 iVerde = random(256);
 iAzul = random(256);
 analogWrite(VERMELHO, iVermelho);
 analogWrite(VERDE, iVerde);
 analogWrite(AZUL, iAzul);
 delay(500);
}

Aprenda Arduino – Uma abordagem prática

180

Referências Bibliográficas

ARDUINO. Language Reference. Disponível em:
<https://www.arduino.cc/reference/en/>. Acesso em
09/08/2018.

OLIVEIRA, C.; ZANETTI, H. Arduino descomplicado: como
elaborar projetos de eletrônica. São Paulo: Érica, 2015.

_________. Arduino descomplicado: aprenda com
projetos de eletrônica e programação. São Paulo:
Érica/Saraiva, 2017.

_________. Arduino simples e divertido: como elaborar
projetos de eletrônica. Salvador: Asè Editorial, 2016.

