
LINGUAGEM C:

DESCOMPLICADA

Prof. André R. Backes

1 COMANDOS DE CONTROLE CONDICIONAL

Os programas escritos até o momento são programas sequeciais: um co-

mando é executado após o outro, do começo ao fim do programa, na ordem

em que foram declarados no código fonte. Nenhum comando é ignorado.

Entretanto, há casos em que é preciso que um bloco de comandos seja

executado somente se uma determinada condição for verdadeira. Para

isso, precisamos de uma estrutura de seleção, ou um comando de con-

trole condicional, que permita selecionar o conjunto de comandos a ser

executado. Isso é muito similar ao que ocorre em um fluxograma, onde o

sı́mbolo do losango permitia escolher entre diferentes caminhos com base

em uma condição do tipo verdadeiro/falso:

Nesta seção iremos ver como funcionam cada uma das estruturas de seleção

presentes na linguagem C.

1.1 COMANDO IF

Na linguagem C, o comando if é utilizado sempre que é necessário esco-

lher entre dois caminhos dentro do programa, ou quando se deseja execu-

tar um ou mais comandos que estejam sujeitos ao resultado de um teste.

A forma geral de um comando if é:

if (condição) {

seqüência de comandos;

}

Na execução do comando if a condição será avaliada e:

2

• se a condição for diferente de zero, ela será considerada verdadeira

e a seqüência de comandos será executada;

• se a condição for zero, ela será considerada falsa e a seqüência de

comandos não será executada.

Abaixo, tem-se um exemplo de um programa que lê um número inteiro

digitado pelo usuário e informa se o mesmo é maior do que 10:

Exemplo: comando if

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t num;

5 p r i n t f (” D i g i t e um numero : ”) ;

6 scanf (”%d ” ,&num) ;

7 i f (num > 10)

8 p r i n t f (”O numero e maior do que 10\n ”) ;

9 system (” pause ”) ;

10 return 0;

11 }

Relembrando a idéia de fluxogramas, é possı́vel ter uma boa representação

de como os comandos do exemplo anterior são um-a-um executados du-

rante a execução do programa:

3

Por condição, entende-se qualquer expressão que resulte numa resposta

do tipo falso (zero) ou verdadeiro (diferente de zero). A condição pode ser

uma expressão que utiliza operadores dos tipos:

• Matemáticos : +,-, *, /, %

• Relacionais: >, <, >=, <=, ==, !=

• Lógicos: &&, ||

Diferente da maioria dos comandos, não se usa o ponto e

vı́rgula (;) depois da condição do comando if.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t num;

5 p r i n t f (” D i g i t e um numero : ”) ;

6 scanf (”%d ” ,&num) ;

7 i f (num > 10) ; / /ERRO

8 p r i n t f (”O numero e maior que 10\n ”) ;

9 system (” pause ”) ;

10 return 0;

11 }

Na linguagem C, o operador ponto e vı́rgula (;) é utilizado para separar as

instruções do programa. Colocá-lo logo após o comando if, como exem-

plificado acima, faz com que o compilador entenda que o comando if já

terminou e trate o comando seguinte (printf) como se o mesmo estivesse

fora do if. No exemplo acima, a mensagem de que o número é maior do

que 10 será exibida independente do valor do número.

O compilador não irá acusar um erro se colocarmos o ope-

rador ponto e vı́rgula (;) após o comando if, mas a lógica

do programa poderá estar errada.

1.1.1 USO DAS CHAVES {}

No comando if, e em diversos outros comandos da linguagem C, usa-se os

operadores de chaves { } para delimitar um bloco de instruções.

4

Por definição, comandos de condição (if e else) ou

repetição (while, for,...) atuam apenas sobre o comando

seguinte a eles.

Desse modo, se o programador deseja que mais de uma instrução seja

executada por aquele comando if, esse conjunto de instruções deve estar

contido dentro de um bloco delimitado por chaves { }.

if (condição) {

comando 1;

comando 2;

...

comando n;

}

As chaves podem ser ignoradas se o comando contido den-

tro do if for único.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t num;

5 p r i n t f (” D i g i t e um numero : ”) ;

6 scanf (”%d ” ,&num) ;

7 i f (num > 10)

8 p r i n t f (”O numero e maior que 10\n ”) ;

9

10 /∗OU

11 i f (num > 10){
12 p r i n t f (”O numero e maior que 10\n ”) ;

13 }
14 ∗ /

15 system (” pause ”) ;

16 return 0;

17 }

1.1.2 EXPRESSÃO CONDICIONAL

Uma expressão condicional é qualquer expressão que resulte numa res-

posta do tipo falso (zero) ou verdadeiro (diferente de zero).

5

Uma expressão condicional pode utilizar operadores dos

tipos: matemáticos, relacionais e/ou lógicos.

1 / / x é maior ou i g u a l a y?

2 i f (x >= y)

3

4 / / x é maior do que y+2?

5 i f (x > y+2)

6

7 / / x−5 é d i f e r e n t e de y+3?

8 i f (x−5 != y+3)

9

10 / / x é maior do que y e menor do que z?

11 i f (x > y && x < z)

12 i f (y < x < z) / /ERRO!

Quando o compilador avalia uma condição, ele quer um valor de retorno

(verdadeiro ou falso) para poder tomar a decisão. No entanto, esta ex-

pressão não necessita ser uma expressão no sentido convencional.

Uma variável sozinha pode ser uma ”expressão condicio-

nal”e retornar o seu próprio valor.

É importante lembrar que o computador trabalha em termos de 0’s e 1’s,

sendo a condição

• falsa: quando o valor da expressão é zero;

• verdadeira: quando o valor da expressão é diferente de zero.

Isto quer dizer que, dado uma variável inteira num, as seguintes expressões

são equivalentes para o compilador:

if (num!=0)//Se a variável é diferente de zero...

if (num)//...ela sozinha retorna uma valor que é verdadeiro.

if (num==0)//Se a variável é igual a zero (falso)...

e

if (!num)//...sua negação é um valor verdadeiro.

6

1.2 COMANDO ELSE

O comando else pode ser entendido como sendo um complemento do co-

mando if. Ele auxı́lia o comando if na tarefa de escolher dentre os vários

caminhos a ser segudo dentro do programa.

A forma geral de um comando else é:

if (condição) {

seqüência de comandos;

}

else{

seqüência de comandos;

}

Se o comando if diz o que fazer quando a condição é ver-

dadeira, o comando else trata da condição quando ela é

falsa.

Isso fica bem claro quando olhamos a representação do comando else em

um fluxograma:

Antes, na execução do comando if a condição era avaliada e:

• se a condição fosse verdadeira a seqüência de comandos seria exe-

cutada;

• se a condição fosse falsa a seqüência de comandos não seria exe-

cutada e o programa seguiria o seu fluxo padrão.

7

Com o comando else, temos agora que:

• se a condição for verdadeira, a seqüência de comandos do bloco if

será executada;

• se a condição for falsa, a seqüência de comandos do bloco else será

executada.

Abaixo, tem-se um exemplo de um programa que lê um número inteiro

digitado pelo usuário e informa se o mesmo é ou não igual a 10:

Exemplo: comando if-else

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t num;

5 p r i n t f (” D i g i t e um numero : ”) ;

6 scanf (”%d ” , &num) ;

7 i f (num == 10){
8 p r i n t f (”O numero e i g u a l a 10.\n ”) ;

9 } else{
10 p r i n t f (”O numero e d i f e r e n t e de 10.\n ”) ;

11 }
12 system (” pause ”) ;

13 return 0;

14 }

Relembrando a idéia de fluxogramas, é possı́vel ter uma boa representação

de como os comandos do exemplo anterior são um-a-um executados du-

rante a execução do programa:

8

O comando else não tem condição. Ele é o caso contrário

da condição do if.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t num;

5 p r i n t f (” D i g i t e um numero : ”) ;

6 scanf (”%d ” , &num) ;

7 i f (num == 10){
8 p r i n t f (”O numero e i g u a l a 10.\n ”) ;

9 } else (num != 10){ / /ERRO

10 p r i n t f (”O numero e d i f e r e n t e de 10.\n ”) ;

11 }
12 system (” pause ”) ;

13 return 0;

14 }

O comando else deve ser ser entendido como sendo um complemento do

comando if. Ele diz quais comandos se deve executar se a condição do

comando if for falsa. Portanto, não é necessário estabelecer uma condição

para o comando else, ele é o oposto do if.

9

Como no caso do if, não se usa o ponto e vı́rgula (;) depois

do comando else.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t num;

5 p r i n t f (” D i g i t e um numero : ”) ;

6 scanf (”%d ” , &num) ;

7 i f (num == 10){
8 p r i n t f (”O numero e i g u a l a 10.\n ”) ;

9 } else ;{ / /ERRO

10 p r i n t f (”O numero e d i f e r e n t e de 10.\n ”) ;

11 }
12 system (” pause ”) ;

13 return 0;

14 }

Como no caso do if, colocar o operador de ponto e vı́rgula (;) logo após o

comando else, faz com que o compilador entenda que o comando else já

terminou e trate o comando seguinte (printf) como se o mesmo estivesse

fora do else. No exemplo acima, a mensagem de que o número é diferente

de 10 será exibida independente do valor do número.

A seqüência de comandos do if é independente da

seqüência de comandos do else. Cada comando tem o

seu próprio conjunto de chaves.

Se o comando if for executado em um programa, o seu comando else

não será executado. Portanto, não faz sentido usar o mesmo conjunto de

chaves {}para definir os dois conjuntos de comandos.

Uso das chaves no comando if-else

Certo Errado

1 i f (condicao) {
2 seqüência de comandos ;

3 }
4 else{
5 seqüência de comandos ;

6 }

1 i f (condicao) {
2 seqüência de comandos ;

3 else

4 seqüência de comandos ;

5 }

10

Como no caso do comando if, as chaves podem ser igno-

radas se o comando contido dentro do else for único.

1.3 ANINHAMENTO DE IF

Um if aninhado é simplesmente um comando if utilizado dentro do bloco

de comandos de um outro if (ou else) mais externo. basicamente, é um

comando if dentro de outro.

A forma geral de um comando if aninhado é:

if(condição 1) {

seqüência de comandos;

if(condição 2) {

seqüência de comandos;

if...

}

else{

seqüência de comandos;

if...

}

} else{

seqüência de comandos;

}

Em um aninhamento de if’s, o programa começa a testar as condições

começando pela condição 1. Se o resultado dessa condição for diferente

de zero (verdadeiro), o programa executará o bloco de comando associa-

dos a ela. Do contrário, irá executar o bloco de comando associados ao

comando else correspondente, se ele existir. Esse processo se repete para

cada comando if que o programa encontrar dentro do bloco de comando

que ele executar.

O aninhamento de if’s é muito útil quando se tem mais do que dois cami-

nhos para executar dentro de um programa. Por exemplo, o comando if é

suficiente para dizer se um número é maior do que outro número ou não.

Porém, ele sozinho é incapaz de dizer se esse mesmo número é maior,

menor ou igual ao outro como mostra o exemplo abaixo:

11

Exemplo: aninhamento de if

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t num;

5 p r i n t f (” D i g i t e um numero : ”) ;

6 scanf (”%d ” , &num) ;

7 i f (num == 10){
8 p r i n t f (”O numero e i g u a l a 10.\n ”) ;

9 } else{
10 i f (num > 10)

11 p r i n t f (”O numero e maior que 10.\n ”) ;

12 else

13 p r i n t f (”O numero e menor que 10.\n ”) ;

14 }
15 system (” pause ”) ;

16 return 0;

17 }

Isso fica bem claro quando olhamos a representação do aninhamento de

if’s em um fluxograma:

O único cuidado que devemos ter no aninhamento de if’s é

o de saber exatamente a qual if um determinado else está

ligado.

Esse cuidado fica claro no exemplo abaixo: apesar do comando else es-

tar alinhado com o primeiro comando if, ele está na verdade associado ao

12

segundo if. Isso acontece porque o comando else é sempre associado ao

primeiro comando if encontrado antes dele dentro de um bloco de coman-

dos.

if (cond1)

if (cond2)

seqüência de comandos;

else

seqüência de comandos;

No exemplo anterior, para fazer com que o comando else fique associado

ao primeiro comando if é necessário definir um novo bloco de comandos

(usando os operadores de chaves { }) para isolar o comando if mais in-

terno.

if (cond1) {

if (cond2)

seqüência de comandos;

} else

seqüência de comandos;

Não existe aninhamento de else’s.

O comando else é o caso contrário da condição do comando if. Assim,

para cada else deve existir um if anterior, porém nem todo if precisa ter um

else.

if (cond1)

seqüência de comandos;

else

seqüência de comandos;

else //ERRO!

seqüência de comandos;

13

1.4 OPERADOR ?

O operador ? é também conhecido como operador ternário. Trata-se de

uma simplificação do comando if-else na sua forma mais simples, ou seja,

com apenas um comando e não blocos de comandos.

A forma geral do operador ? é:

expressão condicional ? expressão1 : expressão2;

O funcioanmento do operador ? é idêntico ao do comando if-else: primei-

ramente, a expressão condicional será avaliada e

• se essa condição for verdadeira, o valor da expressão1 será o resul-

tado da expressão condicional ;

• se essa condição for falsa, o valor da expressão2 será o resultado

da expressão condicional ;

O operador ? é tipicamente utilizado para atribuições con-

dicionais.

O exemplo abaixo mostra como uma expressão de atribuição pode ser

simplificada utilizando o operador ternário:

Usando if-else Usando o operador ternário

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t x , y , z ;

5 p r i n t f (” D i g i t e x : ”) ;

6 scanf (”%d ” ,&x) ;

7 p r i n t f (” D i g i t e y : ”) ;

8 scanf (”%d ” ,&y) ;

9 i f (x > y)

10 z = x ;

11 else

12 z = y ;

13 p r i n t f (” Maior = %d ” , z) ;

14 system (” pause ”) ;

15 return 0;

16 }

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t x , y , z ;

5 p r i n t f (” D i g i t e x : ”) ;

6 scanf (”%d ” ,&x) ;

7 p r i n t f (” D i g i t e y : ”) ;

8 scanf (”%d ” ,&y) ;

9 z = x > y ? x : y ;

10 p r i n t f (” Maior = %d ” , z) ;

11 system (” pause ”) ;

12 return 0;

13 }

14

O operador ? é limitado e por isso não atende a uma gama muito grande de

casos que o comando if-else atenderia. Porém, ele pode ser usado para

simplificar expressões complicadas. Uma aplicação interessante é a do

contador circular, onde uma variável é incrementada até um valor máximo

e, sempre que atinge esse valor, a variável é zerada.

index = (index== 3) ? 0: ++index;

Apesar de limitado, o operador ? não é restrito a

atribuições apenas.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t num;

5 p r i n t f (” D i g i t e um numero : ”) ;

6 scanf (”%d ” , &num) ;

7 (num == 10)? p r i n t f (”O numero e i g u a l a 10.\n ”

) : p r i n t f (”O numero e d i f e r e n t e de 10.\n ”)

;

8 system (” pause ”) ;

9 return 0;

10 }

1.5 COMANDO SWITCH

Além dos comandos if e else, a linguagem C possui um comando de

seleção múltipla chamado switch. Esse comando é muito parecido com o

aninhamendo de comandos if-else-if.

O comando switch é muito mais limitado que o comando

if-else: enquanto o comando if pode testar expressões

lógicas ou relacionais, o comando switch somente verifica

se uma variável é ou não igual a um certo valor constante.

15

A forma geral do comando switch é:

switch (variável) {

case valor1:

seqüência de comandos;

break;

case valor2:

seqüência de comandos;

break;

...

case valorN:

seqüência de comandos;

break;

default:

seqüência de comandos; }

O comando switch é indicado quando se deseja testar uma

variável em relação a diversos valores pré-estabelecidos.

Na execução do comando switch, o valor da variável é comparado, na

ordem, com cada um dos valores definidos pelo comando case. Se um

desse valores for igual ao valor da variável, a seqüência de comandos

daquele comando case é executado pelo programa.

Abaixo, tem-se um exemplo de um programa que lê um caractere digitado

pelo usuário e informa se o mesmo é um sı́mbolo de pontuação:

16

Exemplo: comando switch

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 char c ha r i n ;

5 p r i n t f (” D i g i t e um simbolo de pontuacao : ”) ;

6 c ha r i n = getchar () ;

7 switch (c ha r i n) {
8 case ’ . ’ : p r i n t f (” Ponto .\n ”) ; break ;

9 case ’ , ’ : p r i n t f (” V i r gu la .\n ”) ; break ;

10 case ’ : ’ : p r i n t f (” Dois pontos .\n ”) ; break ;

11 case ’ ; ’ : p r i n t f (” Ponto e v i r g u l a .\n ”) ; break ;

12 defaul t : p r i n t f (”Nao eh pontuacao .\n ”) ;

13 }
14 system (” pause ”) ;

15 return 0;

16 }

No exemplo acima, será pedido ao usuário que digite um caractere. O valor

desse caractere será comparado com um conjunto de possı́veis sı́mbolos

de pontuação, cada qual identificado em um comando case. Note que,

se o caractere digitado pelo usuário não for um sı́mbolo de pontuação, a

seqüência de comandos dentro do comando default será exectada.

O comando default é opcional e sua seqüência de coman-

dos somente será executada se o valor da variável que está

sendo testada pelo comando switch não for igual a nenhum

dos valores dos comandos case.

O exemplo anterior do comando switch poderia facilmente ser reescrito

com o aninhamento de comandos if-else-if como se nota abaixo:

17

Exemplo: simulando o comando switch com if-else-if

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 char c ha r i n ;

5 p r i n t f (” D i g i t e um simbolo de pontuacao : ”) ;

6 c ha r i n = getchar () ;

7 i f (c ha r i n == ’ . ’)

8 p r i n t f (” Ponto .\n ”) ;

9 else

10 i f (c ha r i n == ’ , ’)

11 p r i n t f (” V i r gu la .\n ”) ;

12 else

13 i f (c ha r i n == ’ : ’)

14 p r i n t f (” Dois pontos .\n ”) ;

15 else

16 i f (c ha r i n == ’ ; ’)

17 p r i n t f (” Ponto e v i r g u l a .\n ”) ;

18 else

19 p r i n t f (”Nao eh pontuacao .\n ”) ;

20 system (” pause ”) ;

21 return 0;

22 }

Como se pode notar, o comando switch apresenta uma solução muito mais

elegante que o aninhamento de comandos if-else-if quando se necessita

comparar o valor de uma variável.

Apesar das semelhanças entre os dois comandos, o comando switch e o

aninhamento de comandos if-else-if, existe uma diferença muito importante

entre esses dois comandos: o comando break.

18

Quando o valor associado a um comando case é igual

ao valor da variável do switch a respectiva seqüência de

comandos é executada até encontrar um comando break.

Caso o comando break não exista, a seqüência de coman-

dos do case seguinte também será executada e assim por

diante

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 char c ha r i n ;

5 p r i n t f (” D i g i t e um simbolo de pontuacao : ”) ;

6 c ha r i n = getchar () ;

7 switch (c ha r i n) {
8 case ’ . ’ : p r i n t f (” Ponto .\n ”) ;

9 case ’ , ’ : p r i n t f (” V i r gu la .\n ”) ;

10 case ’ : ’ : p r i n t f (” Dois pontos .\n ”) ;

11 case ’ ; ’ : p r i n t f (” Ponto e v i r g u l a .\n ”) ;

12 defaul t : p r i n t f (”Nao eh pontuacao .\n ”) ;

13 }
14 system (” pause ”) ;

15 return 0;

16 }

Note, no exemplo acima, que caso o usuário digite o sı́mbolo de ponto (.)

todas as mensagens serão escritas na tela de saı́da.

O comando break é opcional e faz com que o comando

switch seja interrompido assim que uma das seqüência de

comandos seja executada.

De modo geral, é quase certo que se venha a usar o comando break dentro

do switch. Porém a sua ausência pode ser muito útil em algumas situações.

Por exemplo, quando queremos que uma ou mais seqüências de coman-

dos sejam executadas a depender do valor da variável do switch.

19

Exemplo: comando switch sem break

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t num;

5 p r i n t f (” D i g i t e um numero i n t e i r o de 0 a 9: ”) ;

6 scanf (”%d ” ,&num) ;

7 switch (num) {
8 case 9: p r i n t f (” Nove\n ”) ;

9 case 8: p r i n t f (” Oi to \n ”) ;

10 case 7: p r i n t f (” Sete\n ”) ;

11 case 6: p r i n t f (” Seis\n ”) ;

12 case 5: p r i n t f (” Cinco\n ”) ;

13 case 4: p r i n t f (” Quatro\n ”) ;

14 case 3: p r i n t f (” Tres\n ”) ;

15 case 2: p r i n t f (” Dois\n ”) ;

16 case 1: p r i n t f (”Um\n ”) ;

17 case 0: p r i n t f (” Zero\n ”) ;

18 }
19 system (” pause ”) ;

20 return 0;

21 }

20

2 COMANDOS DE REPETIÇÃO

2.1 REPETIÇÃO POR CONDIÇÃO

Na seção anterior, vimos como realizar desvios condicionais em um pro-

grama. Desse modo, criamos programas em que um bloco de comandos

é executado somente se uma determinada condição é verdadeira.

Entretanto, há casos em que é preciso que um bloco de comandos seja

executado mais de uma vez se uma determinada condição for verdadeira:

enquanto condição faça

sequência de comandos;

fim enquanto

Para isso, precisamos de uma estrutura de repetição que permita executar

um conjunto de comandos quantas vezes forem necessárias. Isso é muito

similar ao que ocorre em um fluxograma, onde o sı́mbolo do losango per-

mitia escolher entre diferentes caminhos com base em uma condição do

tipo verdadeiro/falso, com a diferença de que agora o fluxo do programa é

desviado novamente para a condição ao final da sequência de comandos:

Exemplo: Pseudo-código e fluxograma

1 Leia B ;

2 Enquanto A < B

3 A recebe A + 1;

4 Imprima A;

5 Fim Enquanto

De acordo com a condição, os comandos serão repetidos

zero (se falsa) ou mais vezes (enquanto a condição for ver-

dadeira). Essa estrutura normalmente é denominada laço

ou loop.

21

Note que a sequência de comandos a ser repetida está subordinada a uma

condição. Por condição, entende-se qualquer expressão que resulte numa

resposta do tipo falso (zero) ou verdadeiro (diferente de zero). A condição

pode ser uma expressão que utiliza operadores dos tipos:

• Matemáticos : +,-, *, /, %

• Relacionais: >, <, >=, <=, ==, !=

• Lógicos: &&, ||

Na execução do comando enquanto, a condição será avaliada e:

• se a condição for diferente de zero, ela será considerada verdadeira

e a seqüência de comandos será executada. Ao final da sequência

de comandos, o fluxo do programa é desviado novamente para a

condição;

• se a condição for zero, ela será considerada falsa e a seqüência de

comandos não será executada.

2.2 LAÇO INFINITO

Um laço infinito (ou loop infinito) é uma sequência de comandos em um

programa de computador que se repete infinitamente. Isso geralmente

ocorre por algum erro de programação, quando

• não definimos uma condição de parada;

• a condição de parada existe, mas nunca é atingida.

Basicamente, um laço infinito ocorre quando cometemos algum erro ao

especificar a condição lógica que controla a repetição ou por esquecer de

algum comando dentro da sequência de comandos.

22

Exemplo: loop infinito

O valor de X é sempre dimi-

nuido em uma unidade, por-

tanto nunca atinge a condição

de parada.

O valor de X nunca é modi-

ficado, portanto a condição é

sempre verdadeira.

1 X recebe 4;

2 enquanto (X < 5) faça

3 X recebe X − 1;

4 Imprima X;

5 f im enquanto

1 X recebe 4;

2 enquanto (X < 5) faça

3 Imprima X;

4 f im enquanto

2.3 COMANDO WHILE

O comando while equivale ao comando ”enquanto”utilizado nos pseudo-

códigos apresentados até agora.

A forma geral de um comando while é:

while (condição){

seqüência de comandos;

}

Na execução do comando while, a condição será avaliada e:

• se a condição for diferente de zero, ela será considerada verdadeira

e a seqüência de comandos será executada. Ao final da sequência

de comandos, o fluxo do programa é desviado novamente para a

condição;

• se a condição for zero, ela será considerada falsa e a seqüência de

comandos não será executada.

Abaixo, tem-se um exemplo de um programa que lê dois números inteiros

a e b digitados pelo usuário e imprime na tela todos os números inteiros

entre a e b:

23

Exemplo: comando while

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t a , b ;

5 p r i n t f (” D i g i t e o va lo r de a : ”) ;

6 scanf (”%d ” ,&a) ;

7 p r i n t f (” D i g i t e o va lo r de b : ”) ;

8 scanf (”%d ” ,&b) ;

9 while (a < b) {
10 a = a + 1;

11 p r i n t f (”%d \n ” ,a) ;

12 }
13 system (” pause ”) ;

14 return 0;

15 }

Relembrando a idéia de fluxogramas, é possı́vel ter uma boa representação

de como os comandos do exemplo anterior são um-a-um executados du-

rante a execução do programa:

O comando while segue todas as recomendações defi-

nidas para o comando if quanto ao uso das chaves e

definição da condição usada.

24

Isso significa que a condição pode ser qualquer expressão que resulte

numa resposta do tipo falso (zero) ou verdadeiro (diferente de zero), e que

utiliza operadores dos tipos matemáticos, relacionais e/ou lógicos.

Como nos comandos condicionais, o comando while atua apenas sobre o

comando seguinte a ele. Se quisermos que ele execute uma sequência

de comandos, é preciso definir essa sequência de comandos dentro de

chaves {}.

Como no comando if-else, não se usa o ponto e vı́rgula (;)

depois da condição do comando while.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t a , b ;

5 p r i n t f (” D i g i t e o va lo r de a : ”) ;

6 scanf (”%d ” ,&a) ;

7 p r i n t f (” D i g i t e o va lo r de b : ”) ;

8 scanf (”%d ” ,&b) ;

9 while (a < b) ;{ / /ERRO!

10 a = a + 1;

11 p r i n t f (”%d \n ” ,a) ;

12 }
13 system (” pause ”) ;

14 return 0;

15 }

Como no caso dos comandos condicionais, colocar o operador de ponto e

vı́rgula (;) logo após o comando while, faz com que o compilador entenda

que o comando while já terminou e trate o comando seguinte (a = a + 1)

como se o mesmo estivesse fora do while. No exemplo acima, temos um

laço infinito (o valor de a e b nunca mudam, portanto a condição de parada

nunca é atingida).

É responsabilidade do programador modificar o valor de

algum dos elementos usados na condição para evitar que

ocorra um laço infinito.

2.4 COMANDO FOR

O comando for é muito similar ao comando while visto anteriormente. Ba-

sicamente, o comando for é usado para repetir um comando, ou uma

25

sequência de comandos, diversas vezes.

A forma geral de um comando for é:

for (inicialização; condição; incremento) {

seqüência de comandos;

}

Na execução do comando for, a seguinte sequência de passo é realizada:

• a claúsula inicialização é executada: nela as variáveis recebem uma

valor inicial para usar dentro do for.

• a condição é testada:

– se a condição for diferente de zero, ela será considerada verda-

deira e a seqüência de comandos será executada. Ao final da

sequência de comandos, o fluxo do programa é desviado para

o incremento;

– se a condição for zero, ela será considerada falsa e a seqüência

de comandos não será executada (fim do comando for).

• incremento: terminada a execução da seqüência de comandos, ocorre

a etapa de incremento das variáveis usadas no for. Ao final dessa

etapa, o fluxo do programa é novamente desviado para a condição.

Abaixo, tem-se um exemplo de um programa que lê dois números inteiros

a e b digitados pelo usuário e imprime na tela todos os números inteiros

entre a e b (incluindo a e b):

Exemplo: comando for

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t a , b , c ;

5 p r i n t f (” D i g i t e o va lo r de a : ”) ;

6 scanf (”%d ” ,&a) ;

7 p r i n t f (” D i g i t e o va lo r de b : ”) ;

8 scanf (”%d ” ,&b) ;

9 for (c = a ; c <= b ; c++){
10 p r i n t f (”%d \n ” , c) ;

11 }
12 system (” pause ”) ;

13 return 0;

14 }

26

No exemplo acima, a variável c é inicializada como valor de a (c = a). Em

seguida, o valor de c é comparado com o valor de b (c <= b). Por fim,

se a sequência de comandos foi executada, o valor da variável c será in-

crementado em uma unidade (c++). Relembrando a idéia de fluxogramas,

é possı́vel ter uma boa representação de como os comandos do exemplo

anterior são um-a-um executados durante a execução do programa:

O comando for segue todas as recomendações definidas

para o comando if e while quanto ao uso das chaves e

definição da condição usada.

Isso significa que a condição pode ser qualquer expressão que resulte

numa resposta do tipo falso (zero) ou verdadeiro (diferente de zero), e que

utiliza operadores dos tipos matemáticos, relacionais e/ou lógicos.

Como nos comandos condicionais, o comando while atua apenas sobre o

comando seguinte a ele. Se quisermos que ele execute uma sequência

de comandos, é preciso definir essa sequência de comandos dentro de

chaves {}.

27

Exemplo: for versus while

for while

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i , soma = 0;

5 for (i = 1 ; i <= 10; i

++){
6 soma = soma + i ;

7 }
8 p r i n t f (”Soma = %d \n ” ,

soma) ;

9 system (” pause ”) ;

10 return 0;

11 }

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i , soma = 0;

5 i = 1

6 while (i <= 10){
7 soma = soma + i ;

8 i ++;

9 }
10 p r i n t f (”Soma = %d \n ” ,

soma) ;

11 system (” pause ”) ;

12 return 0;

13 }

Dependendo da situação em que o comando for é utilizado, podemos omitir

qualquer uma de suas cláusulas:

• inicialização;

• condição;

• incremento.

Independente de qual cláusula é omitida, o comando for

exige que se coloque os dois operadores de ponto e vı́rgula

(;).

O comando for exige que se coloque os dois operadores de ponto e vı́rgula

(;) pois é este operador que indica a separação entre as cláusulas de

inicialização, condição e incremento. Sem elas, o compilador não tem cer-

teza de qual cláusula foi omitida.

Abaixo, são apresentados três exemplos de comando for onde, em cada

um deles, uma das cláusulas é omitida.

28

Exemplo: comando for sem inicialização

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t a , b , c ;

5 p r i n t f (” D i g i t e o v a lo r de a : ”) ;

6 scanf (”%d ” ,&a) ;

7 p r i n t f (” D i g i t e o v a lo r de b : ”) ;

8 scanf (”%d ” ,&b) ;

9 for (; a <= b ; a++){
10 p r i n t f (”%d \n ” ,a) ;

11 }
12 system (” pause ”) ;

13 return 0;

14 }

No exemplo acima, a variável a é utilizada nas cláusulas de condição e in-

cremento do comando for. Como a variável a teve seu valor inicial definido

através de um comando de leitura do teclado (scanf), não é necessário a

etapa de inicialização do comando for para definir o seu valor.

Ao omitir a condição do comando for, criamos um laço infi-

nito.

Para o comando for, a ausência da cláusula de condção é considerada

como uma condição que é sempre verdadeira. Sendo a condição sempre

verdadeira, não existe condição de parada para o comando for, o qual vai

ser executado infinitamente.

Exemplo: comando for sem condição

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t a , b , c ;

5 p r i n t f (” D i g i t e o va lo r de a : ”) ;

6 scanf (”%d ” ,&a) ;

7 p r i n t f (” D i g i t e o va lo r de b : ”) ;

8 scanf (”%d ” ,&b) ;

9 / / o comando f o r abaixo é um la ço i n f i n i t o

10 for (c = a ; ; c++){
11 p r i n t f (”%d \n ” , c) ;

12 }
13 system (” pause ”) ;

14 return 0;

15 }

29

Por último, temos um exemplo de comando for sem a cláusula de incre-

mento. Nessa etapa do comando for, um novo valor é atribuido para uma

(ou mais) varáveis utilizadas.

Exemplo: comando for sem incremento

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t a , b , c ;

5 p r i n t f (” D i g i t e o va lo r de a : ”) ;

6 scanf (”%d ” ,&a) ;

7 p r i n t f (” D i g i t e o va lo r de b : ”) ;

8 scanf (”%d ” ,&b) ;

9 for (c = a ; c <= b ;) {
10 p r i n t f (”%d \n ” , c) ;

11 c++;

12 }
13 system (” pause ”) ;

14 return 0;

15 }

No exemplo acima, a cláusula de incremento foi omtida da declaração do

comando for. Para evitar a criação de uma laço infinito (onde a condição

de parada existe, mas nunca é atingida), foi colocado um comando de in-

cremento (c++) dentro da sequência de comandos do for. Perceba que,

desse modo, o comando for fica mais parecido com o comando while, já

que agora se pode definir em qual momento o incremento vai ser execu-

tado, e não apenas no final.

30

A cláusula de incremento é utilizada para atribuir um novo

valor a uma ou mais variáveis durante o comando for. Essa

atribuição não está restrita a apenas o operador de incre-

mento (++).

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t a , b , c ;

5 p r i n t f (” D i g i t e o va lo r de a : ”) ;

6 scanf (”%d ” ,&a) ;

7 p r i n t f (” D i g i t e o va lo r de b : ”) ;

8 scanf (”%d ” ,&b) ;

9

10 / / incremento de duas unidades

11 for (c = a ; c <= b ; c=c+2){
12 p r i n t f (”%d \n ” , c) ;

13 }
14

15 / / novo va l o r é l i d o do tec lado

16 for (c = a ; c <= b ; scanf (”%d ” ,&c)) {
17 p r i n t f (”%d \n ” , c) ;

18 }
19 system (” pause ”) ;

20 return 0;

21 }

Nesse exemplo, fica claro que a cláusula de incremento pode conter qual-

quer comando que altere o valor de uma das variáveis utilizadas pelo co-

mando for.

O operador de vı́rgula (,) pode ser usado em qualquer uma

das cláusulas.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i , j ;

5 for (i = 0 , j = 100; i < j ; i ++ , j−−){
6 p r i n t f (” i = %d e j = %d \n ” , i , j) ;

7 }
8 system (” pause ”) ;

9 return 0;

10 }

No exemplo acima, foram definidos dois comandos para a cláusula de

31

inicialização: i = 0 e j = 100. Cada comando na inicialização é separado

pelo operador de vı́rgula (,). A cláusula de inicialização só termina quando

o operador de ponto e vı́rgula (;) é encontrado. Na fase de incremento,

novamente o valor das duas variáveis é modificado: o valor de i é incre-

mentado (i++) enquanto o de j é decrementado (j–). Novamente, cada

comando na cláusula de incremento é separado pelo operador de vı́rgula

(,).

2.5 COMANDO DO-WHILE

O comando do-while é bastante semelhante ao comando while visto ante-

riormente. Sua principal diferença é com relação a avaliação da condição:

enquanto o comando while avalia a condição para depois executar uma

seqüência de comandos, o comando do-while executa uma seqüência de

comandos para depois testar a condição.

A forma geral de um comando do-while é:

do{

seqüência de comandos;

} while(condição);

Na execução do comando do-while, a seguinte ordem de passos é execu-

tada:

• a seqüência de comandos é executada;

• a condição é avaliada:

– se a condição for diferente de zero, ela será considerada ver-

dadeira e o fluxo do programa é desviado novamente para o

comando do, de modo que a seqüência de comandos seja exe-

cutada novamente;

– se a condição for zero, ela será considerada falsa e o laço ter-

mina.

O comando do-while é utilizado sempre que se desejar que

a seqüência de comandos seja executada pelo menos uma

vez.

32

No comando while, a condição é sempre avaliada antes da seqüência de

comandos. Isso significa que a condição pode ser falsa logo na primeira

repetição do comando while, o que faria com que a seqüência de coman-

dos não fosse executada nenhuma vez. Portanto, o comando while pode

repetir uma seqüência de comandos zero ou mais vezes.

Já no comando do-while, a seqüência de comandos é executada primeiro.

Mesmo que a condição seja falsa logo na primeira repetição do comando

do-while, a seqüência de comandos terá sido executada pelo menos uma

vez. Portanto, o comando do-while pode repetir uma seqüência de coman-

dos uma ou mais vezes.

O comando do-while segue todas as recomendações de-

finidas para o comando if quanto ao uso das chaves e

definição da condição usada.

Abaixo, tem-se um exemplo de um programa que exibe um menu de opções

para o usuário e espera que ele digite uma das suas opções:

Exemplo: comando do-while

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i ;

5 do {
6 p r i n t f (” Escolha uma opção :\n ”) ;

7 p r i n t f (” (1) Opção 1\n ”) ;

8 p r i n t f (” (2) Opção 2\n ”) ;

9 p r i n t f (” (3) Opção 3\n ”) ;

10 scanf (”%d ” , & i) ;

11 } while ((i < 1) | | (i > 3)) ;

12 p r i n t f (” Você escolheu a Opção %d .\n ” , i) ;

13 system (” pause ”) ;

14 return 0;

15 }

Relembrando a idéia de fluxogramas, é possı́vel ter uma boa representação

de como os comandos do exemplo anterior são um-a-um executados du-

rante a execução do programa:

33

Diferente do comando if-else, é necessário colocar um

ponto e vı́rgula (;) depois da condição do comando do-

while.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i = 0 ;

5 do{
6 p r i n t f (” Valor %d\n ” , i) ;

7 i ++;

8 }while (i < 10) ; / / Esse ponto e v ı́ r g u l a é

necessár io !

9 system (” pause ”) ;

10 return 0;

11 }

No comando do-while, a seqüência de comandos é definida antes do teste

da condição, diferente dos outros comando condicionais e de repetição.

Isso significa que o teste da condição é o último comando da repetição

do-while. Sendo assim, o compilador entende que a definição do comando

do-while já terminou e exige que se coloque o operador de ponto e vı́rgula

(;) após a condição.

É responsabilidade do programador modificar o valor de

algum dos elementos usados na condição para evitar que

ocorra um laço infinito.

34

2.6 COMANDO BREAK

Vimos, anteriormente, que o comando break pode ser utilizado em con-

junto com o comando switch. Basicamente, sua função era interromper o

comando switch assim que uma das seqüências de comandos da cláusula

case fosse executada. Caso o comando break não existisse, a seqüência

de comandos do case seguinte também seria executada e assim por di-

ante.

Na verdade, o comando break serve para quebrar a execução de um co-

mando (como no caso do switch) ou interromper a execução de qualquer

comando de laço (for, while ou do-while). O break faz com que a execução

do programa continue na primeira linha seguinte ao laço ou bloco que está

sendo interrompido.

O comando break é utilizado para terminar abruptamente

uma repetição. Por exemplo, se estivermos em uma

repetição e um determinado resultado ocorrer, o programa

deverá sair da iteração.

Abaixo, tem-se um exemplo de um programa que lê dois números inteiros

a e b digitados pelo usuário e imprime na tela todos os números inteiros

entre a e b. Note que no momento em que o valor de a atige o valor de b),

o comando break é chamado e o laço terminado:

Exemplo: comando break

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t a , b ;

5 p r i n t f (” D i g i t e o va lo r de a : ”) ;

6 scanf (”%d ” ,&a) ;

7 p r i n t f (” D i g i t e o va lo r de b : ”) ;

8 scanf (”%d ” ,&b) ;

9 while (a <= b) {
10 i f (a == b)

11 break ;

12 a = a + 1;

13 p r i n t f (”%d \n ” ,a) ;

14 }
15 system (” pause ”) ;

16 return 0;

17 }

Relembrando o conceito de fluxogramas, é possı́vel ter uma boa representação

35

de como os comandos do exemplo anterior são um-a-um executados pelo

programa:

2.7 COMANDO CONTINUE

O comando continue é muito parecido com o comando break. Tanto o co-

mando break quanto o comando continue ignoram o restante da sequência

de comandos da repetição que os sucedem. A diferença é que, enquanto o

comando break termina o laço de repetição, o comando break interrompe

apenas aquela repetição e passa para a proxima repetição do laço (se ela

existir).

Por esse mesmo motivo, o comando continue só pode ser utilizado dentro

de um laço.

Os comandos que sucedem o comando continue no bloco

não são executados.

Abaixo, tem-se um exemplo de um programa que lê, repetidamente, um

número inteiro do usuário e a imprime apenas se ela for maior ou igual a

1 e menor ou igual a 5. Caso o número não esteja nesse intervalo, essa

repetição do laço é desconsiderada e reiniciada:

36

Exemplo: comando continue

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t opcao = 0;

5 while (opcao != 5){
6 p r i n t f (” Escolha uma opcao ent re 1 e 5: ”) ;

7 scanf (”%d ” , &opcao) ;

8 i f ((opcao > 5) | | (opcao < 1))

9 continue ;

10 p r i n t f (” Opcao esco lh ida : %d ” , opcao) ;

11 }
12 system (” pause ”) ;

13 return 0;

14 }

Relembrando o conceito de fluxogramas, é possı́vel ter uma boa representação

de como os comandos do exemplo anterior são um-a-um executados pelo

programa:

2.8 GOTO E LABEL

O comando goto é um salto condicional para um local especificado por

uma palavra chave no código. A forma geral de um comando goto é:

destino:

goto destino;

37

Na sintaxe acima, o comando goto (do inglês go to, literalmente ”ir para”)

muda o fluxo do programa para um local previamente especificado pela ex-

pressão destino, onde destino é uma palavra definida pelo programador.

Este local pode ser a frente ou atrás no programa, mas deve ser dentro da

mesma função.

O teorema da programação estruturada prova que a instrução goto não é

necessária para escrever programas; alguma combinação das três construções

de programação (comandos sequenciais, condicionais e de repetição) são

suficientes para executar qualquer cálculo. Além disso, o uso de goto pode

deixar o programa muitas vezes ilegı́vel.

Exemplo: goto versus for

goto for

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i = 0 ;

5 i n i c i o :

6 i f (i < 5){
7 p r i n t f (” Numero %d\n ”

, i) ;

8 i ++;

9 goto i n i c i o ;

10 }
11 system (” pause ”) ;

12 return 0;

13 }

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i ;

5 for (i = 0 ; i < 5; i ++)

6 p r i n t f (” Numero %d\n ”

, i) ;

7

8 system (” pause ”) ;

9 return 0;

10 }

Como se nota no exemplo acima, o mesmo programa feito com o comando

for é muito mais fácil de entender do que o mesmo programa feito com o

comando goto.

38

Apesar de banido da prática de programação, o comando

goto pode ser útil em determinadas circunstâncias. Ex: sair

de dentro de laços aninhados.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i , j , k ;

5 for (i = 0 ; i < 5; i ++)

6 for (j = 0 ; j < 5; j ++)

7 for (k = 0 ; k < 5; k++)

8 i f (i == 2 && j == 3 && k == 1)

9 goto f im ;

10 else

11 p r i n t f (” Posicao [%d,%d,%d]\n

” , i , j , k) ;

12

13

14 f im :

15 p r i n t f (” Fim do programa\n ”) ;

16

17 system (” pause ”) ;

18 return 0;

19 }

39

3 VETORES E MATRIZES - ARRAYS

3.1 EXEMPLO DE USO

Um array ou ”vetor”é a forma mais comum de dados estruturados da lin-

guagem C. Um array é simplesmente um conjunto de variáveis do mesmo

tipo, igualmente acessı́veis por um ı́ndice.

Imagine o seguinte problema: dada uma relação de 5 es-

tudantes, imprimir o nome de cada estudante, cuja nota é

maior do que a média da classe.

Um algoritmo simples para resolver esse problema poderia ser o pseudo-

código apresentado abaixo:

Leia(nome1, nome2, nome3, nome4, nome5);

Leia(nota1, nota2, nota3, nota4, nota5);

media = (nota1+nota2+nota3+nota4+nota5) / 5,0;

Se nota1 > media então escreva (nome1)

Se nota2 > media então escreva (nome2)

Se nota3 > media então escreva (nome3)

Se nota4 > media então escreva (nome4)

Se nota5 > media então escreva (nome5)

O algoritmo anterior representa uma solução possı́vel para o problema. O

grande inconveniente dessa solução é a grande quantidade de variáveis

para gerenciarmos e o uso repetido de comandos praticamente idênticos.

Essa solução é inviável para uma lista de 100 alunos.

Expandir o algoritmo anterior para trabalhar com um total de 100 alunos

significaria, basicamente, aumentar o número de variáveis para guardar

os dados de cada aluno e repetir, ainda mais, um conjunto de comandos

praticamente idênticos. Desse modo, teriamos:

40

• Uma variável para armazenar cada nome de aluno: 100 variáveis;

• Uma variável para armazenar a nota de cada aluno: 100 variáveis;

• Um comando de teste e impressão na tela para cada aluno: 100

testes.

O pseudo-código abaixo representa o algoritmo anterior expandido para

poder trabalhar com 100 alunos:

Leia(nome1, nome2, ..., nome100);

Leia(nota1, nota2,..., nota100);

media = (nota1+nota2+...+nota100) / 100,0;

Se nota1 > media então escreva (nome1)

Se nota2 > media então escreva (nome2)

...

Se nota100 > media então escreva (nome100)

Como se pode notar, temos uma solução extremamente engessada para

o nosso problema. Modificar o número de alunos usado pelo algoritmo

implica em reescrever todo o código, repetindo comandos praticamente

idênticos. Além disso, temos uma grande quantidade de variáveis para

gerenciar, cada uma com o seu próprio nome, o que torna essa tarefa

ainda mais difı́cil de ser realizada sem a ocorrência de erros.

Como estes dados têm uma relação entre si, podemos de-

clará-los usando um ÚNICO nome para todos os 100 ele-

mentos.

Surge então a necessidade de usar um array.

3.2 ARRAY COM UMA DIMENSÃO - VETOR

A idéia de um array ou ”vetor”é bastante simples: criar um conjunto de

variáveis do mesmo tipo utilizando apenas um nome.

Relembrando o exemplo anterior, onde as variáveis que guardam as notas

dos 100 alunos são todas do mesmo tipo, essa solução permitiria usar

apenas um nome (notas, por exemplo) de variável para representar todas

as notas dos alunos, ao invés de um nome para cada variável.

41

Em linguagem C, a declaração de um array segue a seguinte forma geral:

tipo dado nome array[tamanho];

O comando acima define um array de nome nome array contendo tama-

nho elementos adjacentes na memória. Cada elemento do array é do tipo

tipo dado. Pensando no exemplo anterior, poderı́amos usar uma array de

inteiros contendo 100 elementos para guardar as notas dos 100 alunos:

int notas[100];

Como cada nota do aluno possui agora o mesmo nome que as demais

notas dos outros alunos, o acesso ao valor de cada nota é feito utilizando

um ı́ndice.

Para indicar qual ı́ndice do array queremos acessar, utiliza-

se o operador de colchetes [].

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t notas [1 0 0] ;

5 i n t i ;

6 for (i = 0 ; i < 100; i ++){
7 p r i n t f (” D i g i t e a nota do aluno %d ” , i) ;

8 scanf (”%d ” ,& notas [i]) ;

9 }
10 system (” pause ”) ;

11 return 0;

12 }

No exemplo acima, percebe-se que cada posição do array possui todas

as caracterı́sticas de uma variável. Isso significa que ela pode aparecer

em comandos de entrada e saı́da de dados, expressões e atribuições. Por

exemplo:

42

scanf(”%d”,¬as[5]);

notas[0] = 10;

notas[1] = notas[5] + notas[0];

O tempo para acessar qualquer uma das posições do array

é o mesmo.

Lembre-se, cada posição do array é uma variável. Portanto, todas as

posições do array são igualmente acessı́veis, isto é, o tempo e o tipo de

procedimento para acessar qualquer uma das posições do array são iguais

ao de qualquer outra variável.

Na linguagem C a numeração começa sempre do ZERO e

termina em N-1, onde N é o número de elementos do array.

Isto significa que, no exemplo anterior, as notas dos alunos serão indexa-

das de 0 a 99:

notas[0]

notas[1]

...

notas[99]

Isso acontece pelo seguinte motivo: um array é um agrupamento de da-

dos, do mesmo tipo, adjacentes na memória. O nome do array indica

onde esses dados começam na memória. O ı́ndice do array indica quantas

posições se deve pular para acessar uma determinada posição. A figura

abaixo exemplifica como o array está na memória:

Num array de 100 elementos, ı́ndices menores do que

0 e maiores do que 99 também podem ser acessados.

Porém, isto pode resultar nos mais variados erros durante

a execução do programa.

Como foi explicado, um array é um agrupamento de dados adjacentes na

memória e o seu ı́ndice apenas indica quantas posições se deve pular para

43

acessar uma determinada posição. Isso significa que se tentarmos acessar

o ı́ndice 100, o programa tentará acessar a centésima posição a partir da

posição inicial (que é o nome do array). O mesmo vale para a posição de

ı́ndice -1. Nesse caso o programa tentará acessar uma posição anterior ao

local onde o array começa na memória. O problema é que, apesar dessas

posições existirem na memória e serem acessı́veis, elas não pertencer ao

array. Pior ainda, elas podem pertencer a outras variáveis do programa, e

a alteração de seus valores pode resultar nos mais variados erros durante

a execução do programa.

É função do programador garantir que os limites do array

estão sendo respeitados.

Deve-se tomar cuidado ao se rabalhar com arrays. Prncipalmente ao se

usar a operação de atribuição (=).

44

Não se pode fazer atribuição de arrays.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t v [5] = {1 ,2 ,3 ,4 ,5} ;

5 i n t v1 [5] ;

6 v1 = v ; / /ERRO!

7

8 system (” pause ”) ;

9 return 0;

10 }

Isso ocorre porque a linguagem C não suporta a atribuição de um array

para outro. Para atribuir o conteúdo de um array a outro array, o correto é

copiar seus valores elemento por elemento para o outro array.

3.3 ARRAY COM DUAS DIMENSÕES - MATRIZ

Os arrays declarados até o momento possuem apenas uma dimensão. Há

casos, em que uma estrutura com mais de uma dimensão é mais útil. Por

exemplo, quando trabalhamos com matrizes, onde os valores são organi-

zados em uma estrutura de linhas e colunas.

Em linguagem C, a declaração de uma matriz segue a seguinte forma ge-

ral:

tipo dado nome array[nro linhas][nro colunas];

O comando acima define um array de nome nome array contendo nro linhas

× nro colunas elementos adjacentes na memória. Cada elemento do array

é do tipo tipo dado.

Por exemplo, para criar um array de inteiros que possua 100 linhas e

50 colunas, isto é, uma matriz de inteiros de tamanho 100×50, usa-se

a declaração abaixo:

int mat[100][50];

Como no caso dos arrays de uma única dimensão, cada posição da ma-

triz possui todas as caracterı́sticas de uma variável. Isso significa que ela

45

pode aparecer em comandos de entrada e saı́da de dados, expressões e

atribuições:

scanf(”%d”,&mat[5][0]);

mat[0][0] = 10;

mat[1][2] = mat[5][0] + mat[0][0];

Perceba, no entanto, que o acesso ao valor de uma posição da matriz é

feito agora utilizando dois ı́ndices: um para a linha e outro para a coluna.

Lembre-se, cada posição do array é uma variável. Portanto, todas as

posições do array são igualmente acessı́veis, isto é, o tempo e o tipo de

procedimento para acessar qualquer uma das posições do array são iguais

ao de qualquer outra variável.

3.4 ARRAYS MULTIDIMENSIONAIS

Vimos até agora como criar arrays com uma ou duas dimensões. A lingua-

gem C permite que se crie arrays com mais de duas dimensões de maneira

fácil.

Na linguagem C, cada conjunto de colchetes [] representa

uma dimensão do array.

Cada par de colchetes adicionado ao nome de uma variável durante a sua

declaração adiciona uma nova dimensão àquela variável, independente do

seu tipo:

int vet[5]; // 1 dimensão

46

float mat[5][5]; // 2 dimensões

double cub[5][5][5]; // 3 dimensões

int X[5][5][5][5]; // 4 dimensões

O acesso ao valor de uma posição de um array multidimen-

sional é feito utilizando um ı́ndice para cada dimensão do

array.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t cub [5] [5] [5] ;

5 i n t i , j , k ;

6 / / preenche o ar ray de 3 dimensões com zeros

7 for (i =0; i < 5; i ++){
8 for (j =0; j < 5; j ++){
9 for (k =0; k < 5; k++){

10 cub [i] [j] [k] = 0 ;

11 }
12 }
13 }
14

15 system (” pause ”) ;

16 return 0;

17 }

Apesar de terem o comportamento de estruturas com mais de uma di-

mensão, os dados dos arrays multidimensionais são armazenados line-

armente na memória. É o uso dos colchetes que cria a impressão de

estarmos trabalhando com mais de uma dimensão.

Por esse motivo, é importante ter em mente qual a dimensão que se move

mais rapidamente na memória: sempre a mais a direita, independente do

tipo ou número de dimensões do array, como se pode ver abaixo marcado

em vermelho:

47

int vet[5]; // 1 dimensão

float mat[5][5]; // 2 dimensões

double cub[5][5][5]; // 3 dimensões

int X[5][5][5][5]; // 4 dimensões

Basicamente, um array multidimensional funciona como

qualquer outro array. Basta lembrar que o ı́ndice que va-

ria mais rapidamente é o ı́ndice mais à direita.

3.5 INICIALIZAÇÃO DE ARRAYS

Um array pode ser inicializado com certos valores durante sua declaração.

Isso pode ser feito com qualquer array independente do tipo ou número de

dimensões do array.

A forma geral de inicialização de um array é:

tipo dado nome array[tam1][tam2]...[tamN] = {dados };

Na declaração acima, dados é uma lista de valores (do mesmo tipo do ar-

ray) separados por vı́rgula e delimitado pelo operador de chaves {}. Esses

valores devem ser colocados na mesma ordem em que serão colocados

dentro do array.

A inicialização de uma array utilizando o operador de cha-

ves {}só pode ser feita durante sua declaração.

A inicialização de uma array consiste em atribuir um valor inicial a cada

posição do array. O operador de chaves apenas facilita essa tarefa, como

mostra o exemplo abaixo:

48

Exemplo: inicializando um array

Com o operador de {} Sem o operador de {}

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t vet [5] =

{15 ,12 ,91 ,35} ;

5

6 system (” pause ”) ;

7 return 0;

8 }

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t vet [5] ;

5 vet [0] = 15;

6 vet [1] = 12;

7 vet [2] = 9 ;

8 vet [3] = 1 ;

9 vet [4] = 35;

10

11 system (” pause ”) ;

12 return 0;

13 }

Abaixo são apresentados alguns exemplos de inicialização de arrays de

diferentes tipos e número de dimensões:

Exemplos: inicializando um array

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t matr iz1 [3] [4] = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12} ;

5 i n t matr iz2 [3] [4] = {{1 ,2 ,3 ,4} ,{5 ,6 ,7 ,8} ,{9 ,10 ,11 ,12}} ;

6

7 char s t r 1 [1 0] = { ’ J ’ , ’ o ’ , ’ a ’ , ’ o ’ , ’ \0 ’ } ;

8 char s t r 2 [1 0] = ” Joao ” ;

9

10 char s t r m a t r i z [3] [1 0] = { ” Joao ” , ” Maria ” , ” Jose ” } ;

11

12 system (” pause ”) ;

13 return 0;

14 }

Note no exemplo acima que a inicialização de um array de 2 dimensões

pode ser feita de duas formas distintas. Na primeira matriz (matriz1) os

valores iniciais da matriz são definidos utilizando um único conjunto de

chaves {}, igual ao que é feito com vetores. Nesse caso, os valores são

atribuı́dos para todas as colunas da primeira linha da matriz, para depois

passar para as colunas da segunda linha e assim por diante. Lembre-se,

a dimensão que se move mais rapidamente na memória é sempre a mais

a direita, independente do tipo ou número de dimensões do array. Já na

segunda matriz (matriz2) usa-se mais de um conjunto de chaves {}para

definir cada uma das dimensões da matriz.

49

Para a inicialização de um array de caracteres, pode-se usar o mesmo

princı́pio definido na inicialização de vetores (str1). Percebe-se que essa

forma de inicialização não é muito prática. Por isso, a inicialização de um

array de caracteres também pode ser feita por meio de ”aspas duplas”,

como mostrado na inicialização de str2. O mesmo princı́pio é válido para

iniciar um array de caracteres de mais de uma dimensão.

Na inicialização de um array de caracteres não é ne-

cessário definir todos os seus elementos.

3.5.1 INICIALIZAÇÃO SEM TAMANHO

A linguagem C também permite inicializar um array sem que tenhamos

definido o seu tamanho. Nesse caso, simplesmente não se coloca o valor

do tamanho entre os colchetes durante a declaração do array:

tipo dado nome array[] = {dados };

Nesse tipo de inicialização, o compilador da linguagem C vai considerar o

tamanho do dado declarado como sendo o tamanho do array. Isto ocorre

durante a compilação do programa. Depois disso, o tamanho do array não

poderá mais ser modificado durante o programa.

Abaixo são apresentados alguns exemplos de inicialização de arrays sem

tamanhos:

Exemplos: inicializando um array sem tamanho

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 / / A s t r i n g tex to te r á tamanho 13

5 / / (12 carac te res + o carac te re ’\0 ’)

6 char t e x t o [] = ” Linguagem C. ” ;

7

8 / / O número de posi ç ões do ve to r será 10.

9 i n t ve to r [] = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10} ;

10

11 / /O número de l i n h a s de mat r i z será 5 .

12 i n t mat r i z [] [2] = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10} ;

13

14 system (” pause ”) ;

15 return 0;

16 }

50

Note no exemplo acima que foram utilizados 12 caracteres para iniciar o

array de char ”texto”. Porém, o seu tamanho final será 13. Isso ocorre por

que arrays de caracteres sempre possuem o elemento seguinte ao último

caractere como sendo o caractere ’\0’. Mais detalhes sobre isso podem

ser vistos na seção seguinte.

Esse tipo de inicialização é muito útil quando não queremos

contar quantos caracteres serão necessários para iniciali-

zarmos uma string (array de caracteres).

No caso da inicialização de arrays de mais de uma dimensão, é necessário

sempre definir as demais dimensões. Apenas a primeira dimensão pode

ficar sem tamanho definido.

3.6 EXEMPLO DE USO DE ARRAYS

Nesta seção são apresentados alguns exemplos de operações básicas de

manipulação de vetores e matrizes em C.

Somar os elementos de um vetor de 5 inteiros

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i , l i s t a [5] = {3 ,51 ,18 ,2 ,45} ;

5 i n t soma = 0;

6 for (i =0; i < 5; i ++)

7 soma = soma + l i s t a [i] ;

8 p r i n t f (”Soma = %d ” ,soma) ;

9 system (” pause ”) ;

10 return 0;

11 }

51

Encontrar o maior valor contido em um vetor de 5 inteiros

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i , l i s t a [5] = {3 ,18 ,2 ,51 ,45} ;

5 i n t Maior = l i s t a [0] ;

6 for (i =1; i <5; i ++){
7 i f (Maior < l i s t a [i])

8 Maior = l i s t a [i] ;

9 }
10 p r i n t f (” Maior = %d ” , Maior) ;

11 system (” pause ”) ;

12 return 0;

13 }

Calcular a média dos elementos de um vetor de 5 inteiros

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t i , l i s t a [5] = {3 ,51 ,18 ,2 ,45} ;

5 i n t soma = 0;

6 for (i =0; i < 5; i ++)

7 soma = soma + l i s t a [i] ;

8 f l o a t media = soma / 5 . 0 ;

9 p r i n t f (” Media = %f ” , media) ;

10 system (” pause ”) ;

11 return 0;

12 }

Somar os elementos de uma matriz de inteiros

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t mat [3] [3] = {{1 ,2 ,3} ,{4 ,5 ,6} ,{7 ,8 ,9}} ;

5 i n t i , j , soma = 0;

6 for (i =0; i < 3; i ++)

7 for (j =0; j < 3; j ++)

8 soma = soma + mat [i] [j] ;

9 p r i n t f (”Soma = %d ” ,soma) ;

10 system (” pause ”) ;

11 return 0;

12 }

52

Imprimir linha por linha uma matriz

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t mat [3] [3] = {{1 ,2 ,3} ,{4 ,5 ,6} ,{7 ,8 ,9}} ;

5 i n t i , j ;

6 for (i =0; i < 3; i ++){
7 for (j =0; j < 3; j ++)

8 p r i n t f (”%d ” , mat [i] [j]) ;

9 p r i n t f (” \n ”) ;

10 }
11 system (” pause ”) ;

12 return 0;

13 }

53

4 ARRAYS DE CARACTERES - STRINGS

4.1 DEFINIÇÃO E DECLARAÇÃO DE STRINGS

String é o nome que usamos para definir uma seqüência de caracteres ad-

jacentes na memória do computador. Essa seqüência de caracteres, que

pode ser uma palavra ou frase, é armazenada na memória do computador

na forma de um arrays do tipo char.

Sendo a string um array de caracteres, sua declaração segue as mesmas

regras da declaração de um array convecnional:

char str[6];

A declaração acima cria na memória do computador uma string (array de

caracteres) de nome str e tamanho igual a 6. No entanto, apesar de ser um

array, devemos ficar atentos para o fato de que as strings têm no elemento

seguinte a última letra da palavra/frase armazenada um caractere ’\0’.

O caractere ’\0’ indica o fim da seqüência de caracteres.

Isso ocorre por que podemos definir uma string com um tamanho maior

do que a palavra armazenada. Imagine uma string definida com um tama-

nho de 50 caracteres, mas utilizada apenas para armazenar a palavra ”oi”.

Nesse caso, temos 48 posições não utilizadas e que estão preenchidas

com lixo de memória (um valor qualquer). Obviamente, não queremos

que todo esse lixo seja considerado quando essa string for exibida na tela.

Assim, o caractere ’\0’ indica o fim da seqüência de caracteres e o inı́cio

das posições restantes da nossa string que não estão sendo utilizadas

nesse momento.

Ao definir o tamanho de uma string, devemos considerar o

caractere ’\0’.

54

Como o caractere ’\0’ indica o final de nossa string, isso significa que numa

string definida com um tamanho de 50 caracteres, apenas 49 estarão dis-

ponı́veis para armazenar o texto digitado pelo usuário.

Uma string pode ser lida do teclado ou já ser definida com um valor ini-

cial. Para sua inicialização, pode-se usar o mesmo princı́pio definido na

inicialização de vetores e matrizes:

char str [10] = {’J’, ’o’, ’a’, ’o’, ’\0’ };

Percebe-se que essa forma de inicialização não é muito prática. Por isso, a

inicialização de strings também pode ser feita por meio de ”aspas duplas”:

char str [10] = ”Joao”;

Essa forma de inicialização possui a vantagem de já inserir o caractere ’\0’

no final da string.

Outro ponto importante na manipulação de strings é que, por se tratar de

um array, cada caractere pode ser acessado individualmente por indexação

como em qualquer outro vetor ou matriz:

char str[6] = ”Teste”;

str[0] = ’L’;

Na atribuição de strings usa-se ”aspas duplas”, enquanto

que na de caracteres, usa-se ’aspas simples’.

55

4.2 TRABALHANDO COM STRINGS

O primeiro cuidado que temos que tomar ao se trabalhar com strings é na

operação de atribuição.

Strings são arrays. Portanto, não se pode fazer atribuição

de strings.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 char s t r 1 [2 0] = ” He l lo World ” ;

5 char s t r 2 [2 0] ;

6

7 s t r 1 = s t r 2 ; / /ERRO!

8

9 system (” pause ”) ;

10 return 0;

11 }

Isso ocorre porque uma string é um array e a linguagem C não suporta a

atribuição de um array para outro. Para atribuir o conteúdo de uma string a

outra, o correto é copiar a string elemento por elemento para a outra string.

Exemplo: Copiando uma string

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t count ;

5 char s t r 1 [2 0] = ” He l lo World ” , s t r 2 [2 0] ;

6 for (count = 0 ; s t r 1 [count] ! = ’ \0 ’ ; count ++)

7 s t r 2 [count] = s t r 1 [count] ;

8 s t r 2 [count] = ’ \0 ’ ;

9 system (” pause ”) ;

10 return 0;

11 }

O exemplo acima permite copiar uma string elemento por elemento para

outra string. Note que foi utilizada a mesma forma de indexação que seria

feita com um array de qualquer outro tipo (int, float, etc). Infelizmente,

esse tipo de manipulação de arrays não é muito prática quando estamos

trabalhando com palavras.

56

Felizmente, a biblioteca padrão da linguagem C possui

funções especialmente desenvolvidas para a manipulação

de strings na bibloteca <string.h>.

A seguir, serão apresentadas algumas das funções mais utilizadas para a

leitura, escrita e manipulação de strings.

4.2.1 LENDO UMA STRING DO TECLADO

Existem várias maneiras de se fazer a leitura de uma sequência de carac-

teres do teclado. Uma delas é utilizando o já conhecido comando scanf()

com o formato de dados ”%s”:

char str[20];

scanf(”%s”,str);

Quando usamos o comando scanf() para ler uma string, o

sı́mbolo de & antes do nome da variável não é utilizado.

Infelizmente, para muitos casos, o comando scanf() não é a melhor opção

para se ler uma string do teclado.

O comando scanf() lê apenas strings digitadas sem

espaços, ou seja palavras.

No caso de ter sido digitada uma frase (uma sequência de caracteres con-

tendo espaços) apenas os caracteres digitados antes do primeiro espaço

encontrado serão armazenados na string.

Uma alternativa mais eficiente para a leitura de uma string é a função

gets(), a qual faz a leitura do teclado considerando todos os caracteres

digitados (incluindo os espaços) até encontrar uma tecla enter:

char str[20];

gets(str);

57

às vezes, podem ocorrer erros durante a leitura de caracteres ou strings

do teclado. Para resolver esse pequenos erros, podemos limpar o buffer

do teclado (entrada padrão) usando a função setbuf(stdin, NULL) antes

de realizar a leitura de caracteres ou strings:

Exemplo: limpando o buffer do teclado

leitura de caracteres leitura de strings

1 char ch ;

2 se tbu f (s td in , NULL) ;

3 scanf (”%c ” , &ch) ;

1 char s t r [1 0] ;

2 se tbu f (s td in , NULL) ;

3 gets (s r t) ;

Basicamente, a função setbuf preenche um buffer (primeiro parâmetro)

com um determinado valor (segundo parâmetro). No exemplo acima, o

buffer da entrada padrão (stdin) é preenchido com o valor vazio (NULL).

Na linguagem C a palavra NULL é uma constante padrão que significa um

valor nulo. Um buffer preenchido com NULL é considerado limpo/vazio.

Basicamente, para se ler uma string do teclado utilizamos a função gets().

No entanto, existe outra função que, utilizada de forma adequada, também

permite a leitura de strings do teclado. Essa função é a fgets(), cujo

protótipo é:

char *fgets (char *str, int tamanho,FILE *fp);

A função fgets() recebe 3 parâmetros de entrada

• str: a string a ser lida;

• tamanho: o limite máximo de caracteres a serem lidos;

• fp: a variável que está associado ao arquivo de onde a string será

lida.

e retorna

• NULL: no caso de erro ou fim do arquivo;

• O ponteiro para o primeiro caractere da string recuperada em str.

Note que a função fgets utiliza uma variável FILE *fp, que está associado

ao arquivo de onde a string será lida.

58

Para ler do teclado, basta substituir FILE *fp por stdin,

o qual representa o dispositivo de entrada padrão (geral-

mente o teclado).

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 char nome [3 0] ;

5 p r i n t f (” D i g i t e um nome : ”) ;

6 f ge t s (nome, 30 , s t d i n) ;

7 p r i n t f (”O nome d i g i t a d o f o i : %s ” ,nome) ;

8 system (” pause ”) ;

9 return 0;

10 }

Como a função gets(), a função fgets() lê a string do teclado até que um

caractere de nova linha (enter) seja lido. Apesar de parecerem iguais, a

função fgets possui algumas diferenças e vantagens sobre a gets

Se o caractere de nova linha (’\n’) for lido, ele fará parte da

string, o que não acontecia com gets.

A função gets() armazena tudo que for digitado até o comando de enter.

Já a função fgets() armazena tudo que for digitado, incluindo o comando

de enter (’\n’).

A função fgets() especı́fica o tamanho máximo da string de

entrada.

Diferente da função gets(), a função fgets() lê a string até que um caractere

de nova linha seja lido ou tamanho-1 caracteres tenham sido lidos. Isso

evita o estouro do buffer, que ocorre quando se tenta ler algo maior do que

pode ser armazenado na string.

4.2.2 ESCREVENDO UMA STRING NA TELA

Basicamente, para se escrever uma string na tela utilizamos a função

printf() com o formato de dados ”%s”:

59

char str[20] = ”Hello World”;

printf(”%s”,str);

Para escrever uma string, utilizamos o tipo de saı́da ”%s”.

No entanto, existe uma outra função que, utilizada de forma adequada,

também permite a escrita de strings. Essa função é a fputs(), cujo protótipo

é:

int fputs (char *str,FILE *fp);

A função fputs() recebe 2 parâmetros de entrada

• str: a string (array de caracteres) a ser escrita na tela;

• fp: a variável que está associado ao arquivo onde a string será es-

crita.

e retorna

• a constante EOF (em geral, -1), se houver erro na escrita;

• um valor diferente de ZERO, se o texto for escrito com sucesso.

Note que a função fputs utiliza uma variável FILE *fp, que está associado

ao arquivo onde a string será escrita.

Para escrever no monitor, basta substituir FILE *fp por st-

dout, o qual representa o dispositivo de saı́da padrão (ge-

ralmente a tela do monitor).

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 \ t e x t b f {char} t e x t o [3 0] = ” He l lo World\n ” ;

5 f pu t s (tex to , s tdou t) ;

6 system (” pause ”) ;

7 return 0;

8 }

60

4.3 FUNÇÕES PARA MANIPULAÇÃO DE STRINGS

A biblioteca padrão da linguagem C possui funções especialmente desen-

volvidas para a manipulação de strings na bibloteca <string.h>. A seguir

são apresentadas algumas das mais utilizadas.

4.3.1 TAMANHO DE UMA STRING

Para se obter o tamanho de uma string, usa-se a função strlen():

char str[15] = ”teste”;

printf(”%d”,strlen(str));

Neste caso, a função retornará 5, que é o número de caracteres na palavra

”teste”e não 15, que é o tamanho do array de caracteres.

A função strlen() retorna o número de caracteres até o ca-

ractere ’\0’, e não o tamanho do array onde a string está

armazenada.

4.3.2 COPIANDO UMA STRING

Vimos que uma string é um array e que a linguagem C não suporta a

atribuição de um array para outro. Nesse sentido, a única maneira de atri-

buir o conteúdo de uma string a outra é a copia, elemento por elemento,

de uma string para outra. A linguagem C possui uma função que realiza

essa tarefa para nós: a função strcpy():

strcpy(char *destino, char *origem)

Basicamente, a função strcpy() copia a seqüência de caracteres contida

em origem para o array de caracteres destino:

61

Exemplo: strcpy()

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 char s t r 1 [100] , s t r 2 [1 0 0] ;

5 p r i n t f (” Entre com uma s t r i n g : ”) ;

6 gets (s t r 1) ;

7 s t r cpy (s t r2 , s t r 1) ;

8 system (” pause ”) ;

9 return 0;

10 }

Para evitar estouro de buffer, o tamanho do array destino

deve ser longo o suficiente para conter a seqüência de ca-

racteres contida em origem.

4.3.3 CONCATENANDO STRINGS

A operação de concatenação é outra tarefa bastante comum ao se tra-

balhar com strings. Basicamente, essa operação consistem em copiar

uma string para o final de outra string. Na linguagem C, para se fazer a

concatenação de duas strings, usa-se a função strcat():

strcat(char *destino, char *origem)

Basicamente, a função strcat() copia a seqüência de caracteres contida

em origem para o final da string destino. O primeiro caractere da string

contida em origem é colocado no lugar do caractere ’\0’ da string destino:

Exemplo: strcat()

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 char s t r 1 [1 5] = ”bom ” ;

5 char s t r 2 [1 5] = ” d ia ” ;

6 s t r c a t (s t r1 , s t r 2) ;

7 p r i n t f (”%s ” , s t r 1) ;

8 system (” pause ”) ;

9 return 0;

10 }

Para evitar estouro de buffer, o tamanho do array destino

deve ser longo o suficiente para conter a seqüência de ca-

racteres contida em ambas as strings: origem e destino.

62

4.3.4 COMPARANDO DUAS STRINGS

Da mesma maneira como o operador de atribuição não funciona para

strings, o mesmo ocorre com operadores relacionais usados para com-

parar duas strings. Desse modo, para saber se duas strings são iguais

usa-se a função strcmp():

int strcmp(char *str1, char *str2)

A função strcmp() compara posição a posição as duas strings (str1 e str2)

e retorna um valor inteiro igual a zero no caso das duas strings serem

igausi. Um valor de retorno diferente de zero significa que as strings são

diferentes:

Exemplo: strcmp()

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 char s t r 1 [100] , s t r 2 [1 0 0] ;

5 p r i n t f (” Entre com uma s t r i n g : ”) ;

6 gets (s t r 1) ;

7 p r i n t f (” Entre com out ra s t r i n g : ”) ;

8 gets (s t r 2) ;

9 i f (strcmp (s t r1 , s t r 2) == 0)

10 p r i n t f (” S t r i ngs i g u a i s \n ”) ;

11 else

12 p r i n t f (” S t r i ngs d i f e r e n t e s \n ”) ;

13 system (” pause ”) ;

14 return 0;

15 }

A função strcmp() é case-sensitive. Isso significa que le-

tras maiusculas e minusculas tornam as strings diferentes.

63

5 TIPOS DEFINIDOS PELO PROGRAMADOR

Os tipos de variáveis vistos até agora podem ser classificados em duas

categorias:

• tipos básicos: char, int, float, double e void;

• tipos compostos homogêneos: array.

Dependendo da situação que desejamos modelar em nosso programa, es-

ses tipos existentes podem não ser suficientes. Por esse motivo, a lingua-

gem C permite criar novos tipos de dados a partir dos tipos básicos. Para

criar um novo tipo de dado, um dos seguintes comandos pode ser utlizado:

• Estruturas: comando struct

• Uniões: comando union

• Enumerações: comando enum

• Renomear um tipo existente: comando typedef

Nas seções seguintes, cada um desses comandos será apresentado em

detalhes.

5.1 ESTRUTURAS

Uma estrutura pode ser vista como uma lista de variáveis, sendo que cada

uma delas pode ter qualquer tipo. A idéia básica por trás da estrutura é

criar apenas um tipo de dado que contenha vários membros, que nada

mais são do que outras variáveis.

A forma geral da definição de uma nova estrutura é utilizando o comando

struct:

struct nomestruct{

tipo1 campo1;

tipo2 campo2;

...

tipon campoN;

};

64

A principal vantagem do uso de estruturas é que agora podemos agrupar

de forma organizada vários tipos de dados diferentes dentro de uma única

variável.

As estruturas podem ser declaradas em qualquer escopo

do programa (global ou local).

Apesar disso, a maioria das estruturas são declaradas no escopo global.

Por se tratar de um novo tipo de dado, muitas vezes é interessante que

todo o programa tenha acesso a estrutura. Daı́ a necessidade de usar o

escopo global.

Abaixo, tem-se um exemplo de uma estrutura declarada para representar

o cadastro de uma pessoa:

Exemplo de estrutura.

1 struct cadastro{
2 char nome [5 0] ;

3 i n t idade ;

4 char rua [5 0] ;

5 i n t numero ;

6 } ;

Note que os campos da estrutura são definidos da mesma forma que

variáveis. Como na declaração de variáveis, os nomes dos membros de

uma estrutra devem ser diferentes um do outro. Porém, estrutras diferentes

podem ter membros com nomes iguais:

struct cadastro{

char nome[50];

int idade;

char rua[50];

int numero; };

65

struct aluno{

char nome[50];

int matricula

float nota1,nota2,nota3;

};

Depois do sı́mbolo de fecha chaves (}) da estrutura é ne-

cessário colocar um ponto e vı́rgula (;).

Isso é necessário uma vez que a estrutura pode ser também declarada no

escopo local. Por questões de simplificações, e por se tratar de um novo

tipo, é possı́vel logo na definição da struct definir algumas variáveis desse

tipo. Para isso, basta colocar os nomes das variáveis declaradas após o

comando de fecha chaves (}) da estrutura e antes do ponto e vı́rgula (;):

struct cadastro{

char nome[50];

int idade;

char rua[50];

int numero;

} cad1, cad2;

No exemplo acima, duas variáveis (cad1 e cad2) são declaradas junto com

a definição da estrutura.

Uma vez definida a estrutura, uma variável pode ser declarada de modo

similar aos tipos já existente:

struct cadastro c;

Por ser um tipo definido pelo programador, usa-se a palavra

struct antes do tipo da nova variável declarada.

O uso de estruturas facilita muito a vida do programador na manipulação

dos dados do programa. Imagine ter que declarar 4 cadastros, para 4

pessoas diferentes:

66

char nome1[50], nome2[50], nome3[50], nome4[50];

int idade1, idade2, idade3, idade4;

char rua1[50], rua2[50], rua3[50], rua4[50];

int numero1, numero2, numero3, numero4;

Utilizando uma estrutura, o mesmo pode ser feito da seguinte maneira:

struct cadastro c1, c2, c3, c4;

Uma vez definida uma variável do tipo da estrutura, é preciso poder aces-

sar seus campos (ou variáveis) para se trabalhar.

Cada campo (variável) da estrutura pode ser acessada

usando o operador ”.”(ponto).

O operador de acesso aos campos da estrutura é o ponto (.). Ele é usado

para referenciar os campos de uma estrutura. O exemplo abaixo mostra

como os campos da estrutura cadastro, definida anteriormente, odem ser

facilmente acessados:

Exemplo: acessando as variáveis de dentro da estrutura

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 struct cadastro{
4 char nome [5 0] ;

5 i n t idade ;

6 char rua [5 0] ;

7 i n t numero ;

8 } ;

9 i n t main () {
10 struct cadastro c ;

11 / / A t r i b u i a s t r i n g ” Car los ” para o campo nome

12 s t r cpy (c . nome, ” Car los ”) ;

13

14 / / A t r i b u i o va l o r 18 para o campo idade

15 c . idade = 18;

16

17 / / A t r i b u i a s t r i n g ” Avenida B r a s i l ” para o campo rua

18 s t r cpy (c . rua , ” Avenida B r a s i l ”) ;

19

20 / / A t r i b u i o va l o r 1082 para o campo numero

21 c . numero = 1082;

22

23 system (” pause ”) ;

24 return 0;

25 }

67

Como se pode ver, cada campo da esrutura é tratado levando em consideração

o tipo que foi usado para declará-la. Como os campos nome e rua são

strings, foi preciso usar a função strcpy() para copiar o valor para esses

campos.

E se quiséssemos ler os valores dos campos da estrutura

do teclado?

Nesse caso, basta ler cada variável da estrutura independentemente, res-

peitando seus tipos, como é mostrado no exemplo abaixo:

Exemplo: lendo do teclado as variáveis da estrutura

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 struct cadastro{
4 char nome [5 0] ;

5 i n t idade ;

6 char rua [5 0] ;

7 i n t numero ;

8 } ;

9 i n t main () {
10 struct cadastro c ;

11 / / Lê do tec lado uma s t r i n g e armazena no campo nome

12 gets (c . nome) ;

13

14 / / Lê do tec lado um va lo r i n t e i r o e armazena no campo idade

15 scanf (”%d ” ,&c . idade) ;

16

17 / / Lê do tec lado uma s t r i n g e armazena no campo rua

18 gets (c . rua) ;

19

20 / / Lê do tec lado um va lo r i n t e i r o e armazena no campo numero

21 scanf (”%d ” ,&c . numero) ;

22 system (” pause ”) ;

23 return 0;

24 }

Note que cada variável dentro da estrutura pode ser acessada como se

apenas ela existisse, não sofrendo nenhuma interferência das outras.

Lembre-se: uma estrutura pode ser vista como um simples

agrupamento de dados.

68

Como cada campo é independente um do outro, outros operadores podem

ser aplicados a cada campo. Por exemplo, pode se comparar a idade de

dois cadastros.

5.1.1 INICIALIZAÇÃO DE ESTRUTURAS

Assim como nos arrays, uma estrutura também pode ser inicializada, inde-

pendente do tipo das variáveis contidas nela. Para tanto, na declaração da

variável do tipo da estrutura, basta definir uma lista de valores separados

por vı́rgula e delimitado pelo operador de chaves {}.

struct cadastro c = {”Carlos”,18,”Avenida Brasil”,1082 };

Nesse caso, como nos arrays, a ordem é mantida. Isso significa que o

primeiro valor da inicialização será atribuı́do a primeira variável membro

(nome) da estrutura e assim por diante.

Elementos omitidos durante a inicialização são inicializados com 0. Se for

uma string, a mesma será inicializada com uma string vazia ().

struct cadastro c = {”Carlos”,18 };

No exemplo acima, o campo rua é inicializado com e numero com zero.

5.1.2 ARRAY DE ESTRUTURAS

Voltemos ao problema do cadastro de pessoas. Vimos que o uso de es-

truturas facilita muito a vida do programador na manipulação dos dados do

programa. Imagine ter que declarar 4 cadastros, para 4 pessoas diferen-

tes:

char nome1[50], nome2[50], nome3[50], nome4[50];

int idade1, idade2, idade3, idade4;

char rua1[50], rua2[50], rua3[50], rua4[50];

int numero1, numero2, numero3, numero4;

Utilizando uma estrutura, o mesmo pode ser feito da seguinte maneira:

69

struct cadastro c1, c2, c3, c4;

A representação desses 4 cadastros pode ser ainda mais simplificada se

utilizarmos o conceito de arrays:

struct cadastro c[4];

Desse modo, cria-se um array de estruturas, onde cada posição do array é

uma estrutura do tipo cadastro.

A declaração de uma array de estruturas é similar a

declaração de uma array de um tipo básico.

A combinação de arrays e estruturas permite que se manipule de modo

muito mais prático várias variáveis de estrutura. Como vimos no uso de

arrays, o uso de um ı́ndice permite que usemos comando de repetição para

executar uma mesma tarefa para diferentes posições do array. Agora, os

quatro cadastros anteriores podem ser lidos com o auxı́lio de um comando

de repetição:

Exemplo: lendo um array de estruturas do teclado

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 struct cadastro{
4 char nome [5 0] ;

5 i n t idade ;

6 char rua [5 0] ;

7 i n t numero ;

8 } ;

9 i n t main () {
10 struct cadastro c [4] ;

11 i n t i ;

12 for (i =0; i <4; i ++){
13 gets (c [i] . nome) ;

14 scanf (”%d ” ,&c [i] . idade) ;

15 gets (c [i] . rua) ;

16 scanf (”%d ” ,&c [i] . numero) ;

17 }
18 system (” pause ”) ;

19 return 0;

20 }

Em um array de estruturas, o operador de ponto (.) vem

depois dos colchetes [] do ı́ndice do array.

70

Essa ordem deve ser respeitada pois o ı́ndice do array é quem indica qual

posição do array queremso acessar, onde cada posição do array é uma

estrutura. Somente depois de definida qual das estruturas contidas dentro

do array nós queremos acessar é que podemos acessar os seus campos.

5.1.3 ATRIBUIÇÃO ENTRE ESTRUTURAS

As únicas operações possı́veis em um estrutura são as de acesso aos

membros da estrutura, por meio do operador ponto (.), e as de cópia ou

atribuição (=). A atribuição entre duas variáveis de estrutura faz com que os

contéudos das variáveis contidas dentro de uma estrutura sejam copiado

para outra estrutura.

Atribuições entre estruturas só podem ser feitas quando as

estruturas são AS MESMAS, ou seja, possuem o mesmo

nome!

Exemplo: atribuição entre estruturas

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 struct ponto {
5 i n t x ;

6 i n t y ;

7 } ;

8

9 struct novo ponto {
10 i n t x ;

11 i n t y ;

12 } ;

13

14 i n t main () {
15 struct ponto p1 , p2= {1 ,2} ;

16 struct novo ponto p3= {3 ,4} ;

17

18 p1 = p2 ;

19 p r i n t f (” p1 = %d e %d ” , p1 . x , p1 . y) ;

20

21 / /ERRO! TIPOS DIFERENTES

22 p1 = p3 ;

23 p r i n t f (” p1 = %d e %d ” , p1 . x , p1 . y) ;

24

25 system (” pause ”) ;

26 return 0;

27 }

71

No exemplo acima, p2 é atribuı́do a p1. Essa operação está correta pois

ambas as variáveis são do tipo ponto. Sendo assim, o valor de p2.x é

copiado para p1.x e o valor de p2.y é copiado para p1.y.

Já na segunda atribuição (p1 = p3;) ocorre um erro. Isso por que os tipos

das estruturas das variáveis são diferentes: uma pertence ao tipo struct

ponto enquanto a outra pertence ao tipo struct novo ponto. Note que o

mais importante é o nome do tipo da estrutura, e não as variáveis dentro

dela.

No caso de estarmos trabalhando com arrays de estru-

turas, a atribuição entre diferentes elementos do array

também é válida.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 struct cadastro{
4 char nome [5 0] ;

5 i n t idade ;

6 char rua [5 0] ;

7 i n t numero ;

8 } ;

9 i n t main () {
10 struct cadastro c [1 0] ;

11 . . .

12 c [1] = c [2] ; / /CORRETO

13

14 system (” pause ”) ;

15 return 0;

16 }

Um array ou ”vetor”é um conjunto de variáveis do mesmo tipo utilizando

apenas um nome. Como todos os elementos do array são do mesmo tipo,

a atribuição entre elas é possı́vel, mesmo que o tipo do array seja uma

estrutura.

5.1.4 ESTRUTURAS ANINHADAS

Uma estrutura pode agrupar um número arbitrário de variáveis de tipos di-

ferentes. Uma estrutura também é um tipo de dado, com a diferença de se

trata de um tipo de dado criado pelo programador. Sendo assim, podemos

declarar uma estrutura que possua uma variável do tipo de outra estru-

tura previamente definida. A uma estrutura que contenha outra estrutura

72

dentro dela damos o nome de estruturas aninhadas. O exemplo abaixo

exemplifica bem isso:

Exemplo: struct aninhada.

1 struct endereco{
2 char rua [5 0]

3 i n t numero ;

4 } ;

5 struct cadastro{
6 char nome [5 0] ;

7 i n t idade ;

8 struct endereco

ender ;

9 } ;

No exemplo acima, temos duas estruturas: uma chamada endereco e

outra chamada de cadastro. Note que a estrutura cadastro possui uma

variável ender do tipo struct endereco. Trata-se de uma estrutura ani-

nhada dentro de outra.

No caso da estrutura cadastro, o acesso aos dados da

variável do tipo struct endereco é feito utilizando-se nova-

mente o operador ”.”(ponto).

Lembre-se, cada campo (variável) da estrutura pode ser acessada usando

o operador ”.”(ponto). Assim, para acessar a variável ender é preciso usar

o operador ponto (.). No entanto, a variável ender também é uma estrutura.

Sendo assim, o operador ponto (.) é novamente utilizado para acessar as

variáveis dentro dessa estrutura. Esse processo se repete sempre que

houver uma nova estrutura aninhada. O exemplo abaixo mostra como a

estrutura aninhada cadastro poderia ser facilmente lida do teclado:

73

Exemplo: lendo do teclado as variáveis da estrutura

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 struct endereco{
4 char rua [5 0]

5 i n t numero ;

6 } ;

7 struct cadastro{
8 char nome [5 0] ;

9 i n t idade ;

10 struct endereco ender ;

11 } ;

12 i n t main () {
13 struct cadastro c ;

14 / / Lê do tec lado uma s t r i n g e armazena no campo nome

15 gets (c . nome) ;

16

17 / / Lê do tec lado um va lo r i n t e i r o e armazena no campo idade

18 scanf (”%d ” ,&c . idade) ;

19

20 / / Lê do tec lado uma s t r i n g

21 / / e armazena no campo rua da v a r i á v e l ender

22 gets (c . ender . rua) ;

23

24 / / Lê do tec lado um va lo r i n t e i r o

25 / / e armazena no campo numero da v a r i á v e l ender

26 scanf (”%d ” ,&c . ender . numero) ;

27

28 system (” pause ”) ;

29 return 0;

30 }

5.2 UNIÕES: UNIONS

Em breve

5.3 ENUMARAÇÕES: ENUMERATIONS

Em breve

5.4 COMANDO TYPEDEF

Em breve

74

6 FUNÇÕES

Uma funções nada mais é do que um blocos de código (ou seja, declarações

e outros comandos) que podem ser nomeados e chamados de dentro de

um programa. Em outras palavras, uma função é uma seqüência de co-

mandos que recebe um nome e pode ser chamada de qualquer parte do

programa, quantas vezes forem necessárias, durante a execução do pro-

grama.

A linguagem C possui muitas funções já implementadas e nós temos utili-

zadas elas constantemente. Um exemplo delas são as funções básicas de

entrada e saı́da: scanf() e printf(). O programador não precisa saber qual

o código contido dentro das funções de entrada e saı́da para utilizá-las.

Basta saber seu nome e como utilizá-la.

A seguir, serão apresentados os conceitos e detalhes necessários para um

programador criar suas próprias funções.

6.1 DEFINIÇÃO E ESTRUTURA BÁSICA

Duas são as principais razões para o uso de funções:

• estruturação dos programas;

• reutilização de código.

Por estruturação dos programas entende-se que agora o programa será

construı́do a partir de pequenos blocos de código (isto é, funções) cada

um deles com uma tarefa especifica e bem definida. Isso facilita a compre-

ensão do programa.

Programas grandes e complexos são construı́dos bloco a

bloco com a ajuda de funções.

Já por reutilização de código entende-se que uma função é escrita para

realizar uma determinada tarefa. Pode-se definir, por exemplo, uma função

para calcular o fatorial de um determinado número. O código para essa

função irá aparecer uma única vez em todo o programa, mas a função

que calcula o fatorial poderá ser utilizadas diversas vezes e em pontos

diferentes do programa.

75

O uso de funções evita a cópia desnecessária de trechos

de código que realizam a mesma tarefa, diminuindo assim

o tamanho do programa e a ocorrência de erros.

Em linguagem C, a declaração de uma função pelo programador segue a

seguinte forma geral:

tipo retornado nome função (lista de parâmetros){

sequência de declarações e comandos

}

O nome função é como aquele recho de código será conhecido dentro do

programa. Para definir esse nome, valem, basicamente, as mesmas regras

para se definir uma variável.

Com relação ao local de declaração de uma função, ela deve ser definida

ou declarada antes de ser utilizada, ou seja, antes da cláusula main, como

mostra o exemplo abaixo:

Exemplo: função declarada antes da cláusula main.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 i n t Square (i n t a) {
5 return (a∗a) ;

6 }
7

8 i n t main () {
9 i n t num;

10 p r i n t f (” Entre com um numero : ”) ;

11 scanf (”%d ” , &num) ;

12 num = Square (num) ;

13 p r i n t f (”O seu quadrado vale : %d\n ” , num) ;

14 system (” pause ”) ;

15 return 0;

16 }

Pode-se também declarar uma função depois da cláusula main. Nesse

caso, é preciso declarar antes o protótipo da função:

76

tipo retornado nome função (lista de parâmetros);

O protótipo de uma função, é uma declaração de função que omite o corpo

mas especifica o seu nome, tipo de retorno e lista de parâmetros, como

mostra o exemplo abaixo:

Exemplo: função declarada depois da cláusula main.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 / / p r o t ó t i p o da função

4 i n t Square (i n t a) ;

5

6 i n t main () {
7 i n t num;

8 p r i n t f (” Entre com um numero : ”) ;

9 scanf (”%d ” , &num) ;

10 num = Square (num) ;

11 p r i n t f (”O seu quadrado vale : %d\n ” , num) ;

12 system (” pause ”) ;

13 return 0;

14 }
15

16 i n t Square (i n t a) {
17 return (a∗a) ;

18 }

Independente de onde uma função seja declarada, seu funcionamento é

basicamente o mesmo:

• o código do programa é executado até encontrar uma chamada de

função;

• o programa é então interrompido temporariamente, e o fluxo do pro-

grama passa para a função chamada;

• se houver parâmetros na função, os valores da chamada da função

são copiados para os parãmetros no código da função;

• os comandos da função são executados;

• quando a função termina (seus comandos acabaram ou o comando

return foi encontrado), o programa volta ao ponto onde foi interrom-

pido para continuar sua execução normal;

77

• se houver um comando return, o valor dele será copiado para a

variável que foi escolhida para receber o retorno da função.

Na figura abaixo, é possı́vel ter uma boa representação de como uma cha-

mada de função ocorre:

Nas seções seguintes, cada um dos itens que definem uma função serão

apresentados em detalhes.

6.1.1 PARÂMETROS DE UMA FUNÇÃO

Os parâmetros de uma função é o que o programador utiliza para passar a

informação de um trecho de código para dentro da função. Basicamente,

os parâmetros de uma função são uma lista de variáveis, separadas por

vı́rgula, onde é especificado o tipo e o nome de cada parâmetro.

Por exemplo, a função sqrt possui a seguinte lista de

parâmetros: float sqrt(float x);

Em linguagem C, a declaração dos parâmetros de uma função segue a

seguinte forma geral:

tipo retornado nome função (tipo nome1, tipo nome2, ... ,

tipo nomeN){

sequência de declarações e comandos

}

78

Diferente do que acontece na declaração de variáveis,

onde muitas variáveis podem ser declaradas com o mesmo

especificador de tipo, na declaração de parâmetros de uma

função é necessário especificar o tipo de cada variável.

1 / / Declaração CORRETA de parâmetros

2 i n t soma(i n t x , i n t y) {
3 return x + y ;

4 }
5

6 / / Declaração ERRADA de parâmetros

7 i n t soma(i n t x , y) {
8 return x + y ;

9 }

Dependendo da função, ela pode possuir nenhum parâmetro. Nesse caso,

pode-se optar por duas soluções:

• Deixar a lista de parâmetros vazia: void imprime ();

• Colocar void entre parênteses: void imprime (void).

Mesmo se não houver parâmetros na função, os

parênteses ainda são necessários.

Apesar das duas declarações estarem corretas, existe uma diferença en-

tre elas. Na primeira declaração, não é especificado nenhum parâmetro,

portanto a função pode ser chamada passando-se valores para ela. O o

compilador não irá verificar se a função é realmente chamada sem argu-

mentos e a função não conseguirá ter acesso a esses parâmetros. Já na

segunda declaração, nenhum parâmetro é esperado. Nesse caso, o pro-

grama acusará um erro se o programador tentar passar um valor para essa

função.

Colocar void na lista de parâmetros é diferente de se colo-

car nenhum parâmetro.

O exemplo abaixo ilustra bem essa situação:

79

Exemplo: função sem parâmetros

Sem void Com void

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 void imprime () {
5 p r i n t f (” Teste de

funcao\n ”) ;

6 }
7

8 i n t main () {
9 imprime () ;

10 imprime (5) ;

11 imprime (5 , ’ a ’) ;

12

13 system (” pause ”) ;

14 return 0;

15 }

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 void imprime (void) {
5 p r i n t f (” Teste de

funcao\n ”) ;

6 }
7

8 i n t main () {
9 imprime () ;

10 imprime (5) ; / /ERRO

11 imprime (5 , ’ a ’) ; / /ERRO

12

13 system (” pause ”) ;

14 return 0;

15 }

Os parâmetros das funções também estão sujeitos ao escopo das variáveis.

O escopo é o conjunto de regras que determinam o uso e a validade de

variáveis nas diversas partes do programa.

O parâmetro de uma função é uma variável local da função

e portanto, só pode ser acessado dentro da função.

6.1.2 CORPO DA FUNÇÃO

Pode-se dizer que o corpo de uma função é a sua alma. É no corpo de

uma função que se define qual a tarefa que a função irá realizar quando

for chamada.

Basicamente, o corpo da função é formado por:

• sequência de declarações: variáveis, constantes, arrays, etc;

• sequência de comandos: comandos condicionais, de repetição, cha-

mada de outras funções, etc.

Para melhor entender o corpo da função, considere que todo programa

possui ao menos uma função: a função main. A função mais é a função

80

”principal”do programa, o ”corpo”do programa. Note que nos exemplo usa-

dos até agora, a função main é sempre do tipo int, e sempre retorna o valor

0:

int main () {

sequência de declarações e comandos

return 0;

}

Basicamente, é no corpo da função que as entradas (parâmetros) são pro-

cessadas, as saı́das são geradas ou outras ações são feitas. Além disso,

a função main se encarrega de realizar a comunicação com o usuário, ou

seja, é ela quem realiza as operações de entrada e saı́da de dados (co-

mandos scanf e printf). Desse modo, tudo o que temos feito dentro de

uma função main pode ser feito em uma função desenvolvida pelo progra-

mador.

Tudo o que temos feito dentro da função main pode ser feito

em uma função desenvolvida pelo programador.

Uma função é construı́da com o intuito de realizar uma tarefa especifica e

bem definida. Por exemplo, uma função para calcular o fatorial deve ser

construı́da de modo a receber um determinado número como parâmetro

e retornar (usando o comando return) o valor calculado. As operações de

entrada e saı́da de dados (comandos scanf e printf) devem ser feitas em

quem chamou a função (por exemplo, na main). Isso garante que a função

construı́da possa ser utilizada nas mais diversas aplicações, garantindo a

sua generalidade.

De modo geral, evita-se fazer operações de leitura e escrita

dentro de uma função.

Os exemplos abaixo ilustram bem essa situação. No primeiro exemplo

temos o cálculo do fatorial realizado dentro da função main:

81

Exemplo: cálculo do fatorial dentro da função main

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 i n t main () {
5 p r i n t f (” D i g i t e um numero i n t e i r o p o s i t i v o : ”) ;

6 i n t x ;

7 scanf (”%d ” ,&x) ;

8 i n t i , f = 1 ;

9 for (i =1; i<=x ; i ++)

10 f = f ∗ i ;

11

12 p r i n t f (”O f a t o r i a l de %d eh : %d\n ” , x , f) ;

13 system (” pause ”) ;

14 return 0;

15 }

Perceba que no exemplo acima, não foi feito nada de diferente do que

temos feito até o momento. Já no exemplo abaixo, uma função especifica

para o cálculo do fatorial foi construı́da:

Exemplo: cálculo do fatorial em uma função própria

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 i n t f a t o r i a l (i n t n) {
5 i n t i , f = 1 ;

6 for (i =1; i<=n ; i ++)

7 f = f ∗ i ;

8

9 return f ;

10 }
11

12 i n t main () {
13 p r i n t f (” D i g i t e um numero i n t e i r o p o s i t i v o : ”) ;

14 i n t x ;

15 scanf (”%d ” ,&x) ;

16 i n t f a t = f a t o r i a l (x) ;

17 p r i n t f (”O f a t o r i a l de %d eh : %d\n ” , x , f a t) ;

18

19 system (” pause ”) ;

20 return 0;

21 }

Note que dentro da função responsável pelo cálculo do fatorial, apenas o

trecho do código responsável pelo cálculo do fatorial está presente. As

operações de entrada e saı́da de dados (comandos scanf e printf) são

feitos em quem chamou a função fatorial, ou seja, na função main.

82

Operações de leitura e escrita não são proibidas dentro de

uma função. Apenas não devem ser usadas se esse não

for o foco da função.

Uma função deve conter apenas o trecho de código responsável por fazer

aquilo que é o objetivo da função. Isso não impede que operações de

leitura e escrita sejam utilizadas dentro da função. Elas só não devem ser

usadas quando os valores podem ser passados para a função por meio

dos parâmetros.

Abaixo temos um exemplo de função que realiza operações de leitura e

escrita:

Exemplo: função contendo operações de leitura e escrita.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t menu () {
4 i n t i ;

5 do {
6 p r i n t f (” Escolha uma opção :\n ”) ;

7 p r i n t f (” (1) Opcao 1\n ”) ;

8 p r i n t f (” (2) Opcao 2\n ”) ;

9 p r i n t f (” (3) Opcao 3\n ”) ;

10 scanf (”%d ” , & i) ;

11 } while ((i < 1) | | (i > 3)) ;

12

13 return i ;

14 }
15

16 i n t main () {
17 i n t op = menu () ;

18 p r i n t f (” Vc escolheu a Opcao %d .\n ” ,op) ;

19 system (” pause ”) ;

20 return 0;

21 }

Na função acima, um menu de opções é apresentado ao usuário que tem

de escolher dentre uma delas. A função se encarrega de verificar se a

opção digitada é válida e, caso não seja, solicitar uma nova opção ao

usuário.

6.1.3 RETORNO DA FUNÇÃO

O retorno da função é a maneira como uma função devolve o resultado (se

ele existir) da sua execução para quem a chamou. Nas seções anterores

vimos que uma função segue a seguinte forma geral:

83

tipo retornado nome função (lista de parâmetros){

sequência de declarações e comandos

}

A expressão tipo retornado estabele o tipo de valor que a função irá de-

volver para quem chamá-la. Uma função pode retornar qualquer tipo válido

em na linguagem C:

• tipos básicos pré-definidos: int, char, float, double, void e ponteiros;

• tipos definidos pelo programador: struct, array (indiretamente), etc.

Uma função também pode NÃO retornar um valor. Para

isso, basta colocar o tipo void como valor retornado.

O tipo void é conhecido como o tipo vazio. Uma função declarada com o

tipo void irá apenas executar um conjunto de comando e não irá devolver

nenhum valor para quem a chamar. Veja o exemplo abaixo:

Exemplo: função com tipo void

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 void imprime (i n t n) {
4 i n t i ;

5 for (i =1; i<=n ; i ++)

6 p r i n t f (” Linha %d \n ” , i) ;

7 }
8

9 i n t main () {
10 imprime (5) ;

11

12 system (” pause ”) ;

13 return 0;

14 }

No exemplo acima, a função imprime irá apenas imprimir uma mensagem

na tela n vezes. Não há o que devolver para a função main. Portanto,

podemos declarar ela como void.

Para executar uma função do tipo void, basta colocar no

código o nome da função e seus parâmetros.

84

Se a função não for do tipo void, então ela deverá retornar um valor. O

comando return é utilizado para retornar esse valor para o programa:

return expressão;

A expressão da claúsula return tem que ser compatı́vel

com o tipo de retorno declarado para a função.

A expressão do comando return consiste em qualquer constante, variável

ou expressão aritmética que o programador deseje retornar para o trecho

do programa que chamou a função. Essa expressão pode até mesmo ser

uma outra função, como a função sqrt():

return sqrt(x);

Para executar uma função que tenha o comando return,

basta atribuir a chamada da função (nome da função e

seus parâmetros) a uma variável compatı́vel com o tipo do

retorno.

O exemplo abaixo mostra uma função que recebe dois parâmetros inteiros

e retorna a sua soma para a função main:

Exemplo: função com retorno

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t soma(i n t x , i n t y) {
4 return x + y ;

5 }
6

7 i n t main () {
8 i n t a , b , c ;

9 p r i n t f (” D i g i t e a : ”) ;

10 scanf (”%d ” , &a) ;

11 p r i n t f (” D i g i t e b : ”) ;

12 scanf (”%d ” , &b) ;

13 p r i n t f (”Soma = %d\n ” ,soma(a , b)) ;

14 system (” pause ”) ;

15 return 0;

16 }

85

Note, no exemplo acima, que a chamada da função foi feita dentro do co-

mando printf. Isso é possı́vel pois a função retorna um valor inteiro (x+y)

e o comando printf espera imprimir um valor inteiro (%d).

Uma função pode ter mais de uma declaração return.

O uso de vários comandos return é útil quando o retorno da função está

relacionado a uma determinada condição dentro da função. Veja o exemplo

abaixo:

Exemplo: função com vários return

1 i n t maior (i n t x , i n t y) {
2 i f (x > y)

3 return x ;

4 else

5 return y ;

6 }

No exemplo acima, a função será executada e dependendo dos valores

de x e y, uma das cláusulas return será executada. No entanto, é conve-

niente limitar as funções a usar somente um comando return. O uso de

vários comandos return, especialmente em função grandes e complexas,

aumenta a dificuldidade de se compreender o que realmente está sendo

feito pela função. Na maioria dos casos, pode-se reescrever uma função

para que ela use somente um comando return, como é mostrado abaixo:

Exemplo: substituindo os vários return da função

1 i n t maior (i n t x , i n t y) {
2 i n t z ;

3 i f (x > y)

4 z = x ;

5 else

6 z = y ;

7 return z ;

8 }

No exemplo acima, os vários comando return foram substituidos por uma

variável que será retornada no final da função.

Quando se chega a um comando return, a função é encer-

rada imediatamente.

86

O comando return é utilizado para retornar um valor para o programa. No

entanto, esse comando também é usado para terminar a execução de uma

função, similar ao comando break em um laço ou switch:

Exemplo: finalizando a função com return

1 i n t maior (i n t x , i n t y) {
2 i f (x > y)

3 return x ;

4 else

5 return y ;

6 p r i n t f (” Fim da funcao\n ”) ;

7 }

No exemplo acima, a função irá terminar quando um dos comando return

for executado. A mensagem ”Fim da funcao”jamais será impressa na tela

pois seu comando se encontra depois do comando return. Nesse caso, o

comando printf será ignorado.

O comando return pode ser usado sem um valor associado

a ele para terminar uma função do tipo void.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 #include <math . h>

4 void impr ime log (f l o a t x) {
5 i f (x <= 0)

6 return ; / / termina a função

7 p r i n t f (” Log = %f \n ” , log (x)) ;

8 }
9 i n t main () {

10 f l o a t x ;

11 p r i n t f (” D i g i t e x : ”) ;

12 scanf (”%f ” , & f) ;

13 impr ime log (x) ;

14 system (” pause ”) ;

15 return 0;

16 }

Na função contida no exemploa cima, se o valor de x é negativo ou zero,

o comando return faz com que a função termine antes que o comando

printf seja executado, mas nenhum valor é retornado.

O valor retornado por uma função não pode ser um array.

87

Lembre-se: a linguagem C não suporta a atribuição de um array para outro.

Por esse motivo, não se pode ter como retorno de uma função um array.

É possı́vel retornar um array indiretamente, desde que ela

faça parte de uma estrutura.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 struct ve to r {
5 i n t v [5] ;

6 } ;

7

8 struct ve to r r e t o r n a a r r a y () {
9 struct ve to r v = {1 ,2 ,3 ,4 ,5} ;

10 return v ;

11 }
12

13 i n t main () {
14 i n t i ;

15 struct ve to r vet = r e t o r n a a r r a y () ;

16 for (i =0; i <5; i ++)

17 p r i n t f (” Valores : %d \n ” , ve t . v [i]) ;

18 system (” pause ”) ;

19 return 0;

20 }

A linguagem C não suporta a atribuição de um array para outro. Mas ela

permite a atrbuição entre estruturas. A atribuição entre duas variáveis de

estrutura faz com que os contéudos das variáveis contidas dentro de uma

estrutura sejam copiado para outra estrutura. Desse modo, é possı́vel re-

tornar um array desde que o mesmo esteja dentro de uma estrutura.

6.2 TIPOS DE PASSAGEM DE PARÂMETROS

Já vimos que, na linguagem C, os parâmetros de uma função é o meca-

nismo que o programador utiliza para passar a informação de um trecho

de código para dentro da função. Mas existem dois tipos de passagem de

parâmetro: passagem por valor e por referência.

Nas seções seguintes, cada um dos tipos de passagem de parâmetros

será explicado em detalhes.

88

6.2.1 PASSAGEM POR VALOR

Na linguagem C, os argumentos para uma função são sempre passados

por valor (by value), ou seja, uma cópia do dado é feita e passada para a

função. Esse tipo de passagem de parâmetro é o padrão para todos os ti-

pos básicos pré-definidos (int, char, float e double) e estruturas definidas

pelo programador (struct).

Mesmo que o valor de uma variável mude dentro da função,

nada acontece com o valor de fora da função.

1 inc lude <s t d i o . h>

2 inc lude <s t d l i b . h>

3

4 void soma mais um (i n t n) {
5 n = n + 1;

6 p r i n t f (” Antes da funcao : x = %d\n ” ,n) ;

7 }
8

9 i n t main () {
10 i n t x = 5;

11 p r i n t f (” Antes da funcao : x = %d\n ” , x) ;

12 soma mais um (x) ;

13 p r i n t f (” Antes da funcao : x = %d\n ” , x) ;

14 system (” pause ”) ;

15 return 0;

16 }

Saı́da Antes da funcao: x = 5

Dentro da funcao: x = 6

Depois da funcao: x = 5

No exemplo acima, no momento em que a função soma mais um é cha-

mada, o valor de x é copiado para o parâmetro n da função. O parâmetro

n é uma variável local da função. Então, tudo o que acontecer com ele (n)

não se reflete no valor original da variável x. Quando a função termina, a

variável n é destruı́da e seu valor é descartado. O fluxo do programa é de-

volvido ao ponto onde a função foi inicialmente chamada, onde a variável

x mantém o seu valor original.

Na passagem de parâmetros por valor, quaisquer

modificações que a função fizer nos parâmetros existem

apenas dentro da própria função.

89

6.2.2 PASSAGEM POR REFERÊNCIA

Na passagem de parâmetros por valor, as funções não podem modifi-

car o valor original de uma variável passada para a função. Mas exis-

tem casos em que é necessário que toda modificação feita nos valores

dos parâmetros dentro da função sejam repassados para quem chamou a

função. Um exemplo bastante simples disso é a função scanf: sempre que

desejamos ler algo do teclado, passamos para a função scanf o nome da

variável onde o dado será armazenado. Essa variável tem seu valor modi-

ficado dentro da função scanf e seu valor pode ser acessado no programa

principal.

A função scanf é um exemplo bastante simples de função

que altera o valor de uma variável e essa mudança se re-

flete fora da função.

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 i n t main () {
4 i n t x = 5;

5 p r i n t f (” Antes do scanf : x = %d\n ” , x) ;

6 p r i n t f (” D i g i t e um numero : ”) ;

7 scanf (”%d ” ,&x) ;

8 p r i n t f (” Depois do scanf : x = %d\n ” , x) ;

9 system (” pause ”) ;

10 return 0;

11 }

Quando se quer que o valor da variável mude dentro da função e essa

mudança se reflita fora da função, usa-se passagem de parâmetros por

referência.

Na passagem de parâmetros por referência não se passa

para a função os valores das variáveis, mas sim os

endereços das variáveis na memória.

Na passagem de parâmetros por referência o que é enviado para a função

é o endereço de memória onde a variável está armazenada, e não uma

simples cópia de seu valor. Assim, utilizando o endereço da variável na

memória, qualquer alteração que a variável sofra dentro da função será

também refletida fora da função.

90

Para passar um parâmetro por referência, usa-se o ope-

rador ”*”na frente do nome do parâmetro durante a

declaração da função.

Para passar para a função um parâmetro por referência, a função precisa

usar ponteiros. Um ponteiro é um tipo especial de variável que armazena

um endereço de memória, da mesma maneira como uma variável arma-

zena um valor. Mais detalhes sobre o uso de ponteiros serão apresentados

no capı́tulo seguinte.

O exemplo abaixo mostra a mesma função declarada usando a passagem

de parâmetro de valor e por referência:

Exemplo: passagem por valor e referência

Por valor Por referência

1 void soma mais um (i n t n)

{
2 n = n + 1;

3 }

1 void soma mais um (i n t ∗n

) {
2 ∗n = ∗n + 1;

3 }

Note, no exemplo acima, que a diferença entre os dois tipos de passagem

de parâmetro é o uso do operador ”*”na passagem por referência. Con-

sequentemente, toda vez que a variável passada por referência for usada

dentro da função, o operador ”*”deverá ser usado na frente do nome da

variável.

Na chamada da função é necessário utilizar o operador

”&”na frente do nome da variável que será passada por re-

ferência.

Lembre-se do exemplo da função scanf. A função scanf é um exemplo

de função que altera o valor de uma variável e essa mudança se reflete

fora da função. Quando chamamos a função scanf, é necessário colocar

o operador ”&”na frente do nome da variável que será lida do teclado. O

mesmo vale para outra funções que usam passagem de parâmetro por

referência.

91

Na passagem de uma variável por referência é necessário

usar o operador ”*”sempre que se desejar acessar o

conteúdo da variável dentro da função.

1 inc lude <s t d i o . h>

2 inc lude <s t d l i b . h>

3

4 void soma mais um (i n t ∗n) {
5 ∗n = ∗n + 1;

6 p r i n t f (” Antes da funcao : x = %d\n ” ,∗n) ;

7 }
8

9 i n t main () {
10 i n t x = 5;

11 p r i n t f (” Antes da funcao : x = %d\n ” , x) ;

12 soma mais um(&x) ;

13 p r i n t f (” Antes da funcao : x = %d\n ” , x) ;

14 system (” pause ”) ;

15 return 0;

16 }

Saı́da Antes da funcao: x = 5

Dentro da funcao: x = 6

Depois da funcao: x = 6

No exemplo acima, no momento em que a função soma mais um é cha-

mada, o endereço de x (&x) é copiado para o parâmetro n da função. O

parâmetro n é um ponteiro dentro da função que guarda o endereço de

onde o valor de x está guardado fora da função. Sempre que alteramos

o valor de *n (conteúdo da posição de memória guardada, ou seja, x), o

valor de x fora da função também é modificado.

Abaixo temos outro exemplo que mostra a mesma função declarada usando

a passagem de parâmetro de valor e por referência:

92

Exemplo: passagem por valor e referência

Por valor Por referência

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 void Troca (i n t a , i n t b)

{
5 i n t temp ;

6 temp = a ;

7 a = b ;

8 b = temp ;

9 p r i n t f (” Dentro : %d e %

d\n ” ,a , b) ;

10 }
11

12 i n t main () {
13 i n t x = 2;

14 i n t y = 3;

15 p r i n t f (” Antes : %d e

%d\n ” , x , y) ;

16 Troca (x , y) ;

17 p r i n t f (” Depois : %d e

%d\n ” , x , y) ;

18 system (” pause ”) ;

19 return 0;

20 }

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 void Troca (i n t ∗a , i n t ∗b)

{
5 i n t temp ;

6 temp = ∗a ;

7 ∗a = ∗b ;

8 ∗b = temp ;

9 p r i n t f (” Dentro : %d e %

d\n ” ,∗a ,∗b) ;

10 }
11

12 i n t main () {
13 i n t x = 2;

14 i n t y = 3;

15 p r i n t f (” Antes : %d e

%d\n ” , x , y) ;

16 Troca (&x ,&y) ;

17 p r i n t f (” Depois : %d e

%d\n ” , x , y) ;

18 system (” pause ”) ;

19 return 0;

20 }

Saı́da Saı́da

Antes: 2 e 3 Antes: 2 e 3

Dentro: 3 e 2 Dentro: 3 e 2

Depois: 2 e 3 Depois: 3 e 2

6.2.3 PASSAGEM DE ARRAYS COMO PARÂMETROS

Para utilizar arrays como parâmetros de funções alguns cuidados simples

são necessários. Além do parâmetro do array que será utilizado na função,

é necessário declarar um segundo parâmetro (em geral uma variável in-

teira) para passar para a função o tamanho do array separadamente.

Arrays são sempre passados por referência para uma

função.

Quando passamos um array por parâmetro, independente do seu tipo, o

que é de fato passado para a função é o endereço do primeiro elemento

93

do array.

A passagem de arrays por referência evita a cópia des-

necessária de grandes quantidades de dados para outras

áreas de memória durante a chamada da função, o que

afetaria o desempenho do programa.

Na passagem de um array como parâmetro de uma função podemos de-

clarar a função de diferentes maneiras, todas equivalentes:

void imprime (int *m, int n);

void imprime (int m[], int n);

void imprime (int m[5], int n);

Mesmo especificando o tamanho de um array no parâmetro

da função a semântica é a mesma das outras declarações,

pois não existe checagem dos limites do array em tempo

de compilação.

O exemplo abaixo mostra como um array de uma única dimensão pode ser

passado como parâmetro para uma função:

Exemplo: passagem de array como parâmetro

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 void imprime (i n t ∗n

, i n t m) {
5 i n t i ;

6 for (i =0; i<m; i ++)

7 p r i n t f (”%d \n ” ,

n [i]) ;

8 }
9

10 i n t main () {
11 i n t v [5] =

{1 ,2 ,3 ,4 ,5} ;

12 imprime (v , 5) ;

13 system (” pause ”) ;

14 return 0;

15 }

94

Note, no exemplo acima, que apenas o nome do array é passado para a

função, sem colchetes. Isso significa que estamos passando o array inteiro.

Se usassemos o colchete, estariamos passando o valor de uma posição

do array e não o seu endereço, o que resultaria em um erro.

Na chamada da função, passamos para ela somente o

nome do array, sem os colchetes: o programa ”já sabe”que

um array será enviado, pois isso já foi definido no protótipo

da função.

Vimos que, para arrays, não é necessário especificar o número de elemen-

tos para a função no parâmetro do array:

void imprime (int *m, int n);

void imprime (int m[], int n);

Arrays com mais de uma dimensão (por exemplo, matri-

zes), precisam da informação do tamanho das dimensões

extras.

Para arrays com mais de uma dimensão é necessário o tamanho de todas

as dimensões, exceto a primeira. Sendo assim, uma declaração possı́vel

para uma matriz de 4 linhas e 5 colunas seria a apresentada abaixo:

void imprime (int m[][5], int n);

A declaração de arrays com uma dimensão e com mais de uma dimensão é

diferente porque na passagem de um array para uma função o compilador

precisar saber o tamanho de cada elemento, não o número de elementos.

Um array bidimensional poder ser entendido como um ar-

ray de arrays.

Para a linguagem C, um array bidimensional poder ser entendido como um

array de arrays. Sendo assim, o seguinte array

int m[4][5];

95

pode ser entendido como um array de 4 elementos, onde cada elemento

é um array de 5 posições inteiras. Logo, o compilador precisa saber o

tamanho de um dos elementos (por exemplo, o número de colunas da

matriz) no momento da declaração da função:

void imprime (int m[][5], int n);

Na notação acima, informamos ao compilador que estamos passando um

array, onde cada elemento dele é outro array de 5 posições inteiras. Nesse

caso, o array terá sempre 5 colunas, mas poderá ter quantas linhas quiser

(parâmetro n).

Isso é necessário para que o programa saiba que o array possui mais de

uma dimensão e mantenha a notação de um conjunto de colchetes por

dimensão.

O exemplo abaixo mostra como um array de duas dimensões pode ser

passado como parâmetro para uma função:

Exemplo: passagem de matriz como parâmetro

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 void impr ime mat r iz (i n t m[] [2] , i n t n) {
5 i n t i , j ;

6 for (i =0; i<n ; i ++)

7 for (j =0; j< 2; j ++)

8 p r i n t f (”%d \n ” , m[i] [j]) ;

9 }
10

11 i n t main () {
12 i n t mat [3] [2] = {{1 ,2} ,{3 ,4} ,{5 ,6}} ;

13 impr ime mat r iz (mat , 3) ;

14 system (” pause ”) ;

15 return 0;

16 }

As notações abaixo funcionam para arrays com mais de uma dimensão.

Mas o array é tratado como se tivesse apenas uma dimensão dentro da

função

void imprime (int *m, int n);

void imprime (int m[], int n);

O exemplo abaixo mostra como um array de duas dimensões pode ser

passado como um array de uma única dimensão para uma função:

96

Exemplo: matriz como array de uma dimensão

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 void impr ime mat r iz (i n t ∗m, i n t n) {
5 i n t i ;

6 for (i =0; i<n ; i ++)

7 p r i n t f (”%d \n ” , m[i]) ;

8 }
9

10 i n t main () {
11 i n t mat [3] [2] = {{1 ,2} ,{3 ,4} ,{5 ,6}} ;

12 impr ime mat r iz (&mat [0] [0] , 6) ;

13 system (” pause ”) ;

14 return 0;

15 }

Note que, nesse exemplo, ao invés de passarmos o nome do array nós

passamos o endereço do primeiro elemento (&mat[0][0]). Isso faz com que

percamos a notação de dois colchetes para a matriz, e ela seja tratada

como se tivesse apenas uma dimensão.

6.2.4 OPERADOR SETA

De modo geral, uma estrutura é sempre passada por valor para uma função.

Mas ela também pode ser passada por referência sempre que desejarmos

alterar algum dos valores de seus campos.

Durante o estudo dos tipos definidos pelo programador, vimos que o ope-

rador ”.”(ponto) era utilizado para acessar os campos de uma estrutura.

Se essa estrutura for passada por referência para uma função, será ne-

cessário usar ambos os operadores ”*”e ”.”para acessar os valores origi-

nais dos campos da estrutura.

• operador ”*”: acessa o conteúdo da posição de memória (valor da

variável fora da função) dentro da função;

• operador ”.”: acessa os campos de uma estrutura.

O operador seta ”->”substitui o uso conjunto dos operado-

res ”*”e ”.”no acesso ao campo de uma estrutura passada

por referência para uma função.

O operador seta ”->”é utilizado quando uma referência para uma estrutura

(struct) é passada para uma função. Ele permite acessar o valor do campo

97

da estrutura fora da função sem utilizar o operador ”*”. O exemplo abaixo

mostra como os campos de uma estrutura passada por referência podem

ser acessado com ou sem o uso do operador seta ”->”:

Exemplo: passagem por valor e referência

Sem operador seta Com operador seta

1 struct ponto {
2 i n t x , y ;

3 } ;

4

5 void func (struct ponto ∗
p) {

6 (∗p) . x = 10;

7 (∗p) . y = 20;

8 }

1 struct ponto {
2 i n t x , y ;

3 } ;

4

5 void func (struct ponto ∗
p) {

6 p−>x = 10;

7 p−>y = 20;

8 }

6.3 RECURSÃO

Na linguagem C, uma função pode chamar outra função. Um exemplo

disso é quando chamamos qualquer uma das nossas funções implemen-

tadas na função main. Uma função pode, inclusive, chamar a si própria.

Uma função assim é chamada de função recursiva.

A recursão também é chamada de definição circular. Ela

ocorre quando algo é definido em termos de si mesmo.

Um exemplo clássico de função que usa recursão é o cálculo do fatorial de

um número. A função fatorial é definida como:

0! = 1

N! = N * (N - 1)!

A idéia básica da recursão é dividir um problema maior em um conjunto

de problemas menores, que são então resolvidos de forma independente

e depois combinados para gerar a solução final: dividir e conquistar.

Isso fica evidente no cálculo do fatorial. O fatorial de um número N é o

produto de todos os números inteiros entre 1 e N. Por exemplo, o fatorial

de 3 é igual a 1 * 2 * 3, ou seja, 6. No entanto, o fatorial desse mesmo

98

número 3 pode ser definido em termos do fatorial de 2, ou seja, 3! = 3 *

2!. O exemplo abaixo apresenta as funções com e sem recursão para o

cálculo do fatorial:

Exemplo: fatorial

Com Recursão Sem Recursão

1 i n t f a t o r i a l (i n t n) {
2 i f (n == 0)

3 return 1;

4 else

5 return n∗ f a t o r i a l (n

−1) ;

6 }

1 i n t f a t o r i a l (i n t n) {
2 i f (n == 0)

3 return 1;

4 else {
5 i n t i , f = 1 ;

6 for (i =2; i <= n ; i

++)

7 f = f ∗ i ;

8 return f ;

9 }
10 }

Em geral, as formas recursivas dos algoritmos são consideradas ”mais

enxutas”e ”mais elegantes”do que suas formas iterativas. Isso facilita a

interpretação do código. Porém, esses algoritmos apresentam maior difi-

culdade na detecção de erros e podem ser ineficientes.

Todo cuidado é pouco ao se fazer funções recursivas, pois

duas coisas devem ficar bem estabelecidas: o critério de

parada e o parâmetro da chamada recursiva.

Durante a implementação de uma função recursiva temos que ter em mente

duas coisas: o critério de parada e o parâmetro da chamada recursiva:

• Critério de parada: determina quando a função deverá parar de

chamar a si mesma. Se ele não existir, a função irá executar infi-

nitamente. No cálculo de fatorial, o critério de parada ocorre quando

tentamos calcular o fatorial de zero: 0! = 1.

• Parâmetro da chamada recursiva: quando chamamos a função

dentro dela mesmo, devemos sempre mudar o valor do parãmetro

passado, de forma que a recursão chegue a um término. Se o va-

lor do parâmetro for sempre o mesmo a função irá executar infinita-

mente. No cálculo de fatorial, a mudança no parâmetro da chamada

recursiva ocorre quando definimos o fatorial de N em termos no fato-

rial de (N-1): N! = N * (N - 1)! .

99

O exemplo abaixo deixa bem claro o critério de parada e o parâmetro da

chamada recursiva na função recursiva implementada em linguagem C:

Exemplo: fatorial

1 i n t f a t o r i a l (i n t n) {
2 i f (n == 0) / / c r i t é r i o de parada

3 return 1;

4 else / / parâmetro do f a t o r i a l sempre muda

5 return n∗ f a t o r i a l (n−1) ;

6 }

Note que a implementação da função recursiva do fatorial em C segue

exatamente o que foi definido matemáticamente.

Algoritmos recursivos tendem a necessitar de mais tempo

e/ou espaço do que algoritmos iterativos.

Sempre que chamamos uma função, é necessário um espaço de memória

para armazenar os parâmetros, variáveis locais e endereço de retorno da

função. Numa função recursiva, essas informações são armazenadas para

cada chamada da recursão, sendo, portanto a memória necessária para

armazená-las proporcional ao número de chamadas da recursão.

Além disso, todas essas tarefas de alocar e liberar memória, copiar informações,

etc. envolvem tempo computacional, de modo que uma função recursiva

gasta mais tempo que sua versão iterativa (sem recursão).

O que acontece quando chamamos a função fatorial com

um valor como N = 3?

Nesse caso, a função será chamada tantas vezes quantas forem necessárias.

A cada chamada, a função irá verificar se o valor de N é igual a zero. Se

não for, uma nova chamada da função será realizada. Esse processo,

identificado pelas setas pretas, continua até que o valor de N seja decre-

mentado para ZERO. Ao chegar nesse ponto, a função começa o processo

inverso (identificado pelas setas vermelhas): ela passa a devolver para

quem a chamou o valor do comando return. A figura abaixo mostra esse

processo para N = 3:

Outro exemplo clássico de recursão é a seqüência de Fibonacci:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

100

A sequênciade de Fibonacci é definida como uma função recursiva utili-

zando a fórmula abaixo:

O exemplo abaixo apresenta as funções com e sem recursão para o cálculo

da sequência de de Fibonacci:

Exemplo: seqüência de Fibonacci

Com Recursão Sem Recursão

1 i n t f i b o (i n t n) {
2 i f (n == 0 | | n == 1)

3 return n ;

4 else

5 return f i b o (n−1) +

f i b o (n−2) ;

6 }

1 i n t f i b o (i n t n) {
2 i n t i , t , c , a=0 , b=1;

3 for (i =0; i<n ; i ++){
4 c = a + b ;

5 a = b ;

6 b = c ;

7 }
8 return a ;

9 }

Como se nota, a solução recursiva para a seqüência de Fibonacci é muito

elegante. Infelizmente, como se verifica na imagem abaixo, elegância não

significa eficiência.

Na figura acima, as setas pretas indicam quando uma nova chamada da

função é realizada, enquanto as setas vermelhas indicam o processo in-

verso, ou seja, quando a função passa a devolver para quem a chamou

101

o valor do comando return. O maior problema da solução recursiva está

nos quadrados marcados com pontilhados verde. Neles, fica claro que

o mesmo cálculo é realizado duas vezes, um desperdı́cio de tempo e

espaço!

Se, ao invés de calcularmos fibo(4) quisermos calcular fibo(5), teremos

um desperdı́cio ainda maior de tempo e espaço, como mostra a figura

abaixo:

102

