-
r
G)
c
>
G)
=

O
<
U
=

Q

DES ICADA

Prof. André R. Backes

1 COMANDOS DE CONTROLE CONDICIONAL

Os programas escritos até o0 momento sao programas sequeciais: um co-
mando é executado apos o outro, do comego ao fim do programa, na ordem
em que foram declarados no codigo fonte. Nenhum comando é ignorado.

Entretanto, ha casos em que é preciso que um bloco de comandos seja
executado somente se uma determinada condicao for verdadeira. Para
isso, precisamos de uma estrutura de sele¢cdo, ou um comando de con-
trole condicional, que permita selecionar o conjunto de comandos a ser
executado. Isso € muito similar ao que ocorre em um fluxograma, onde o
simbolo do losango permitia escolher entre diferentes caminhos com base
em uma condic¢ao do tipo verdadeiro/falso:

A>B? | Nao

Nesta sec¢ao iremos ver como funcionam cada uma das estruturas de selegao
presentes na linguagem C.

1.1 COMANDO IF

Na linguagem C, o comando if é utilizado sempre que € necessario esco-
Iher entre dois caminhos dentro do programa, ou quando se deseja execu-
tar um ou mais comandos que estejam sujeitos ao resultado de um teste.

A forma geral de um comando if é:

if (condigao) {
seqgliéncia de comandos;

Na execucgao do comando if a condicao sera avaliada e:

2

e se a condicao for diferente de zero, ela sera considerada verdadeira
e a seqliéncia de comandos sera executada;

e se a condicao for zero, ela sera considerada falsa e a seqiiéncia de
comandos nao sera executada.

Abaixo, tem-se um exemplo de um programa que lé um nimero inteiro
digitado pelo usuério e informa se o mesmo € maior do que 10:

Exemplo: comando if

3 int main (){
int num;

if (num > 10)

© 00 ~NO 0N

10 return O;
11 }

1 #include <stdio.h>
2 #include <stdlib.h>

printf (”Digite um numero: 7);
scanf ("%d”,&num) ;

printf ("O numero e maior do que 10\n”);
system (”pause”) ;

Relembrando a idéia de fluxogramas, é possivel ter uma boa representagao
de como os comandos do exemplo anterior sdo um-a-um executados du-

rante a execug¢ao do programa:

!)int num;

N

printf ("Digite um numero: ");

o

scanf ("%d",&num);

NAO

Y

printf ("\n\n O nume

ro e maior que 10");

system(“pause”);

"

¥

return O;

> Fim

Por condicdo, entende-se qualquer expressao que resulte numa resposta
do tipo falso (zero) ou verdadeiro (diferente de zero). A condigao pode ser
uma expressao que utiliza operadores dos tipos:

e Matematicos : +,-, *, /, %

e Relacionais: >, <, >=, <=, ==, I=

e Ldgicos: &&, ||

0 Diferente da maioria dos comandos, ndo se usa o ponto e
virgula (;) depois da condigao do comando if.

1 #include <stdio.h>
2 #include <stdlib .h>
3 int main (){
int num;
printf (”Digite um numero: ”);
scanf ("%d”,&num) ;
if (num > 10); //ERRO
printf (”O numero e maior que 10\n”);
system (”pause”) ;
return O;

=
O ©Wo~NO 0N

11 }

Na linguagem C, o operador ponto e virgula (;) é utilizado para separar as
instrugées do programa. Coloca-lo logo apos o comando if, como exem-
plificado acima, faz com que o compilador entenda que o comando if ja
terminou e trate 0 comando seguinte (printf) como se o0 mesmo estivesse
fora do if. No exemplo acima, a mensagem de que o nimero é maior do
que 10 sera exibida independente do valor do nimero.

O compilador nao ira acusar um erro se colocarmos o ope-
! rador ponto e virgula (;) apés o comando if, mas a logica
do programa podera estar errada.

1.1.1 USO DAS CHAVES {}

No comando if, e em diversos outros comandos da linguagem C, usa-se 0s
operadores de chaves { } para delimitar um bloco de instrugdes.

Por definicdo, comandos de condigao (if e else) ou
o repeticao (while, for,...) atuam apenas sobre o comando
seguinte a eles.

Desse modo, se o programador deseja que mais de uma instrugao seja
executada por aquele comando if, esse conjunto de instru¢des deve estar
contido dentro de um bloco delimitado por chaves { }.

if (condigdo) {
comando 1;

comando 2;

comando n;

As chaves podem ser ignoradas se o comando contido den-
tro do if for Unico.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main (){

4 int num;

5 printf (”Digite um numero: ”);

6 scanf ("%d”,&num) ;

7 if (num > 10)

8 printf (”O numero e maior que 10\n”);
9

10 /+0U

11 if(num > 10){

12 printf ("O numero e maior que 10\n”);
13}

14 x/

15 system(”pause”);
16 return O;
17 }

1.1.2 EXPRESSAO CONDICIONAL

Uma expressao condicional € qualguer expressao que resulte numa res-
posta do tipo falso (zero) ou verdadeiro (diferente de zero).

=2

—
O OWONOO O~ WN =

11
12

Uma expressao condicional pode utilizar operadores dos
tipos: matematicos, relacionais e/ou légicos.

//x é maior ou igual a y?
if(x >=vy)

//x é maior do que y+2?
if(x > y+2)

//x—5 é diferente de y+37?
if(x=5 = y+3)

//x é maior do que y e menor do que z?
if(x >y & x < z)
if(y < x < z) //ERRO!

Quando o compilador avalia uma condicéo, ele quer um valor de retorno
(verdadeiro ou falso) para poder tomar a decisdo. No entanto, esta ex-

pressao ndo necessita ser uma expressao no sentido convencional.

Uma variavel sozinha pode ser uma “expressao condicio-
nal’e retornar o seu préprio valor.

E importante lembrar que o computador trabalha em termos de 0’s e 1’s,
sendo a condicao

e falsa: quando o valor da expressao é zero;

e verdadeira: quando o valor da expressao é diferente de zero.

Isto quer dizer que, dado uma variavel inteira num, as seguintes expressoes

sao equivalentes para o compilador:

if (num!=0)//Se a variavel é diferente de zero...

if (num)//...ela sozinha retorna uma valor que é verdadeiro.

if (num==0)//Se a variavel é igual a zero (falso)...

e

if (Inum)//...sua negagao € um valor verdadeiro.

1.2 COMANDO ELSE

O comando else pode ser entendido como sendo um complemento do co-
mando if. Ele auxilia o comando if na tarefa de escolher dentre os varios
caminhos a ser segudo dentro do programa.

A forma geral de um comando else é:

if (condigdo) {

seqgliéncia de comandos;
}
else{

sequiéncia de comandos;

dadeira, o comando else trata da condicdo quando ela é

o Se o comando if diz o que fazer quando a condigao é ver-
falsa.

Isso fica bem claro quando olhamos a representacao do comando else em
um fluxograma:

A>B? else

Antes, na execuc¢ao do comando if a condigao era avaliada e:

e se a condicao fosse verdadeira a seqiiéncia de comandos seria exe-
cutada;

e se a condicao fosse falsa a seqliéncia de comandos nao seria exe-
cutada e o programa seguiria o seu fluxo padrao.

Com o comando else, temos agora que:

e se a condicao for verdadeira, a seqiiéncia de comandos do bloco if
sera executada;

e se a condicao for falsa, a seqiiéncia de comandos do bloco else sera
executada.

Abaixo, tem-se um exemplo de um programa que lé um nimero inteiro
digitado pelo usuario e informa se 0 mesmo é ou nao igual a 10:

Exemplo: comando if-else

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main (){

4 int num;

5 printf (”Digite um numero: 7);

6 scanf ("%d”, &num) ;

7 if (num == 10){

8 printf (’O numero e igual a 10.\n”);

9 } else{

10 printf ("O numero e diferente de 10.\n”);

11 1

12 system(”pause”);
13 return O;

14 }

Relembrando a idéia de fluxogramas, é possivel ter uma boa representagao
de como 0s comandos do exemplo anterior sdo um-a-um executados du-
rante a execugao do programa:

printf ("Digite um numero: ");

v
scanf ("%d", &num);

printf ("O numero e igual a 10.\n");

}
else{
> printf ("O numero e diferente de 10.\n");
} |
v

n

system(“pause’);

O comando else nao tem condicao. Ele é o caso contrario
da condicao do if.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main (){

4 int num;

) printf (”Digite um numero: ”);

6 scanf ("%d”, &um);

7 if (num == 10){

8 printf (’O numero e igual a 10.\n”);

9 } else(num != 10){//ERRO

10 printf (’O numero e diferente de 10.\n”);
11 }

12 system(”pause”);
13 return O;
14 }

O comando else deve ser ser entendido como sendo um complemento do
comando if. Ele diz quais comandos se deve executar se a condi¢cdo do
comando if for falsa. Portanto, ndo € necessario estabelecer uma condicao
para o comando else, ele € o oposto do if.

Como no caso do if, ndo se usa o ponto e virgula (;) depois
do comando else.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main (){

4 int num;

5 printf (”Digite um numero: ”);

6 scanf ("%d”, &num) ;

7 if (num == 10){

8 printf (’O numero e igual a 10.\n”);

9 } else;{//ERRO

10 printf (’O numero e diferente de 10.\n”);
11 }

12 system(”pause”) ;
13 return O;
14 }

Como no caso do if, colocar o operador de ponto e virgula (;) logo apés o
comando else, faz com que o compilador entenda que o comando else ja
terminou e trate o comando seguinte (printf) como se 0 mesmo estivesse
fora do else. No exemplo acima, a mensagem de que o nimero é diferente
de 10 sera exibida independente do valor do nimero.

sequiéncia de comandos do else. Cada comando tem o

Q A seqléncia de comandos do if € independente da
seu proprio conjunto de chaves.

Se o comando if for executado em um programa, o seu comando else
nao sera executado. Portanto, ndo faz sentido usar o mesmo conjunto de
chaves {}para definir os dois conjuntos de comandos.

Uso das chaves nho comando if-else
Certo Errado

if (condicao){

seqléncia de comandos; 11 feomeleem) |

1
2 2 seqléncia de comandos;
4 else{ & Gl

A . 4 seqléncia de comandos;
5 sequéncia de comandos;
6

} 5

10

Como no caso do comando if, as chaves podem ser igno-
radas se o comando contido dentro do else for Unico.

1.3 ANINHAMENTO DE IF

Um if aninhado € simplesmente um comando if utilizado dentro do bloco
de comandos de um outro if (ou else) mais externo. basicamente, € um
comando if dentro de outro.

A forma geral de um comando if aninhado é:

if(condigdo 1) {
seqgliéncia de comandos;
if(condicao 2) {
seqliéncia de comandos;
if...
}
else{
seqliéncia de comandos;
if...
}
} else{
sequiéncia de comandos;

Em um aninhamento de if’s, 0 programa comega a testar as condigbes
comecando pela condicao 1. Se o resultado dessa condicao for diferente
de zero (verdadeiro), o programa executara o bloco de comando associa-
dos a ela. Do contrario, ir4 executar o bloco de comando associados ao
comando else correspondente, se ele existir. Esse processo se repete para
cada comando if que o programa encontrar dentro do bloco de comando
que ele executar.

O aninhamento de if’s € muito Gtil quando se tem mais do que dois cami-
nhos para executar dentro de um programa. Por exemplo, o comando if é
suficiente para dizer se um numero é maior do que outro nimero ou nao.
Porém, ele sozinho € incapaz de dizer se esse mesmo numero € maior,
menor ou igual ao outro como mostra o exemplo abaixo:

11

Exemplo: aninhamento de if
1 #include <stdio.h>
2 #include <stdlib.h>
8 int main (){
4 int num;
5 printf(”Digite um numero: ”);
6 scanf(”%d”, &nium) ;
7 if (num == 10){
8 printf (”O numero e igual a 10.\n”);
9 } else{
10 if (num > 10)
11 printf (”O numero e maior que 10.\n”);
12 else
13 printf (”O numero e menor que 10.\n”);
14}
15 system(”pause”);
16 return O;
17 }

Isso fica bem claro quando olhamos a representacdo do aninhamento de
if's em um fluxograma:

'scanf ("%d", &num); |

Z 7 ('
NAO

|printf ("O numero e iguala 10.\n"); I

}elsef
SIM
<m0
NAO v
| printf ("O numero e maior que 10."); —
else
>Iprintf ("O numero & menor que 10.");}|
|system(“pause"); I<
O Unico cuidado que devemos ter no aninhamento de if's é
| o de saber exatamente a qual if um determinado else esta
ligado.

Esse cuidado fica claro no exemplo abaixo: apesar do comando else es-
tar alinhado com o primeiro comando if, ele esta na verdade associado ao

12

segundo if. Isso acontece porque o comando else € sempre associado ao
primeiro comando if encontrado antes dele dentro de um bloco de coman-

dos.

if (cond1)
if (cond2)
seqliéncia de comandos;
else
seqgliéncia de comandos;

No exemplo anterior, para fazer com que o comando else fique associado
ao primeiro comando if € necessario definir um novo bloco de comandos
(usando os operadores de chaves { }) para isolar o comando if mais in-
terno.

if (cond1) {
if (cond2)
seqliéncia de comandos;
} else
sequiéncia de comandos;

! Nao existe aninhamento de else’s.

O comando else é o caso contrario da condicao do comando if. Assim,
para cada else deve existir um if anterior, porém nem todo if precisa ter um

else.

if (cond1)

sequiéncia de comandos;
else

seqgliéncia de comandos;
else /ERRO!

seqgliéncia de comandos;

13

1.4

O operador ? é também conhecido como operador ternario. Trata-se de
uma simplificagdo do comando if-else na sua forma mais simples, ou seja,

OPERADOR ?

com apenas um comando e ndo blocos de comandos.

A forma geral do operador ? é:

expressao condicional ? expressaol : expressaoz;

O funcioanmento do operador ? é idéntico ao do comando if-else: primei-

ramente, a expressao condicional sera avaliada e

e se essa condicao for verdadeira, o valor da expressdo? sera o resul-

tado da expressao condicional,;

e se essa condicao for falsa, o valor da expressao2 sera o resultado

da expressao condicional,

i

O operador ? é tipicamente utilizado para atribuicées con-

dicionais.

O exemplo abaixo mostra como uma expressao de atribuicao pode ser

simplificada utilizando o operador ternario:

Usando if-else

Usando o operador ternario

=
O OWooNOo O

11
12
13
14
15
16 }

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main (){

int x,y,z;
printf(”Digite x:”);
scanf("%d”,&x) ;
printf (”Digite y:”);
scanf("%d” ,&y) ;
if (x>vy)

Z = X;
else

zZ =Y,
printf
system ("pause”) ;
return O;

(
("

"Maior = %d” ,z)

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main (){

© o0 ~NO Oh

10
11
12

13 }

int x,y,z;

printf (”Digite x:”);
scanf ("/d”,&x) ;
printf(”Digite y:”);
scanf("%d” ,&y) ;
Z=X>YyY ?2Xx :Y;

printf (”Maior = %d”,z);

system (”pause”) ;
return O;

14

O operador ? € limitado e por isso ndao atende a uma gama muito grande de
casos que o comando if-else atenderia. Porém, ele pode ser usado para
simplificar expressées complicadas. Uma aplicacao interessante € a do
contador circular, onde uma variavel € incrementada até um valor maximo
e, sempre que atinge esse valor, a variavel é zerada.

index = (index== 3) ? 0: ++index;

o Apesar de limitado, o operador ? nao € restrito a
atribuicoes apenas.

1 #include <stdio.h>
2 #include <stdlib .h>
3 int main(){

4 int num;

) printf (”Digite um numero: ”);

6 scanf("%d”, &num) ;

7 (num == 10)? printf(”O numero e igual a 10.\n”
) @ printf(”’0O numero e diferente de 10.\n")

8 system(”pause”);

9 return 0;

10 }

1.5 COMANDO SWITCH

Além dos comandos if e else, a linguagem C possui um comando de
selegao multipla chamado switch. Esse comando € muito parecido com o
aninhamendo de comandos if-else-if.

O comando switch € muito mais limitado que o comando
if-else: enquanto o comando if pode testar expressdes
l6gicas ou relacionais, 0 comando switch somente verifica
se uma variavel € ou nao igual a um certo valor constante.

15

A forma geral do comando switch é:

switch (variavel) {
case valor1:
seqliéncia de comandos;
break;
case valor2:
seqliéncia de comandos;
break;

case valorN:
seqliéncia de comandos;
break;

default:
sequéncia de comandos; }

o O comando switch € indicado quando se deseja testar uma
variavel em relacao a diversos valores pré-estabelecidos.

Na execucdo do comando switch, o valor da variavel € comparado, na
ordem, com cada um dos valores definidos pelo comando case. Se um
desse valores for igual ao valor da variavel, a seqliéncia de comandos
daquele comando case é executado pelo programa.

Abaixo, tem-se um exemplo de um programa que |é um caractere digitado
pelo usuario e informa se 0 mesmo é um simbolo de pontuagao:

16

Exemplo: comando switch

1 #include <stdio.h>
2 #include <stdlib .h>
3 int main(){

4 char char_.in;

5 printf(”Digite um simbolo de pontuacao: ”);
6 char_in = getchar () ;
7
8

switch(char_.in) {

case '.’: printf(”Ponto.\n”); break;
9 case ', ’: printf(”Virgula.\n”); break;
10 case ':’: printf(”Dois pontos.\n”); break;
11 case ';’: printf(”Ponto e virgula.\n”); break;
12 default : printf(”Nao eh pontuacao.\n”);
13}

14 system(”pause”);
15 return O;
16 }

No exemplo acima, sera pedido ao usuario que digite um caractere. O valor
desse caractere sera comparado com um conjunto de possiveis simbolos
de pontuagao, cada qual identificado em um comando case. Note que,
se o caractere digitado pelo usuario nao for um simbolo de pontuacao, a
sequéncia de comandos dentro do comando default sera exectada.

O comando default é opcional e sua seqiiéncia de coman-

o dos somente sera executada se o valor da variavel que esta
sendo testada pelo comando switch nao for igual a nenhum
dos valores dos comandos case.

O exemplo anterior do comando switch poderia facilmente ser reescrito
com o aninhamento de comandos if-else-if como se nota abaixo:

17

Exemplo: simulando o comando switch com if-else-if

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

4 char char_in;

5 printf (”Digite um simbolo de pontuacao: ”);
6 char_in = getchar();

7 if (char_.in == ".")

8 printf(”Ponto.\n”);

9 else

10 if (char_.in == ",")

11 printf(”Virgula.\n”);

12 else

13 if (char_.in == ":")

14 printf (”Dois pontos.\n”);

15 else

16 if (char_.in == ;")

17 printf (”Ponto e virgula.\n”);
18 else

19 printf(”Nao eh pontuacao.\n”);

20 system(”pause”);
21 return O;
22 }

Como se pode notar, 0 comando switch apresenta uma solu¢cdo muito mais
elegante que o aninhamento de comandos if-else-if quando se necessita
comparar o valor de uma variavel.

Apesar das semelhancgas entre os dois comandos, o comando switch e o
aninhamento de comandos if-else-if, existe uma diferenca muito importante
entre esses dois comandos: o comando break.

18

Quando o valor associado a um comando case é igual
ao valor da variavel do switch a respectiva seqiiéncia de
comandos é executada até encontrar um comando break.
Caso o comando break nao exista, a seqiiéncia de coman-
dos do case seguinte também sera executada e assim por
diante

1 #include <stdio.h>
2 #include <stdlib .h>
3 int main(){

4 char char.in;

5 printf (”Digite um simbolo de pontuacao: ”);
6 char_in = getchar();

7 switch(char_.in) {

8 case '.’: printf(”Ponto.\n”);

9 case ', ’: printf(”Virgula.\n”);

10 case ':’: printf(”Dois pontos.\n”);

11 case ';’: printf(”Ponto e virgula.\n”);
12 default : printf(”Nao eh pontuacao.\n”);
13}

14 system(”pause”) ;
15 return O;
16 }

Note, no exemplo acima, que caso o usuario digite o simbolo de ponto (.)
todas as mensagens serao escritas na tela de saida.

switch seja interrompido assim que uma das seqliéncia de

o O comando break € opcional e faz com que o comando
comandos seja executada.

De modo geral, € quase certo que se venha a usar o comando break dentro
do switch. Porém a sua auséncia pode ser muito util em algumas situacgoes.
Por exemplo, quando queremos que uma ou mais seqléncias de coman-
dos sejam executadas a depender do valor da variavel do switch.

19

Exemplo: comando switch sem break

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int num;

5 printf(”Digite um numero inteiro de 0 a 9: ”);
6 scanf ("%d” ,&num) ;

7 switch (num){

8 case 9: printf(”Nove\n”);
g case 8: printf(”0Oito\n”);
10 case 7: printf(”Sete\n”);
11 case 6: printf(”Seis\n”);
12 case 5: printf(”Cinco\n”);
13 case 4: printf(”Quatro\n”);
14 case 3: printf(”Tres\n”);
15 case 2: printf(”Dois\n”);
16 case 1: printf(”Um\n”);

17 case 0: printf(”Zero\n”);
18 }

19 system(”pause”);
20 return O;
21 }

20

p COMANDOS DE REPETICAO

2.1 REPETICAO POR CONDICAO

Na secao anterior, vimos como realizar desvios condicionais em um pro-
grama. Desse modo, criamos programas em que um bloco de comandos
€ executado somente se uma determinada condigao é verdadeira.

Entretanto, ha casos em que é preciso que um bloco de comandos seja
executado mais de uma vez se uma determinada condigao for verdadeira:

enquanto condicao faca
sequéncia de comandos;
fim enquanto

Para isso, precisamos de uma estrutura de repeticao que permita executar
um conjunto de comandos quantas vezes forem necessarias. Isso € muito
similar ao que ocorre em um fluxograma, onde o simbolo do losango per-
mitia escolher entre diferentes caminhos com base em uma condi¢ao do
tipo verdadeiro/falso, com a diferenca de que agora o fluxo do programa &
desviado novamente para a condigao ao final da sequéncia de comandos:

Exemplo: Pseudo-codigo e fluxograma
LeiaAeB

A<B?
1 Leia B; .

2 Enquanto A < B
3 A recebe A + 1;
4 Imprima A; Some +1 em A

5 Fim Enquanto

Imprima A

De acordo com a condicdo, os comandos serdo repetidos

0 zero (se falsa) ou mais vezes (enquanto a condicao for ver-
dadeira). Essa estrutura normalmente € denominada laco
ou loop.

21

Note que a sequéncia de comandos a ser repetida esta subordinada a uma
condigao. Por condigao, entende-se qualquer expressao que resulte numa
resposta do tipo falso (zero) ou verdadeiro (diferente de zero). A condicao
pode ser uma expressao que utiliza operadores dos tipos:

e Matematicos : +,-, *, /, %

e Relacionais: >, <, >=, <=, ==, I=

e Ldgicos: &&, ||
Na execucao do comando enquanto, a condicao sera avaliada e:

e se a condicao for diferente de zero, ela sera considerada verdadeira
e a seqliéncia de comandos sera executada. Ao final da sequéncia
de comandos, o fluxo do programa é desviado novamente para a
condicao;

e se a condicao for zero, ela sera considerada falsa e a seqiiéncia de
comandos nao sera executada.

2.2 LACO INFINITO

Um lago infinito (ou loop infinito) € uma sequéncia de comandos em um
programa de computador que se repete infinitamente. Isso geralmente
ocorre por algum erro de programacgao, quando

e nao definimos uma condigao de parada;

e a condicao de parada existe, mas nunca é atingida.

Basicamente, um laco infinito ocorre quando cometemos algum erro ao
especificar a condigcao légica que controla a repeticao ou por esquecer de
algum comando dentro da sequéncia de comandos.

22

Exemplo: loop infinito
O valor de X é sempre dimi-
nuido em uma unidade, por-
tanto nunca atinge a condicao
de parada.

O valor de X nunca é modi-
ficado, portanto a condicao é
sempre verdadeira.

1 X recebe 4;

2 enquanto (X < 5) faca
3 X recebe X — 1;

4 Imprima X;

5 fim enquanto

1 X recebe 4;

2 enquanto (X < 5) faca
3 Imprima X;

4 fim enquanto

2.3 COMANDO WHILE

O comando while equivale ao comando “"enquanto”utilizado nos pseudo-
codigos apresentados até agora.

A forma geral de um comando while é:

while (condigao){
sequiéncia de comandos;

Na execugao do comando while, a condicao sera avaliada e:

e se a condigao for diferente de zero, ela sera considerada verdadeira
e a sequiéncia de comandos sera executada. Ao final da sequéncia
de comandos, o fluxo do programa é desviado novamente para a
condicao;

e se a condicao for zero, ela sera considerada falsa e a seqiiéncia de
comandos ndo sera executada.

Abaixo, tem-se um exemplo de um programa que lé dois niUmeros inteiros
a e b digitados pelo usuario e imprime na tela todos os nimeros inteiros
entre ae b:

23

Exemplo: comando while

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int a,b;

5 printf (”Digite o valor de a: 7);
6 scanf("%d”,&a) ;

7 printf (”Digite o valor de b: ”);
8 scanf("%d”,&b);

9 while (a < b){

10 a=a+ 1;

11 printf("%d \n”,a);

12

13 system(”pause”);
14 return O;
15 }

Relembrando a idéia de fluxogramas, é possivel ter uma boa representagao
de como os comandos do exemplo anterior sdo um-a-um executados du-
rante a execug¢ao do programa:

scanf("%d", &a);

scanf("%d",&b);

a=a+1;

printf("°;6d \n",a);—

Continuacé&o do
programa

O comando while segue todas as recomendacoes defi-
0 nidas para o comando if quanto ao uso das chaves e
definicdo da condicao usada.

24

Isso significa que a condicao pode ser qualquer expressdao que resulte
numa resposta do tipo falso (zero) ou verdadeiro (diferente de zero), e que
utiliza operadores dos tipos matematicos, relacionais e/ou logicos.

Como nos comandos condicionais, 0 comando while atua apenas sobre o
comando seguinte a ele. Se quisermos que ele execute uma sequéncia
de comandos, é preciso definir essa sequéncia de comandos dentro de
chaves {}.

0 Como no comando if-else, ndo se usa o ponto e virgula (;)
depois da condicao do comando while.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

4 int a,b;

5 printf (”Digite o valor de a: 7);
6 scanf("%d”,&a) ;

7 printf (”Digite o valor de b: 7);
8 scanf("%d”,&b);

9 while (a < b);{//ERRO!

10 a=a+ 1;

11 printf("%d \n”,a);

12

13 system(”pause”);
14 return O;
15 }

Como no caso dos comandos condicionais, colocar o operador de ponto e
virgula (;) logo ap6s o comando while, faz com que o compilador entenda
que o comando while ja terminou e trate o comando seguinte (a=a + 1)
como se 0 mesmo estivesse fora do while. No exemplo acima, temos um
laco infinito (o valor de a e b nunca mudam, portanto a condicdo de parada
nunca é atingida).

E responsabilidade do programador modificar o valor de
! algum dos elementos usados na condigao para evitar que
ocorra um lago infinito.

2.4 COMANDO FOR

O comando for € muito similar ao comando while visto anteriormente. Ba-
sicamente, o comando for é usado para repetir um comando, ou uma

25

sequéncia de comandos, diversas vezes.

A forma geral de um comando for é:

for (inicializacao; condi¢ao; incremento) {
seqgliéncia de comandos;

Na execugao do comando for, a seguinte sequéncia de passo é realizada:

e a cladsula inicializacao é executada: nela as variaveis recebem uma
valor inicial para usar dentro do for.

e a condicao é testada:

— se a condicao for diferente de zero, ela sera considerada verda-
deira e a seqUiéncia de comandos sera executada. Ao final da
sequéncia de comandos, o fluxo do programa é desviado para
o0 incremento;

— se a condicao for zero, ela sera considerada falsa e a seqiiéncia
de comandos nao sera executada (fim do comando for).

e incremento: terminada a execucao da seqiiéncia de comandos, ocorre
a etapa de incremento das variaveis usadas no for. Ao final dessa
etapa, o fluxo do programa € novamente desviado para a condicao.

Abaixo, tem-se um exemplo de um programa que |é dois niUmeros inteiros
a e b digitados pelo usuario e imprime na tela todos os nimeros inteiros
entre ae b (incluindo a e b):

Exemplo: comando for

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

int a,b,c;

printf (”Digite o valor de a: ”);

scanf(’%d”,&a) ;

printf (”Digite o valor de b: 7);

scanf("%d”,&b) ;

for (c = a; ¢ <=b; c++){
printf(*%d \n”,c);

-
O OWooNO O~

11)

12 system(”pause”);
13 return O;

14 }

26

No exemplo acima, a variavel c € inicializada como valor de a (c = a). Em
seguida, o valor de ¢ é comparado com o valor de b (c <= b). Por fim,
se a sequéncia de comandos foi executada, o valor da variavel ¢ sera in-
crementado em uma unidade (c++). Relembrando a idéia de fluxogramas,
€ possivel ter uma boa representacao de como os comandos do exemplo
anterior sdo um-a-um executados durante a execugao do programa:

int a,b.c;

h 4

scanf("%d",&a);

scanf("%d",&b);

for(c=a = CT-F)|{

SIM
printf("%d \n",c);}

NAO

Continuagdo do
programa

para o comando if e while quanto ao uso das chaves e

0 O comando for segue todas as recomendacdes definidas
definicao da condi¢ao usada.

Isso significa que a condicdo pode ser qualquer expressao que resulte
numa resposta do tipo falso (zero) ou verdadeiro (diferente de zero), e que
utiliza operadores dos tipos matematicos, relacionais e/ou logicos.

Como nos comandos condicionais, 0 comando while atua apenas sobre o
comando seguinte a ele. Se quisermos que ele execute uma sequéncia
de comandos, é preciso definir essa sequéncia de comandos dentro de
chaves {}.

27

Exemplo: for versus while
for while

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

4 int i, soma = 0; & i 0 semEl S
5 for (i =1:;i<=10;i 2 =1

++){_ ’ - ’ 6 while (i <= 10){

. 7 soma = soma + i;
6 soma = soma + i; .
7 } 8 i+
f o _ @ o 9

£ printf ("Soma = %d \n”, 10 printf(”Soma = %d \n”,

soma) ;
9 system(”pause”);
10 return O;
11 }

soma) ;
11 system (”pause”) ;
12 return O;

Dependendo da situagao em que o comando for é utilizado, podemos omitir
qualguer uma de suas clausulas:

e inicializacao;

e condicao;

e incremento.

Independente de qual clausula é omitida, o comando for
exige que se coloque os dois operadores de ponto e virgula

(;)-

O comando for exige que se coloque os dois operadores de ponto e virgula
(;) pois € este operador que indica a separacao entre as clausulas de
inicializacao, condigao e incremento. Sem elas, o compilador nao tem cer-
teza de qual clausula foi omitida.

Abaixo, sdo apresentados trés exemplos de comando for onde, em cada
um deles, uma das clausulas é omitida.

28

Exemplo: comando for sem inicializagao

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

4 int a,b,c;

5 printf(”Digite o valor de a: 7);
6 scanf("%d”,&a) ;

7 printf(”Digite o valor de b: 7);
8 scanf("%d”,&b);

9 for (; a <=b; a++){

10 printf(”%d \n”,a);

11 }

12 system(”pause”);
13 return 0;
14 }

No exemplo acima, a variavel a é utilizada nas clausulas de condigcao e in-
cremento do comando for. Como a variavel a teve seu valor inicial definido
através de um comando de leitura do teclado (scanf), nao é necessario a
etapa de inicializagdo do comando for para definir o seu valor.

Ao omitir a condigao do comando for, criamos um lago infi-
H nito.

Para o comando for, a auséncia da clausula de condcao € considerada
como uma condigcao que é sempre verdadeira. Sendo a condigao sempre
verdadeira, ndo existe condicdo de parada para o comando for, o qual vai
ser executado infinitamente.

Exemplo: comando for sem condicao

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int a,b,c;

5 printf(”Digite o valor de a: 7);

6 scanf("/d”,&a) ;

7 printf(”Digite o valor de b: 7);

8 scanf(’%d”,&b) ;

9 //0 comando for abaixo é um lago infinito
10 for (c = a; ; c++){

11 printf (™%d \n”,c);

12

13 system(”pause”);
14 return O;
15 }

29

Por ultimo, temos um exemplo de comando for sem a clausula de incre-
mento. Nessa etapa do comando for, um novo valor € atribuido para uma
(ou mais) varaveis utilizadas.

Exemplo: comando for sem incremento

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

4 int a,b,c;

5 printf(”Digite o valor de a: ”);
6 scanf(’%d”,&a) ;

7 printf (”Digite o valor de b: 7);
8 scanf("%d”,&b);

9 for (c = a; ¢c <=b;){

10 printf ("% \n”,c);

11 C++;

12}

13 system (”pause”) ;
14 return O;
15 }

No exemplo acima, a clausula de incremento foi omtida da declaracao do
comando for. Para evitar a criagdo de uma laco infinito (onde a condicao
de parada existe, mas nunca € atingida), foi colocado um comando de in-
cremento (c++) dentro da sequéncia de comandos do for. Perceba que,
desse modo, o comando for fica mais parecido com o comando while, ja
que agora se pode definir em qual momento o incremento vai ser execu-
tado, e ndo apenas no final.

30

A clausula de incremento é utilizada para atribuir um novo

o valor a uma ou mais variaveis durante o comando for. Essa
atribuicao nao esta restrita a apenas o operador de incre-
mento (++).

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

4 int a,b,c;

5 printf(”Digite o valor de a: ”);
6 scanf("%d” ,&a) ;

7 printf (”Digite o valor de b: 7);
8 scanf("%d”,&b);

9

10 //incremento de duas unidades

11 for (c = a; ¢ <= b; c=c+2){

12 printf(*%d \n”,c);

13 }

14

15 //novo valor é lido do teclado

16 for (c = a; ¢ <= b; scanf("%d”,&c)){
17 printf("%d \n”,c);

18 }

19 system(”pause”) ;

20 return 0;

21 }

Nesse exemplo, fica claro que a clausula de incremento pode conter qual-
quer comando que altere o valor de uma das variaveis utilizadas pelo co-
mando for.

o O operador de virgula (,) pode ser usado em qualquer uma
das clausulas.

1 #include <stdio.h>
2 #include <stdlib .h>
3 int main() {

4 int i,j;

5 for (i =0, j =100; i < j; i++, j—){
6 printf(”i =%d e j =%d \n”,i,j);
7}

8 system(”pause”);

9 return 0;

10 }

No exemplo acima, foram definidos dois comandos para a clausula de

31

inicializacdo: i = 0 e j = 100. Cada comando na inicializagao € separado
pelo operador de virgula (,). A clausula de inicializagao s6 termina quando
o operador de ponto e virgula (;) € encontrado. Na fase de incremento,
novamente o valor das duas variaveis € modificado: o valor de j é incre-
mentado (i++) enquanto o de j € decrementado (j—). Novamente, cada
comando na clausula de incremento é separado pelo operador de virgula

(,)-

2.5 COMANDO DO-WHILE

O comando do-while é bastante semelhante ao comando while visto ante-
riormente. Sua principal diferenca é com relacao a avaliagao da condicao:
enquanto o comando while avalia a condi¢cao para depois executar uma
seqgliéncia de comandos, o comando do-while executa uma seqliéncia de
comandos para depois testar a condicao.

A forma geral de um comando do-while é:

do{
sequiéncia de comandos;
} while(condigao);

Na execucao do comando do-while, a seguinte ordem de passos é execu-
tada:

e a seqléncia de comandos € executada;
e a condicao é avaliada:

— se a condicao for diferente de zero, ela sera considerada ver-
dadeira e o fluxo do programa € desviado novamente para o
comando do, de modo que a seqiiéncia de comandos seja exe-
cutada novamente;

— se a condigao for zero, ela sera considerada falsa e o lago ter-
mina.

O comando do-while € utilizado sempre que se desejar que
o a sequiéncia de comandos seja executada pelo menos uma
vez.

32

No comando while, a condicao é sempre avaliada antes da seqiiéncia de
comandos. Isso significa que a condigao pode ser falsa logo na primeira
repeticdo do comando while, o que faria com que a seqiiéncia de coman-
dos nao fosse executada nenhuma vez. Portanto, o comando while pode
repetir uma sequiéncia de comandos zero ou mais vezes.

Ja no comando do-while, a seqiiéncia de comandos € executada primeiro.
Mesmo que a condigcédo seja falsa logo na primeira repeticado do comando
do-while, a seqiiéncia de comandos tera sido executada pelo menos uma
vez. Portanto, o comando do-while pode repetir uma seqiiéncia de coman-
dos uma ou mais vezes.

finidas para o comando if quanto ao uso das chaves e

o O comando do-while segue todas as recomendacodes de-
definigao da condi¢ao usada.

Abaixo, tem-se um exemplo de um programa que exibe um menu de opgdes
para o usuario e espera que ele digite uma das suas opgoes:

Exemplo: comando do-while

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 int i;

5 do {

6 printf (”Escolha uma opgao:\n”);
7 printf (”(1) Opgao 1\n”);

8 printf (”(2) Opgao 2\n”);

9 printf (”(3) Opgao 3\n”);

10 scanf("%d”, &i);

11 + while ((i < 1) || (i > 3));

12 printf (”Vocé escolheu a Opgao %d.\n”,i);
13 system(”pause”);

14 return O;

15 }

Relembrando a idéia de fluxogramas, € possivel ter uma boa representacao
de como os comandos do exemplo anterior sdo um-a-um executados du-
rante a execucao do programa:

33

do{
|printf ("Escolha uma opgao:\n"); |<—

|printf ("(1) Opgao 1\n"); |

[printf ("(2) Opgao 2\n"); |
v
[printf ("(3) Opgao 3\n"): |

scanf("%d", &i); |

. . SIM
NAO }wh -=ﬂ®1

—)Iprintf ("Vocé escolheu a Opgéo %d.\n",i); |

ponto e virgula (;) depois da condicdo do comando do-

8 Diferente do comando if-else, é necessario colocar um
while.

1 #include <stdio.h>
2 #include <stdlib .h>
3 int main(){

4 int i = 0;

5 do{

6 printf (”Valor %d\n”,i);

7 i ++;

8 twhile(i < 10);//Esse ponto e virgula é

necessario !
9 system(”pause”);
10 return O;
1 }

No comando do-while, a seqiiéncia de comandos é definida antes do teste
da condigao, diferente dos outros comando condicionais e de repeticao.
Isso significa que o teste da condicao é o ultimo comando da repeticao
do-while. Sendo assim, o compilador entende que a definicdo do comando
do-while ja terminou e exige que se coloque o operador de ponto e virgula
(;) apds a condigao.

E responsabilidade do programador modificar o valor de
! algum dos elementos usados na condi¢ao para evitar que
ocorra um lago infinito.

34

2.6 COMANDO BREAK

Vimos, anteriormente, que o comando break pode ser utilizado em con-
junto com o comando switch. Basicamente, sua fungao era interromper o
comando switch assim que uma das seqliéncias de comandos da clausula
case fosse executada. Caso o comando break ndo existisse, a seqiiéncia
de comandos do case seguinte também seria executada e assim por di-
ante.

Na verdade, o comando break serve para quebrar a execugao de um co-
mando (como no caso do switch) ou interromper a execucao de qualquer
comando de lago (for, while ou do-while). O break faz com que a execugao
do programa continue na primeira linha seguinte ao lago ou bloco que esta
sendo interrompido.

O comando break é utilizado para terminar abruptamente
uma repeticdo. Por exemplo, se estivermos em uma
repeticao e um determinado resultado ocorrer, 0 programa
devera sair da iteragao.

Abaixo, tem-se um exemplo de um programa que Ié dois nimeros inteiros
a e b digitados pelo usuario e imprime na tela todos os nimeros inteiros
entre a e b. Note que no momento em que o valor de a atige o valor de b),
o comando break € chamado e o laco terminado:

Exemplo: comando break

1 #include <stdio.h>
2 #include <stdlib .h>
3 int main(){

4 int a,b;

5 printf(”Digite o valor de a: 7);
6 scanf("%d”,&a);

7 printf(”Digite o valor de b: 7);
8 scanf("%d”,&b) ;

9 while (a <= b){

10 if (a ==Db)

11 break ;

12 a=a+ 1;

13 printf ("%d \n”,a);

14

15 system(”pause”);
16 return O;
17 }

Relembrando o conceito de fluxogramas, € possivel ter uma boa representacao

35

de como os comandos do exemplo anterior sao um-a-um executados pelo
programa:

SIM

break

a=a+1;
I_W
printf("%d \n",a);]

v

Continuagao do
programa

2.7 COMANDO CONTINUE

O comando continue € muito parecido com o comando break. Tanto o co-
mando break quanto o comando continue ignoram o restante da sequéncia
de comandos da repeticao que os sucedem. A diferenca € que, enquanto o
comando break termina o lago de repeticdo, o comando break interrompe
apenas aquela repeticao e passa para a proxima repeticao do lago (se ela
existir).

Por esse mesmo motivo, 0 comando continue s6 pode ser utilizado dentro
de um lago.

Os comandos que sucedem o comando continue no bloco
B nao sao executados.

Abaixo, tem-se um exemplo de um programa que |é, repetidamente, um
ndmero inteiro do usuario e a imprime apenas se ela for maior ou igual a
1 e menor ou igual a 5. Caso o numero nao esteja nesse intervalo, essa
repeticao do lago é desconsiderada e reiniciada:

36

Exemplo: comando continue

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

4 int opcao = 0;

5 while (opcao != 5){

6 printf (”Escolha uma opcao entre 1 e 5: 7);
7 scanf("%d”, &opcao);

8 if ((opcao > 5) || (opcao < 1))

9 continue;

10 printf (”Opcao escolhida: %d” ,opcao) ;

11 1

12 system(”pause”);
13 return O;
14 }

Relembrando o conceito de fluxogramas, € possivel ter uma boa representacao
de como os comandos do exemplo anterior sao um-a-um executados pelo

programa:
NAO _‘,@, -
SIM

|printf("EscoIha uma opcao entre 1 e 5:");

|scanf("%d", &opcao); |

pcao > 5) || (opcao ;

SIM

AL

continue;

printf(“Opcao escolhida: %d",opcao); } li

Continuag&o do
programa

2.8 GOTO E LABEL

O comando goto é um salto condicional para um local especificado por
uma palavra chave no cédigo. A forma geral de um comando goto é:

destino:
goto destino;

37

Na sintaxe acima, o comando goto (do inglés go to, literalmente ”ir para”)
muda o fluxo do programa para um local previamente especificado pela ex-
pressao destino, onde destino é uma palavra definida pelo programador.
Este local pode ser a frente ou atras no programa, mas deve ser dentro da
mesma funcao.

O teorema da programacao estruturada prova que a instrugao goto nao é
necessaria para escrever programas; alguma combinacgao das trés construgoes
de programagao (comandos sequenciais, condicionais e de repeticao) sao
suficientes para executar qualquer calculo. Além disso, o uso de goto pode
deixar o programa muitas vezes ilegivel.

Exemplo: goto versus for
goto for

1 #include <stdio.h>
2 #include <stdlib.h>

3 int main(){ 1 #include <stdio.h>

2 #include <stdlib.h>

4 Int i =0 3 int main(){
5 inicio: 4 G 0
6 if (i < 5){ . . o
. 5 % @ 5 for(i =0; i < 5; i++
4 IR (NS Gt 6 p(rintf(”Numero %d\n’)’
Iy E oy
8 i ++; 7)5
13) goto inicio; 8 system(”pause”);
Y o 9 return 0;
11 system ("pause”) ; 10 }

12 return 0;
13 }

Como se nota no exemplo acima, 0 mesmo programa feito com o comando
for € muito mais facil de entender do que o mesmo programa feito com o
comando goto.

38

Apesar de banido da pratica de programacgao, o comando
goto pode ser util em determinadas circunstancias. Ex: sair
de dentro de lacos aninhados.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

4 int i,j,k;

5 for(i = 0; i < 5; i++)

6 for(j = 0; j < 5; j++4)

7 for(k = 0; k < 5; k++)

8 if(i ==28&&% j == 3 & k == 1)

9 goto fim;

10 else

11 printf (”Posicao [%d,%d,%d]\n
”!i !j 1k);

12

i3

14 fim :

15 printf (”Fim do programa\n”);

16

17 system(”pause”);
18 return 0;
19 }

39

3 VETORES E MATRIZES - ARRAYS

3.1 EXEMPLO DE USO

Um array ou "vetor”’é a forma mais comum de dados estruturados da lin-
guagem C. Um array € simplesmente um conjunto de variaveis do mesmo
tipo, igualmente acessiveis por um indice.

tudantes, imprimir o nome de cada estudante, cuja nota é

9 Imagine o seguinte problema: dada uma relagao de 5 es-
maior do que a média da classe.

Um algoritmo simples para resolver esse problema poderia ser o pseudo-
codigo apresentado abaixo:

Leia(nome1, nome2, nome3, nome4, nome5);
Leia(notal, nota2, nota3, nota4, nota5b);

media = (notal+nota2+nota3+nota4+notad) / 5,0;
Se notal > media entao escreva (nome1)

Se nota2 > media entdo escreva (nome2)
Se nota3 > media entao escreva (nome3)
Se nota4 > media entdo escreva (nome4)
Se nota5 > media entdo escreva (nome5)

O algoritmo anterior representa uma solugao possivel para o problema. O
grande inconveniente dessa solucao é a grande quantidade de variaveis
para gerenciarmos e 0 uso repetido de comandos praticamente idénticos.

! Essa solugao € inviavel para uma lista de 100 alunos.

Expandir o algoritmo anterior para trabalhar com um total de 100 alunos
significaria, basicamente, aumentar o nimero de variaveis para guardar
os dados de cada aluno e repetir, ainda mais, um conjunto de comandos
praticamente idénticos. Desse modo, teriamos:

40

e Uma variavel para armazenar cada nome de aluno: 100 variaveis;
e Uma variavel para armazenar a nota de cada aluno: 100 variaveis;

e Um comando de teste e impressdo na tela para cada aluno: 100
testes.

O pseudo-cédigo abaixo representa o algoritmo anterior expandido para
poder trabalhar com 100 alunos:

Leia(nome1, nome2, ..., nome100);
Leia(notal, nota2,..., nota100);

media = (notal+nota2+...+nota100) / 100,0;
Se notal > media entdo escreva (nome1)
Se nota2 > media entdo escreva (nome2)

Se nota100 > media entdo escreva (nome100)

Como se pode notar, temos uma solugao extremamente engessada para
0 nosso problema. Modificar o nimero de alunos usado pelo algoritmo
implica em reescrever todo o codigo, repetindo comandos praticamente
idénticos. Além disso, temos uma grande quantidade de variaveis para
gerenciar, cada uma com 0 seu préprio nome, 0 que torna essa tarefa
ainda mais dificil de ser realizada sem a ocorréncia de erros.

clara-los usando um UNICO nome para todos os 100 ele-

o Como estes dados tém uma relagao entre si, podemos de-
mentos.

Surge entao a necessidade de usar um array.

3.2 ARRAY COM UMA DIMENSAO - VETOR

A idéia de um array ou "vetor’é bastante simples: criar um conjunto de
variaveis do mesmo tipo utilizando apenas um nome.

Relembrando o exemplo anterior, onde as variaveis que guardam as notas
dos 100 alunos sao todas do mesmo tipo, essa solugao permitiria usar
apenas um nome (notas, por exemplo) de variavel para representar todas
as notas dos alunos, ao invés de um nome para cada variavel.

41

Em linguagem C, a declaracdo de um array segue a seguinte forma geral:
tipo_dado nome_array[tamanho];

O comando acima define um array de nome nome_array contendo tama-
nho elementos adjacentes na memdéria. Cada elemento do array € do tipo
tipo_dado. Pensando no exemplo anterior, poderiamos usar uma array de
inteiros contendo 100 elementos para guardar as notas dos 100 alunos:

int notas[100];

Como cada nota do aluno possui agora 0 mesmo nome que as demais
notas dos outros alunos, o acesso ao valor de cada nota é feito utilizando
um indice.

81 55 72

notas

o Para indicar qual indice do array queremos acessar, utiliza-
se o operador de colchetes [].

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main(){

int notas[100];

int i;

for (i = 0; i < 100; i++){
printf (”Digite a nota do aluno %d”,i);
scanf("%d” ,¬as[i]) ;

}

system (”pause”) ;

11 return O;

12 }

N
O OWooNOo O~

No exemplo acima, percebe-se que cada posicao do array possui todas
as caracteristicas de uma variavel. Isso significa que ela pode aparecer
em comandos de entrada e saida de dados, expressoes e atribuigcoes. Por
exemplo:

42

scanf("%d”,¬as[5]);
notas[0] = 10;
notas[1] = notas[5] + notas[0];

O tempo para acessar qualquer uma das posi¢des do array
€ 0 mesmo.

Lembre-se, cada posicao do array € uma variavel. Portanto, todas as
posicoes do array sao igualmente acessiveis, isto €, o tempo e o tipo de
procedimento para acessar qualquer uma das posicoes do array sao iguais
ao de qualquer outra variavel.

Na linguagem C a numeragao comecga sempre do ZERO e
. termina em N-1, onde N é o nimero de elementos do array.

Isto significa que, no exemplo anterior, as notas dos alunos serao indexa-
das de 0 a 99:

notas[0]
notas[1]

notas[99]

Isso acontece pelo seguinte motivo: um array € um agrupamento de da-
dos, do mesmo tipo, adjacentes na memoéria. O nome do array indica
onde esses dados comecam na memoria. O indice do array indica quantas
posigcoes se deve pular para acessar uma determinada posicao. A figura
abaixo exemplifica como o array esta na memodria:

Num array de 100 elementos, indices menores do que
0 e maiores do que 99 também podem ser acessados.
Porém, isto pode resultar nos mais variados erros durante
a execucgao do programa.

Como foi explicado, um array € um agrupamento de dados adjacentes na
memodria e o seu indice apenas indica quantas posicoes se deve pular para

43

notas[0]
notas[1]
notas[2]
notas[3]
notas[4]

acessar uma determinada posicéo. Isso significa que se tentarmos acessar
o indice 100, o programa tentara acessar a centésima posigao a partir da
posicao inicial (que é o nome do array). O mesmo vale para a posicao de
indice -1. Nesse caso o programa tentara acessar uma posigao anterior ao
local onde o array comega na memoria. O problema é que, apesar dessas
posicdes existirem na memoria e serem acessiveis, elas nao pertencer ao
array. Pior ainda, elas podem pertencer a outras variaveis do programa, e
a alteragao de seus valores pode resultar nos mais variados erros durante
a execugao do programa.

| E fungdo do programador garantir que os limites do array
.'u.h estao sendo respeitados.

Deve-se tomar cuidado ao se rabalhar com arrays. Prncipalmente ao se
usar a operacao de atribuicao (=).

44

0 Nao se pode fazer atribuigao de arrays.

1 #include <stdio.h>

2 #include <stdlib .h>

3 int main(){

int v[5] = {1,2,3,4,5};
int vi[5];

vl = v; //ERRO!

system (”pause”) ;
return O;

O ©W oo 0N

Isso ocorre porque a linguagem C ndo suporta a atribuicdo de um array
para outro. Para atribuir o contedido de um array a outro array, o correto é
copiar seus valores elemento por elemento para o outro array.

3.3 ARRAY COM DUAS DIMENSOES - MATRIZ

Os arrays declarados até o momento possuem apenas uma dimensao. Ha
casos, em que uma estrutura com mais de uma dimensao é mais util. Por
exemplo, quando trabalhamos com matrizes, onde os valores sao organi-
zados em uma estrutura de linhas e colunas.

Em linguagem C, a declaracdo de uma matriz segue a seguinte forma ge-
ral:

tipo_dado nome_array[nro_linhas][nro_colunas];

O comando acima define um array de nome nome_array contendo nro_linhas
x nro_colunas elementos adjacentes na memoria. Cada elemento do array
€ do tipo tipo_dado.

Por exemplo, para criar um array de inteiros que possua 100 linhas e
50 colunas, isto é, uma matriz de inteiros de tamanho 100x50, usa-se
a declaragao abaixo:

int mat[100][50];

Como no caso dos arrays de uma Unica dimensao, cada posigao da ma-
triz possui todas as caracteristicas de uma variavel. Isso significa que ela

45

pode aparecer em comandos de entrada e saida de dados, expressdes e
atribuigdes:

scanf("%d”,&mat[5][0]);
mat[0][0] = 10;
mat[1][2] = mat[5][0] + mat[0][0];

Perceba, no entanto, que o acesso ao valor de uma posicao da matriz é
feito agora utilizando dois indices: um para a linha e outro para a coluna.

0 1 49

/
1 /

7

mat[0][1]

99

Lembre-se, cada posicao do array € uma variavel. Portanto, todas as
posicdes do array sdo igualmente acessiveis, isto €, o tempo e o tipo de
procedimento para acessar qualquer uma das posigoes do array sao iguais
ao de qualquer outra variavel.

3.4 ARRAYS MULTIDIMENSIONAIS

Vimos até agora como criar arrays com uma ou duas dimensoes. A lingua-
gem C permite que se crie arrays com mais de duas dimensdes de maneira
facil.

o Na linguagem C, cada conjunto de colchetes [] representa
uma dimensao do array.

Cada par de colchetes adicionado ao nome de uma variavel durante a sua
declaracao adiciona uma nova dimensao aquela variavel, independente do
seu tipo:

int vet[5]; / 1 dimensao

46

float mat[5][5]; / 2 dimensdes
double cub[5][5][5]; // 3 dimensbes
int X[5][5][5][5]; // 4 dimensbes

4
5
6
7
8

9
10
11
12
13
14
15
16
17 }

sional é feito utilizando um indice para cada dimensao do

o O acesso ao valor de uma posicao de um array multidimen-
array.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

int cub[5][5][5];
int i,j,k;
//preenche o array de 3 dimensbées com zeros
for (i=0; i < 5; i++){
for (j=0; j < 5; j++){
for (k=0; k < 5; k++){
cub[i][j][k] = 0;

}
}

system (”pause”) ;
return O;

Apesar de terem o comportamento de estruturas com mais de uma di-

mensao, os dados dos arrays multidimensionais sao armazenados line-

armente na memoria. E o uso dos colchetes que cria a impressao de

estarmos trabalhando com mais de uma dimensao.

0,0

Por esse motivo, € importante ter em mente qual a dimensao que se move
mais rapidamente na memdéria: sempre a mais a direita, independente do
tipo ou numero de dimensdes do array, como se pode ver abaixo marcado

em vermelho:

47

int vet[5]; / 1 dimenséao

float mat[5][5]; // 2 dimensodes
double cub[5][5][5]; // 3 dimensdes
int X[5][5][5][5]; // 4 dimensbes

Basicamente, um array multidimensional funciona como
o qualquer outro array. Basta lembrar que o indice que va-
ria mais rapidamente é o indice mais a direita.

3.5 INICIALIZACAO DE ARRAYS

Um array pode ser inicializado com certos valores durante sua declaracao.
Isso pode ser feito com qualquer array independente do tipo ou numero de
dimensdes do array.

A forma geral de inicializagao de um array é:
tipo_dado nome_array[tam1][tam2]...[tamN] = {dados };

Na declaragao acima, dados é uma lista de valores (do mesmo tipo do ar-
ray) separados por virgula e delimitado pelo operador de chaves {}. Esses
valores devem ser colocados na mesma ordem em que serao colocados
dentro do array.

A inicializacao de uma array utilizando o operador de cha-
. ves {}s6 pode ser feita durante sua declaragao.

A inicializagao de uma array consiste em atribuir um valor inicial a cada
posicao do array. O operador de chaves apenas facilita essa tarefa, como
mostra o exemplo abaixo:

48

Exemplo: inicializando um array
Com o operador de {} Sem o operador de {}

1 #include <stdio.h>
2 #include <stdlib.h>
1 #include <stdio.h> 3 int main(){

2 #include <stdlib .h> 4 int vet[5];

3 int main() { 5 vet[0] = 15;

4 int vet[5] = 6 vet[1] = 12;

{15,12,91,35}; 7 vet[2] = 9;

5 8 vet[3] = 1;

6 system(”pause”); 9 vet[4] = 35;

7 return O; 10

8 } 11 system (”"pause”) ;
12 return O;
13 }

Abaixo sdo apresentados alguns exemplos de inicializacdo de arrays de
diferentes tipos e nimero de dimensoes:

Exemplos: inicializando um array

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){
int matriz1 [3][4]
int matriz2 [3][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};

{1,2,3,4,5,6,7,8,9,10,11,12};

4
5

6

7 char str1 [10] {'J’,’0”,’a’,’0’,’\0" };
8 char str2 [10] = ”"Joao”;
9
10
11
12

char str_matriz [3][10] = {"Joao”,”Maria”,”Jose” };

system (”pause”) ;
13 return O;
14 }

Note no exemplo acima que a inicializagao de um array de 2 dimensodes
pode ser feita de duas formas distintas. Na primeira matriz (matriz1) os
valores iniciais da matriz sao definidos utilizando um Unico conjunto de
chaves {}, igual ao que é feito com vetores. Nesse caso, os valores sdo
atribuidos para todas as colunas da primeira linha da matriz, para depois
passar para as colunas da segunda linha e assim por diante. Lembre-se,
a dimensao que se move mais rapidamente na memaria é sempre a mais
a direita, independente do tipo ou nimero de dimensdes do array. Ja na
segunda matriz (matriz2) usa-se mais de um conjunto de chaves {}para
definir cada uma das dimensdes da matriz.

49

Para a inicializacdo de um array de caracteres, pode-se usar 0 mesmo
principio definido na inicializagao de vetores (str1). Percebe-se que essa
forma de inicializacao nao & muito pratica. Por isso, a inicializacao de um
array de caracteres também pode ser feita por meio de "aspas duplas”,
como mostrado na inicializagao de str2. O mesmo principio € valido para
iniciar um array de caracteres de mais de uma dimensao.

Na inicializagdo de um array de caracteres nao é ne-
cessario definir todos os seus elementos.

3.5.1 INICIALIZACAO SEM TAMANHO

A linguagem C também permite inicializar um array sem que tenhamos
definido o seu tamanho. Nesse caso, simplesmente ndo se coloca o valor
do tamanho entre os colchetes durante a declaragao do array:

tipo_dado nome_array[] = {dados };

Nesse tipo de inicializacao, o compilador da linguagem C vai considerar o
tamanho do dado declarado como sendo o tamanho do array. Isto ocorre
durante a compilagao do programa. Depois disso, o tamanho do array nao
podera mais ser modificado durante o programa.

Abaixo sdo apresentados alguns exemplos de inicializacao de arrays sem
tamanhos:

Exemplos: inicializando um array sem tamanho

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main(){

//A string texto tera tamanho 13
//(12 caracteres + o caractere '\0’)
char texto [] = ”"Linguagem C.”;

// O numero de posicbes do vetor sera 10.
int vetor[] = {1,2,3,4,5,6,7,8,9,10};

=
O OWoo~NO O~

11 //0O numero de linhas de matriz sera 5.

12 int matriz [][2] = {1,2,3,4,5,6,7,8,9,10};
13

14 system(”pause”);

15 return O;

16 }

50

Note no exemplo acima que foram utilizados 12 caracteres para iniciar o
array de char "texto”. Porém, o seu tamanho final sera 13. Isso ocorre por
que arrays de caracteres sempre possuem o elemento seguinte ao ultimo
caractere como sendo o caractere '\0'. Mais detalhes sobre isso podem
ser vistos na segao seguinte.

contar quantos caracteres serao necessarios para iniciali-

o Esse tipo de inicializacao é muito Gtil quando nao queremos
zarmos uma string (array de caracteres).

No caso da inicializacao de arrays de mais de uma dimensao, € necessario
sempre definir as demais dimensdes. Apenas a primeira dimensao pode
ficar sem tamanho definido.

3.6 EXEMPLO DE USO DE ARRAYS

Nesta segao sao apresentados alguns exemplos de operagdes basicas de
manipulagao de vetores e matrizes em C.

Somar os elementos de um vetor de 5 inteiros

1 #include <stdio.h>
2 #include <stdlib .h>
3 int main() {
int i, lista[5] = {3,51,18,2,45};
int soma = 0;
for(i=0; i < 5; i++)
soma = soma + lista[il];
printf (”Soma = %d” ,soma) ;
system (”pause”) ;
return O;

=
O OWooNO O~

11 }

51

Encontrar o maior valor contido em um vetor de 5 inteiros

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

© 00 ~NO OpN

10
11
12
13 }

int i, lista[5] = {3,18,2,51,45};
int Maior = lista[0];
for(i=1; i<5; i++){
if (Maior < lista[i])
Maior = listal[il];
}

printf (”Maior = %d”, Maior);
system ("pause”) ;
return O;

Calcular a média dos elementos de um vetor de 5 inteiros

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

© 00N 0N

10
11
12 }

int i, lista[5] = {3,51,18,2,45};
int soma = 0;
for(i=0; i < 5; i++)
soma = soma + lista[il];
float media = soma / 5.0;
printf (”Media = %f” ,media) ;
system (”pause”) ;
return O;

Somar os elementos de uma matriz de inteiros

=
O OWo~NO 0N

12 }

1 #include <stdio.h>
2 #include <stdlib .h>
3 int main() {
int mat[3][3] = {{1,2,3},{4,5,6},{7,8,9}};
int i, j, soma = 0;
for(i=0; i < 3; i++)

for(j=0; j < 3; j++)

soma = soma + mat[i][]j];

printf(”Soma = %d” ,soma) ;
system (”pause”) ;
11 return O;

52

Imprimir linha por linha uma matriz

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){
int mat[3][3] = {{1,2,3},{4,5,6},{7,8,9}};
int i, j;
for(i=0; i < 3; i++){

for(j=0; j < 3; j++)

printf(™d ” ,mat[i][j]);
printf(”\n”);

—
O ©OWooNOo O~

}

11 system (”pause”) ;
12 return O;
13 }

53

4 ARRAYS DE CARACTERES - STRINGS

4.1 DEFINICAO E DECLARAGCAO DE STRINGS

String € 0 nome que usamos para definir uma seqiiéncia de caracteres ad-
jacentes na memoéria do computador. Essa seqiliéncia de caracteres, que
pode ser uma palavra ou frase, € armazenada na meméria do computador
na forma de um arrays do tipo char.

Sendo a string um array de caracteres, sua declaragdao segue as mesmas
regras da declaracdo de um array convecnional:

char str[6];

A declaracao acima cria na memoria do computador uma string (array de
caracteres) de nome str e tamanho igual a 6. No entanto, apesar de ser um
array, devemos ficar atentos para o fato de que as strings tém no elemento
seguinte a ultima letra da palavra/frase armazenada um caractere "\0'.

0 O caractere "\0’ indica o fim da seqiiéncia de caracteres.

Isso ocorre por que podemos definir uma string com um tamanho maior
do que a palavra armazenada. Imagine uma string definida com um tama-
nho de 50 caracteres, mas utilizada apenas para armazenar a palavra "oi”.
Nesse caso, temos 48 posicdes nao utilizadas e que estao preenchidas
com lixo de memd@ria (um valor qualquer). Obviamente, nao queremos
que todo esse lixo seja considerado quando essa string for exibida na tela.
Assim, o caractere *\0’ indica o fim da seqiiéncia de caracteres e o inicio
das posicoes restantes da nossa string que nao estdo sendo utilizadas
nesse momento.

0| 7?7 | & |#

—

0]

Ao definir o tamanho de uma string, devemos considerar o
. caractere ’\0’.

54

Como o caractere "\0’ indica o final de nossa string, isso significa que numa
string definida com um tamanho de 50 caracteres, apenas 49 estarao dis-
poniveis para armazenar o texto digitado pelo usuario.

Uma string pode ser lida do teclado ou ja ser definida com um valor ini-
cial. Para sua inicializagao, pode-se usar o mesmo principio definido na
inicializagao de vetores e matrizes:

char str [10] = {"J’, ’0’, ’a’, '0’, "\0’ };

Percebe-se que essa forma de inicializagao nao € muito pratica. Por isso, a
inicializacao de strings também pode ser feita por meio de "aspas duplas”:

char str [10] = "Joao”;
Essa forma de inicializagao possui a vantagem de ja inserir o caractere \0’

no final da string.

Outro ponto importante na manipulagao de strings € que, por se tratar de
um array, cada caractere pode ser acessado individualmente por indexagao
como em qualquer outro vetor ou matriz:

char str[6] = "Teste”;
str[0] ='L;

Tl e|s |t | e | \0

L e |s |t e |\0

Na atribuicao de strings usa-se "aspas duplas”, enquanto
. que na de caracteres, usa-se ’aspas simples’.

55

4.2 TRABALHANDO COM STRINGS

O primeiro cuidado que temos que tomar ao se trabalhar com strings € na
operacao de atribuicao.

0 Strings sao arrays. Portanto, ndo se pode fazer atribuigcao
de strings.

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main(){

char str1[20] = "Hello World”;
char str2[20];

str1 = str2; //ERRO!

© 0o ~NO 0N~

system (”pause”) ;
10 return O;

11}

Isso ocorre porque uma string € um array e a linguagem C nao suporta a
atribuicao de um array para outro. Para atribuir o contetdo de uma string a
outra, o correto é copiar a string elemento por elemento para a outra string.

Exemplo: Copiando uma string

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main (){

4 int count;

5 char str1[20] = "Hello World”, str2[20];

6 for (count = 0; stri[count]!="\0"; count++)
7 str2 [count] = stri1[count];

8 str2[count] = ’\0’;

9 system(”pause”);

10 return O;
11 }

O exemplo acima permite copiar uma string elemento por elemento para
outra string. Note que foi utilizada a mesma forma de indexagao que seria
feita com um array de qualquer outro tipo (int, float, etc). Infelizmente,
esse tipo de manipulacao de arrays nao € muito pratica quando estamos
trabalhando com palavras.

56

Felizmente, a biblioteca padrdao da linguagem C possui
o funcdes especialmente desenvolvidas para a manipulagao
de strings na bibloteca <string.h>.

A seguir, serao apresentadas algumas das fun¢des mais utilizadas para a
leitura, escrita e manipulagao de strings.

4.2.1 LENDO UMA STRING DO TECLADO

Existem varias maneiras de se fazer a leitura de uma sequéncia de carac-
teres do teclado. Uma delas é utilizando o ja conhecido comando scanf()
com o formato de dados "%s”:

char str[20];
scanf("%s”,str);

Quando usamos o comando scanf() para ler uma string, o
B simbolo de & antes do nome da variavel ndo € utilizado.

Infelizmente, para muitos casos, 0 comando scanf() ndo € a melhor opgao
para se ler uma string do teclado.

O comando scanf() |é apenas strings digitadas sem
. espacos, ou seja palavras.

No caso de ter sido digitada uma frase (uma sequéncia de caracteres con-
tendo espacos) apenas os caracteres digitados antes do primeiro espaco
encontrado serdao armazenados na string.

Uma alternativa mais eficiente para a leitura de uma string é a funcao
gets(), a qual faz a leitura do teclado considerando todos os caracteres
digitados (incluindo os espacos) até encontrar uma tecla enter:

char str[20];
gets(str);

57

as vezes, podem ocorrer erros durante a leitura de caracteres ou strings
do teclado. Para resolver esse pequenos erros, podemos limpar o buffer
do teclado (entrada padrao) usando a fungcao setbuf(stdin, NULL) antes
de realizar a leitura de caracteres ou strings:

Exemplo: limpando o buffer do teclado

leitura de caracteres leitura de strings

1 char ch; 1 char str[10];

2 setbuf(stdin, NULL); 2 setbuf(stdin, NULL);
3 scanf("%c”, &ch); 3 gets(srt);

Basicamente, a funcao setbuf preenche um buffer (primeiro parametro)
com um determinado valor (segundo parametro). No exemplo acima, o
buffer da entrada padrao (stdin) é preenchido com o valor vazio (NULL).
Na linguagem C a palavra NULL é uma constante padrao que significa um
valor nulo. Um buffer preenchido com NULL é considerado limpo/vazio.

Basicamente, para se ler uma string do teclado utilizamos a fungao gets().
No entanto, existe outra fungao que, utilizada de forma adequada, também
permite a leitura de strings do teclado. Essa funcao é a fgets(), cujo
protétipo é:

char *fgets (char *str, int tamanho,FILE *fp);
A funcao fgets() recebe 3 parametros de entrada

e str: a string a ser lida;
e tamanho: o limite maximo de caracteres a serem lidos;

e fp: a variavel que esta associado ao arquivo de onde a string sera
lida.

e retorna

e NULL: no caso de erro ou fim do arquivo;

e O ponteiro para o primeiro caractere da string recuperada em str.

Note que a fungao fgets utiliza uma variavel FILE *fp, que esta associado
ao arquivo de onde a string sera lida.

58

Para ler do teclado, basta substituir FILE *fp por stdin,
o o qual representa o dispositivo de entrada padrao (geral-
mente o teclado).

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

4 char nome[30];

5 printf (”Digite um nome: ”);

6 fgets (nome, 30, stdin);

7 printf (”O nome digitado foi: %s”,nome) ;
8 system(”pause”);

9 return O;

10 }

Como a fungao gets(), a funcéo fgets() & a string do teclado até que um
caractere de nova linha (enter) seja lido. Apesar de parecerem iguais, a
funcao fgets possui algumas diferencas e vantagens sobre a gets

Se o caractere de nova linha ("\n’) for lido, ele fara parte da
. string, 0 que ndo acontecia com gets.

A funcao gets() armazena tudo que for digitado até o comando de enter.
Ja a funcao fgets() armazena tudo que for digitado, incluindo o comando
de enter ("\n’).

o A fungao fgets() especifica o tamanho maximo da string de
entrada.

Diferente da funcao gets(), a funcao fgets() Ié a string até que um caractere
de nova linha seja lido ou tamanho-1 caracteres tenham sido lidos. Isso
evita o estouro do buffer, que ocorre quando se tenta ler algo maior do que
pode ser armazenado na string.

4.2.2 ESCREVENDO UMA STRING NA TELA

Basicamente, para se escrever uma string na tela utilizamos a fungao
printf() com o formato de dados "%s”:

59

char str[20] = "Hello World”;
printf("%s”,str);

o Para escrever uma string, utilizamos o tipo de saida "%s”.

No entanto, existe uma outra funcdo que, utilizada de forma adequada,
também permite a escrita de strings. Essa fungao é a fputs(), cujo protétipo
é:

int fputs (char *str,FILE *fp);
A fungao fputs() recebe 2 parametros de entrada

e str: a string (array de caracteres) a ser escrita na tela;

e fp: a variavel que esta associado ao arquivo onde a string sera es-
crita.

e retorna

e a constante EOF (em geral, -1), se houver erro na escrita;

e um valor diferente de ZERO, se o texto for escrito com sucesso.

Note que a fungao fputs utiliza uma variavel FILE *fp, que esta associado
ao arquivo onde a string sera escrita.

Para escrever no monitor, basta substituir FILE *fp por st-
o dout, o qual representa o dispositivo de saida padrao (ge-
ralmente a tela do monitor).

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main(){

4 \textbf{char} texto[30] = "Hello World\n”;
5 fputs (texto, stdout);

6 system(”pause”);

7 return O;

8

}

60

4.3 FUNCOES PARA MANIPULACAO DE STRINGS

A biblioteca padrao da linguagem C possui fungdes especialmente desen-
volvidas para a manipulacao de strings na bibloteca <string.h>. A seguir
sao apresentadas algumas das mais utilizadas.

4.3.1 TAMANHO DE UMA STRING

Para se obter o tamanho de uma string, usa-se a funcao strlen():

char str[15] = "teste”;
printf(*%d”,strlen(str));

Neste caso, a funcao retornara 5, que € o numero de caracteres na palavra
"teste”e nao 15, que é o tamanho do array de caracteres.

A funcao strlen() retorna o nimero de caracteres até o ca-
! ractere \0’, e nao o tamanho do array onde a string esta
armazenada.

4.3.2 COPIANDO UMA STRING

Vimos que uma string € um array e que a linguagem C nao suporta a
atribuicao de um array para outro. Nesse sentido, a Unica maneira de atri-
buir o contetido de uma string a outra € a copia, elemento por elemento,
de uma string para outra. A linguagem C possui uma funcado que realiza
essa tarefa para nés: a funcao strepy():

strcpy(char *destino, char *origem)

Basicamente, a fungao strcpy() copia a seqiiéncia de caracteres contida
em origem para o array de caracteres destino:

61

Exemplo: strcpy()

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main(){

char str1[100], str2[100];

printf (”Entre com uma string: 7);
gets(str1);

strcpy (str2, str1);

system (”"pause”) ;

return O;

O OWooNOo O~

Para evitar estouro de buffer, o tamanho do array destino
! deve ser longo o suficiente para conter a seqiiéncia de ca-
racteres contida em origem.

4.3.3 CONCATENANDO STRINGS

A operacao de concatenacao é outra tarefa bastante comum ao se tra-
balhar com strings. Basicamente, essa operagao consistem em copiar
uma string para o final de outra string. Na linguagem C, para se fazer a
concatenacao de duas strings, usa-se a funcao strcat():

strcat(char *destino, char *origem)

Basicamente, a funcao strcat() copia a sequéncia de caracteres contida
em origem para o final da string destino. O primeiro caractere da string
contida em origem € colocado no lugar do caractere '\0’ da string destino:

Exemplo: strcat()

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main(){

char str1[15] = "bom ”;
char str2[15] = "dia”;
strcat (str1 ,str2);
printf("%s”,str1);
system (”pause”) ;

return O;

O OWooNO O~

Para evitar estouro de buffer, o tamanho do array destino
| deve ser longo o suficiente para conter a seqiiéncia de ca-
racteres contida em ambas as strings: origem e destino.

62

4.3.4 COMPARANDO DUAS STRINGS

Da mesma maneira como o operador de atribuicdo nao funciona para
strings, 0 mesmo ocorre com operadores relacionais usados para com-
parar duas strings. Desse modo, para saber se duas strings sao iguais
usa-se a fungao stremp():

int strcmp(char *str1, char *str2)

A funcao stremp() compara posicao a posicao as duas strings (str1 e str2)
e retorna um valor inteiro igual a zero no caso das duas strings serem
igausi. Um valor de retorno diferente de zero significa que as strings sao
diferentes:

Exemplo: stremp()

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main() {

char str1[100], str2[100];

printf (”Entre com uma string: 7);
gets(str1);

printf(”Entre com outra string: ”);
gets(str2);

if (strcmp(stril,str2) == 0)

10 printf(”Strings iguais\n”);

11 else

12 printf (”Strings diferentes\n”);
13 system(”pause”);

14 return O;

15 }

© 0o ~NO oA

A fungao stremp() é case-sensitive. Isso significa que le-
. tras maiusculas e minusculas tornam as strings diferentes.

63

TIPOS DEFINIDOS PELO PROGRAMADOR

Os tipos de variaveis vistos até agora podem ser classificados em duas
categorias:

e tipos basicos: char, int, float, double e void;

e tipos compostos homogéneos: array.
Dependendo da situacao que desejamos modelar em nosso programa, es-
ses tipos existentes podem nao ser suficientes. Por esse motivo, a lingua-

gem C permite criar novos tipos de dados a partir dos tipos basicos. Para
criar um novo tipo de dado, um dos seguintes comandos pode ser utlizado:

Estruturas: comando struct

Unidoes: comando union

Enumeragdes: comando enum

Renomear um tipo existente: comando typedef

Nas secOes seguintes, cada um desses comandos sera apresentado em
detalhes.

5.1 ESTRUTURAS

Uma estrutura pode ser vista como uma lista de variaveis, sendo que cada
uma delas pode ter qualquer tipo. A idéia basica por tras da estrutura é
criar apenas um tipo de dado que contenha varios membros, que nada
mais sao do que outras variaveis.

A forma geral da definicao de uma nova estrutura € utilizando o comando
struct:

struct nomestruct{
tipo1 campo1;
tipo2 campo2;

tipon campoN;

b

64

A principal vantagem do uso de estruturas € que agora podemos agrupar
de forma organizada varios tipos de dados diferentes dentro de uma Unica
variavel.

o As estruturas podem ser declaradas em qualquer escopo
do programa (global ou local).

Apesar disso, a maioria das estruturas sao declaradas no escopo global.
Por se tratar de um novo tipo de dado, muitas vezes € interessante que
todo o programa tenha acesso a estrutura. Dai a necessidade de usar o
escopo global.

Abaixo, tem-se um exemplo de uma estrutura declarada para representar
0 cadastro de uma pessoa:

Exemplo de estrutura.
char nome[50];
1 struct cadastro{ Y N
2 char nome[50]; int |dade;
3 int idade;
4 char rua[50]; 2
5 int numero; charrua[SO],
6 };
int numero;
cadastro

Note que os campos da estrutura sao definidos da mesma forma que
variaveis. Como na declaracao de variaveis, os nomes dos membros de
uma estrutra devem ser diferentes um do outro. Porém, estrutras diferentes
podem ter membros com nomes iguais:

struct cadastro{
char nome[50];
int idade;
char rua[50];
int numero; };

65

struct aluno{
char nome[50];

int matricula
float nota1,nota2,nota3;
}s
Depois do simbolo de fecha chaves (}) da estrutura € ne-
. cessario colocar um ponto e virgula (;).

Isso é necessario uma vez que a estrutura pode ser também declarada no
escopo local. Por questdes de simplificagdes, e por se tratar de um novo
tipo, é possivel logo na definicao da struct definir algumas variaveis desse
tipo. Para isso, basta colocar os nomes das variaveis declaradas apds o
comando de fecha chaves (}) da estrutura e antes do ponto e virgula (;):

struct cadastro{
char nome[50];
int idade;
char rua[50];
int numero;

} cad1, cad2;

No exemplo acima, duas variaveis (cad1 e cad2) sao declaradas junto com
a definicao da estrutura.

Uma vez definida a estrutura, uma variavel pode ser declarada de modo
similar aos tipos ja existente:

struct cadastro c;

Por ser um tipo definido pelo programador, usa-se a palavra
. struct antes do tipo da nova variavel declarada.

O uso de estruturas facilita muito a vida do programador na manipulacéo
dos dados do programa. Imagine ter que declarar 4 cadastros, para 4
pessoas diferentes:

66

char nome1[50], nome2[50], nome3[50], nome4[50];
int idade1, idade2, idade3, idade4;

char ruai[50], rua2[50], rua3[50], rua4[50];

int numero1, numero2, numero3, numero4;

Utilizando uma estrutura, o0 mesmo pode ser feito da seguinte maneira:
struct cadastro c1, c2, c3, c4;

Uma vez definida uma variavel do tipo da estrutura, € preciso poder aces-
sar seus campos (ou variaveis) para se trabalhar.

o Cada campo (variavel) da estrutura pode ser acessada
usando o operador ".(ponto).

O operador de acesso aos campos da estrutura € o ponto (.). Ele é usado
para referenciar os campos de uma estrutura. O exemplo abaixo mostra
como os campos da estrutura cadastro, definida anteriormente, odem ser
facilmente acessados:

Exemplo: acessando as variaveis de dentro da estrutura

1 #include <stdio.h>
2 #include <stdlib.h>
3 struct cadastro{
char nome[50];
int idade;
char rua[50];
int numero;
I
int main () {
struct cadastro c;
11 // Atribui a string “Carlos” para o campo nome
12 strcpy(c.nome, ”Carlos”) ;
13
14 // Atribui o valor 18 para o campo idade
15 c.idade = 18;
16
17 // Atribui a string “Avenida Brasil” para o campo rua
18 strcpy (c.rua,”Avenida Brasil”);
19
20 // Atribui o valor 1082 para o campo numero
21 c.numero = 1082;
22
23 system(”pause”);
24 return O;
25 }

=
O OWooNO O~

67

Como se pode ver, cada campo da esrutura € tratado levando em consideracao
o tipo que foi usado para declara-la. Como os campos nome e rua sao
strings, foi preciso usar a funcao strcpy() para copiar o valor para esses
campos.

Q E se quiséssemos ler os valores dos campos da estrutura
do teclado?

Nesse caso, basta ler cada variavel da estrutura independentemente, res-
peitando seus tipos, como € mostrado no exemplo abaixo:

Exemplo: lendo do teclado as variaveis da estrutura

1 #include <stdio.h>
2 #include <stdlib.h>
3 struct cadastro{
char nome[50];
int idade;
char rua[50];
int numero;
b
int main (){
10 struct cadastro c;
11 //Lé do teclado uma string e armazena no campo nome
12 gets(c.nome) ;
13
14 //Lé do teclado um valor inteiro e armazena no campo idade
15 scanf("%d” ,&c.idade) ;
16
17 //Lé do teclado uma string e armazena no campo rua
18 gets(c.rua);
19
20 //Lé do teclado um valor inteiro e armazena no campo numero
21 scanf("%d” ,&c.numero) ;
22 system(’pause”);
23 return O;
24 }

© 00N O p

Note que cada variavel dentro da estrutura pode ser acessada como se
apenas ela existisse, nao sofrendo nenhuma interferéncia das outras.

Lembre-se: uma estrutura pode ser vista como um simples
agrupamento de dados.

68

Como cada campo € independente um do outro, outros operadores podem
ser aplicados a cada campo. Por exemplo, pode se comparar a idade de
dois cadastros.

5.1.1 INICIALIZACAO DE ESTRUTURAS

Assim como nos arrays, uma estrutura também pode ser inicializada, inde-
pendente do tipo das variaveis contidas nela. Para tanto, na declaragao da
variavel do tipo da estrutura, basta definir uma lista de valores separados
por virgula e delimitado pelo operador de chaves {}.

struct cadastro ¢ = {"Carlos”,18,”Avenida Brasil”’,1082 };

Nesse caso, como nos arrays, a ordem é mantida. Isso significa que o
primeiro valor da inicializagao sera atribuido a primeira variavel membro
(nome) da estrutura e assim por diante.

Elementos omitidos durante a inicializagao sao inicializados com 0. Se for
uma string, a mesma sera inicializada com uma string vazia ().

struct cadastro ¢ = {"Carlos”,18 };

No exemplo acima, o campo rua € inicializado com e numero com zero.

5.1.2 ARRAY DE ESTRUTURAS

Voltemos ao problema do cadastro de pessoas. Vimos que o uso de es-
truturas facilita muito a vida do programador na manipulagao dos dados do
programa. Imagine ter que declarar 4 cadastros, para 4 pessoas diferen-
tes:

char nome1[50], nome2[50], hnome3[50], nome4[50];
int idade1, idade?2, idade3, idade4;
char ruai[50], rua2[50], rua3[50], rua4[50];

int numero1, numero2, numero3, numero4;

Utilizando uma estrutura, o mesmo pode ser feito da seguinte maneira:

69

struct cadastro c1, c2, c3, c4;

A representacao desses 4 cadastros pode ser ainda mais simplificada se
utilizarmos o conceito de arrays:

struct cadastro c[4];

Desse modo, cria-se um array de estruturas, onde cada posigao do array €
uma estrutura do tipo cadastro.

A declaracdao de uma array de estruturas é similar a
declaracao de uma array de um tipo basico.

A combinagao de arrays e estruturas permite que se manipule de modo
muito mais pratico varias variaveis de estrutura. Como vimos no uso de
arrays, o uso de um indice permite que usemos comando de repeti¢cao para
executar uma mesma tarefa para diferentes posi¢des do array. Agora, 0s
quatro cadastros anteriores podem ser lidos com o auxilio de um comando
de repeticao:

Exemplo: lendo um array de estruturas do teclado

1 #include <stdio.h>
2 #include <stdlib.h>
3 struct cadastro{
char nome[50];
int idade;
char rua[50];
int numero;
e
int main (){
10 struct cadastro c[4];
11 int i;
12 for (i=0; i<4; i++){

© 0o ~NO Oobh

13 gets(c[i].nome) ;

14 scanf("%d”,&c[i].idade) ;
15 gets(c[i].rua);

16 scanf("%d”,&c[i].numero) ;
17}

18 system(”pause”) ;
19 return O;
20 }

Em um array de estruturas, o operador de ponto (.) vem
. depois dos colchetes [] do indice do array.

70

Essa ordem deve ser respeitada pois o indice do array € quem indica qual
posicdao do array queremso acessar, onde cada posi¢cao do array € uma
estrutura. Somente depois de definida qual das estruturas contidas dentro
do array n6s queremos acessar € que podemos acessar 0S Seus campos.

5.1.3 ATRIBUICAO ENTRE ESTRUTURAS

As Unicas operagdes possiveis em um estrutura sao as de acesso aos
membros da estrutura, por meio do operador ponto (.), e as de cépia ou
atribuigao (=). A atribuicao entre duas variaveis de estrutura faz com que os
contéudos das variaveis contidas dentro de uma estrutura sejam copiado
para outra estrutura.

Atribuicoes entre estruturas s6 podem ser feitas quando as
! estruturas sdo AS MESMAS, ou seja, possuem 0 mesmo
nome!

Exemplo: atribuigao entre estruturas

#include <stdio.h>
#include <stdlib.h>

struct ponto {
int x;
int y;
}s

struct novo_ponto {

10 int x;

11 int y;

12 };

13

14 int main (){

15 struct ponto p1, p2= {1,2};
16 struct novo_ponto p3= {3,4};

©CoOoONOOOH~,WN —

17

18 pl1 = p2;

19 printf(”p1 = %d e %d”, p1.x,pl1.y);
20

21 //ERRO! TIPOS DIFERENTES

22 pl = p3;

23 printf (”p1 = %d e %d”, pl1.x,pl1.y);
24

25 system(”pause”);
26 return 0;
27 }

71

No exemplo acima, p2 € atribuido a p7. Essa operagao esta correta pois
ambas as variaveis sao do tipo ponto. Sendo assim, o valor de p2.x é
copiado para p1.x e o valor de p2.y é copiado para p1.y.

Ja na segunda atribuicao (p7 = p3;) ocorre um erro. Isso por que os tipos
das estruturas das variaveis sao diferentes: uma pertence ao tipo struct
ponto enquanto a outra pertence ao tipo struct novo_ponto. Note que o
mais importante € o nome do tipo da estrutura, e nao as variaveis dentro
dela.

No caso de estarmos trabalhando com arrays de estru-
turas, a atribuicdo entre diferentes elementos do array
também é valida.

1 #include <stdio.h>
2 #include <stdlib .h>
3 struct cadastro{
char nome[50];
int idade;
char rua[50];
int numero;
Jis
int main(){
10 struct cadastro c[10];
11
12 c[1] = c[2]; //CORRETO
13
14 system (”pause”) ;
15 return O;
16 }

© 0o ~NOo Oobh

Um array ou "vetor’@ um conjunto de variaveis do mesmo tipo utilizando
apenas um nome. Como todos os elementos do array sdo do mesmo tipo,
a atribuicao entre elas & possivel, mesmo que o tipo do array seja uma
estrutura.

5.1.4 ESTRUTURAS ANINHADAS

Uma estrutura pode agrupar um ndmero arbitrario de variaveis de tipos di-
ferentes. Uma estrutura também & um tipo de dado, com a diferenca de se
trata de um tipo de dado criado pelo programador. Sendo assim, podemos
declarar uma estrutura que possua uma variavel do tipo de outra estru-
tura previamente definida. A uma estrutura que contenha outra estrutura

72

dentro dela damos o0 nome de estruturas aninhadas. O exemplo abaixo
exemplifica bem isso:

Exemplo: struct aninhada.

struct endereco{ char nome[50];
char rua[50] 2

int numero;

int idade;

s
struct cadastro{
char nome[50];
int idade;
struct endereco
ender;

1
2
3
4
2 struct endereco ender
7

8

9 };

cadastro

No exemplo acima, temos duas estruturas: uma chamada endereco e
outra chamada de cadastro. Note que a estrutura cadastro possui uma
variavel ender do tipo struct endereco. Trata-se de uma estrutura ani-
nhada dentro de outra.

variavel do tipo struct endereco é feito utilizando-se nova-

0 No caso da estrutura cadastro, o acesso aos dados da
mente o operador ”.”(ponto).

Lembre-se, cada campo (variavel) da estrutura pode ser acessada usando
o operador "(ponto). Assim, para acessar a variavel ender é preciso usar
o operador ponto (.). No entanto, a variavel ender também é uma estrutura.
Sendo assim, o operador ponto (.) € novamente utilizado para acessar as
variaveis dentro dessa estrutura. Esse processo se repete sempre que
houver uma nova estrutura aninhada. O exemplo abaixo mostra como a
estrutura aninhada cadastro poderia ser facilmente lida do teclado:

73

Exemplo: lendo do teclado as variaveis da estrutura

Be

© 00N OopH

10
11 };

1 #include <stdio.h>
2 #include <stdlib.h>
3 struct endereco{

char rua[50]
int numero;

struct cadastro{

char nome[50];
int idade;
struct endereco ender;

12 int main (){

13 struct cadastro c;
14 //Lé do teclado uma string e armazena no campo nome
15 gets(c.nome) ;
16
17 //Lé do teclado um valor inteiro e armazena no campo idade
18 scanf("%d”,&c.idade) ;
19
20 //Lé do teclado uma string
21 //e armazena no campo rua da variavel ender
22 gets(c.ender.rua);
23
24 //Lé do teclado um valor inteiro
25 //e armazena no campo numero da variavel ender
26 scanf("%d” ,&c.ender.numero) ;
27
28 system(”pause”);
29 return O;
30 }
5.2 UNIOES: UNIONS
Em breve
53 ENUMARAGOES: ENUMERATIONS
Em breve
5.4 COMANDO TYPEDEF
Em breve

74

6 FUNCOES

Uma funcdes nada mais é do que um blocos de codigo (ou seja, declaracoes
e outros comandos) que podem ser nomeados e chamados de dentro de
um programa. Em outras palavras, uma funcao é uma seqliéncia de co-
mandos que recebe um nome e pode ser chamada de qualquer parte do
programa, quantas vezes forem necessarias, durante a execugao do pro-
grama.

A linguagem C possui muitas fungdes ja implementadas e nés temos utili-
zadas elas constantemente. Um exemplo delas sao as fungoes basicas de
entrada e saida: scanf() e printf(). O programador ndo precisa saber qual
o cddigo contido dentro das fungdes de entrada e saida para utiliza-las.
Basta saber seu nome e como utiliza-la.

A seguir, serao apresentados os conceitos e detalhes necessarios para um
programador criar suas proéprias funcoes.

6.1 DEFINICAO E ESTRUTURA BASICA

Duas séo as principais razdes para o uso de fungdes:

e estruturagao dos programas;

e reutilizacao de codigo.

Por estruturacao dos programas entende-se que agora o programa sera
construido a partir de pequenos blocos de cédigo (isto é, funcdes) cada
um deles com uma tarefa especifica e bem definida. Isso facilita a compre-
ensao do programa.

Programas grandes e complexos sao construidos bloco a
bloco com a ajuda de fungoes.

Ja por reutilizacao de codigo entende-se que uma fungao é escrita para
realizar uma determinada tarefa. Pode-se definir, por exemplo, uma fungao
para calcular o fatorial de um determinado nimero. O codigo para essa
funcao ira aparecer uma Unica vez em todo o programa, mas a funcao
que calcula o fatorial podera ser utilizadas diversas vezes e em pontos
diferentes do programa.

75

de codigo que realizam a mesma tarefa, diminuindo assim

o O uso de fungoes evita a copia desnecessaria de trechos
o tamanho do programa e a ocorréncia de erros.

Em linguagem C, a declaracdo de uma fungao pelo programador segue a
seguinte forma geral:

tipo_retornado nome _fungao (lista_de_parametros){
sequéncia de declaracdes e comandos

O nome _fungao € como aquele recho de codigo sera conhecido dentro do
programa. Para definir esse nome, valem, basicamente, as mesmas regras
para se definir uma variavel.

Com relacao ao local de declaracao de uma funcao, ela deve ser definida
ou declarada antes de ser utilizada, ou seja, antes da clausula main, como
mostra o exemplo abaixo:

o Exemplo: fungao declarada antes da clausula main.

1 #include <stdio.h>
2 #include <stdlib.h>

int Square (int a){
return (axa);

}

int main (){
int num;
printf (”Entre com um numero: ”);
11 scanf ("%d”, &um) ;
12 num = Square (num) ;
13 printf (’O seu quadrado vale: %d\n”, num) ;
14 system(”pause”) ;
15 return O;
16 }

=
O OWoONO O~ W

Pode-se também declarar uma fungao depois da clausula main. Nesse
caso, é preciso declarar antes o prototipo da funcao:

76

tipo_retornado nome_funcao (lista_de_parametros);

O prototipo de uma funcao, é uma declaragao de fungao que omite o corpo
mas especifica o seu nome, tipo de retorno e lista de parametros, como
mostra o exemplo abaixo:

o Exemplo: funcao declarada depois da clausula main.

#include <stdio.h>
#include <stdlib .h>
//protdtipo da fungao
int Square (int a);

int main (){
int num;
printf (”Entre com um numero: ”);
scanf ("%d”, &num) ;
10 num = Square (num) ;
11 printf (’O seu quadrado vale: %d\n”, num) ;
12 system(”pause”) ;
13 return O;
14 }
15
16 int Square (int a){
17 return (axa);
18 }

©oo~NOOh~WND =

Independente de onde uma funcao seja declarada, seu funcionamento é
basicamente o0 mesmo:

0 cédigo do programa € executado até encontrar uma chamada de
funcao;

e 0 programa é entao interrompido temporariamente, e o fluxo do pro-
grama passa para a funcao chamada;

e se houver parametros na fungao, os valores da chamada da funcao
sao copiados para os parametros no codigo da fungao;

e 0s comandos da funcao sdo executados;

e quando a fungao termina (seus comandos acabaram ou o comando
return foi encontrado), o programa volta ao ponto onde foi interrom-
pido para continuar sua execug¢ao normal;

77

e se houver um comando return, o valor dele sera copiado para a
variavel que foi escolhida para receber o retorno da funcao.

Na figura abaixo, é possivel ter uma boa representacao de como uma cha-
mada de fungao ocorre:

int Square (int a){ [__inta=num

fefim)(a"a))

int main (){
int num;

printf ("Entre com um numgro: "),
scanf ("%d", &num);
num =|Square(num); |_ Chama fungéo Square

num=return "ot (\nln O seu quadrado vale: %d\n",
numy);

return O:

}

Nas sec¢des seguintes, cada um dos itens que definem uma funcao serao
apresentados em detalhes.

6.1.1 PARAMETROS DE UMA FUNCAO

Os parametros de uma funcao € o que o programador utiliza para passar a
informagao de um trecho de codigo para dentro da fungao. Basicamente,
os parametros de uma funcao sao uma lista de variaveis, separadas por
virgula, onde é especificado o tipo e 0 nome de cada parametro.

o Por exemplo, a fungcdo sqrt possui a seguinte lista de
parametros: float sqrt(float x);

Em linguagem C, a declaracao dos parametros de uma funcao segue a
seguinte forma geral:

tipo_retornado nome_funcao (tipo nome1l, tipo nome2, ... ,

tipo nomeN){
sequéncia de declaracdes e comandos

78

Diferente do que acontece na declaragao de variaveis,
onde muitas variaveis podem ser declaradas com o mesmo
especificador de tipo, na declaragao de parametros de uma
funcao é necessario especificar o tipo de cada variavel.

// Declaragdo CORRETA de parametros
int soma(int x, int y){
return x + y;

}

//Declaragao ERRADA de parametros
int soma(int x, y){
return x + y;

}

©oo~NOOh~WND =

Dependendo da fungao, ela pode possuir nenhum parametro. Nesse caso,
pode-se optar por duas solucoes:

e Deixar a lista de parametros vazia: void imprime ();

e Colocar void entre parénteses: void imprime (void).

Mesmo se nao houver parametros na funcao, os
. parénteses ainda sao necessarios.

Apesar das duas declaragcdes estarem corretas, existe uma diferenca en-
tre elas. Na primeira declaracao, nao € especificado nenhum parametro,
portanto a fungao pode ser chamada passando-se valores para ela. O o
compilador nao ira verificar se a funcao é realmente chamada sem argu-
mentos e a fungao nao conseguira ter acesso a esses parametros. Ja na
segunda declaracao, nenhum parametro € esperado. Nesse caso, 0 pro-
grama acusara um erro se o programador tentar passar um valor para essa
funcao.

Colocar void na lista de parametros € diferente de se colo-
. car nenhum parametro.

O exemplo abaixo ilustra bem essa situacao:

79

Exemplo: fungao sem parametros
Sem void Com void
1 #include <stdio.h> 1 #include <stdio.h>
2 #include <stdlib.h> 2 #include <stdlib.h>
3 3
4 void imprime (){ 4 void imprime (void) {
5 printf(”Teste de 5) printf (”Teste de

funcao\n”) ; funcao\n”) ;

6 } 6 }
7 7
8 int main (){ 8 int main (){
9 imprime () ; g imprime () ;
10 imprime(5) ; 10 imprime(5) ; //ERRO
11 imprime (5,’a’); 11 imprime (5, ’a’) ; //ERRO
12 12
13 system(”pause”); 13 system(”pause”);
14 return O; 14 return O;
15 } 15 }

Os parametros das funcdes também estao sujeitos ao escopo das variaveis.
O escopo é o conjunto de regras que determinam o uso e a validade de
variaveis nas diversas partes do programa.

O parametro de uma fungao € uma variavel local da fungao
. e portanto, s6 pode ser acessado dentro da fungao.

6.1.2 CORPO DA FUNGCAO

Pode-se dizer que o corpo de uma funcdo é a sua alma. E no corpo de
uma funcao que se define qual a tarefa que a fungao ira realizar quando
for chamada.

Basicamente, o corpo da funcao é formado por:

e sequéncia de declaracoes: variaveis, constantes, arrays, etc;

e sequéncia de comandos: comandos condicionais, de repeti¢cao, cha-
mada de outras funcoes, etc.

Para melhor entender o corpo da funcdo, considere que todo programa
possui ao menos uma fungao: a fungdo main. A fungcao mais € a funcao

80

“principal’do programa, o "corpo’do programa. Note que nos exemplo usa-
dos até agora, a fungao main € sempre do tipo int, e sempre retorna o valor
0:

int main () {
sequéncia de declaracdes e comandos
return O;

}

Basicamente, é no corpo da fungdo que as entradas (parametros) sao pro-
cessadas, as saidas sao geradas ou outras agoes sao feitas. Além disso,
a funcdo main se encarrega de realizar a comunicagao com o usuario, ou
seja, é ela quem realiza as operacdes de entrada e saida de dados (co-
mandos scanf e printf). Desse modo, tudo o que temos feito dentro de
uma fungao main pode ser feito em uma funcao desenvolvida pelo progra-
mador.

o Tudo o que temos feito dentro da fungao main pode ser feito
em uma fung¢ao desenvolvida pelo programador.

Uma fungao € construida com o intuito de realizar uma tarefa especifica e
bem definida. Por exemplo, uma funcéo para calcular o fatorial deve ser
construida de modo a receber um determinado nimero como parametro
e retornar (usando o comando return) o valor calculado. As operacoes de
entrada e saida de dados (comandos scanf e printf) devem ser feitas em
quem chamou a funcéo (por exemplo, na main). Isso garante que a funcao
construida possa ser utilizada nas mais diversas aplicagdes, garantindo a
sua generalidade.

o De modo geral, evita-se fazer operacdes de leitura e escrita
dentro de uma funcao.

Os exemplos abaixo ilustram bem essa situagdo. No primeiro exemplo
temos o calculo do fatorial realizado dentro da fungao main:

81

Exemplo: calculo do fatorial dentro da fung¢ao main

1 #include <stdio.h>
2 #include <stdlib.h>

3

4 int main (){

5 printf(”Digite um numero inteiro positivo:”);
6 int x;

7 scanf ("%d”,&x) ;

8 int i ,f=1;

9 for (i=1; i<=x; i++)

10 f=1f % i;

11

12 printf (’O fatorial de %d eh: %d\n” ,x,f);
13 system (”pause”) ;

14 return O;

15 }

Perceba que no exemplo acima, nao foi feito nada de diferente do que
temos feito até o momento. Ja no exemplo abaixo, uma fungcao especifica
para o calculo do fatorial foi construida:

Exemplo: calculo do fatorial em uma funcao propria

1 #include <stdio.h>
2 #include <stdlib.h>

3

4 int fatorial (int n){
5 int i,f=1;

6 for (i=1; i<=n; i++)
7 f =1 % i;

8

9 return f;

10 }

11

12 int main (){

13 printf(”Digite um numero inteiro positivo:”);
14 int x;

15 scanf ("%d”,&x) ;

16 int fat = fatorial (x);

17 printf (’O fatorial de %d eh: %d\n” ,x, fat);
18

19 system(”pause”);

20 return O;

21 }

Note que dentro da funcao responsavel pelo calculo do fatorial, apenas o
trecho do cddigo responsavel pelo calculo do fatorial esta presente. As
operacoes de entrada e saida de dados (comandos scanf e printf) sao
feitos em quem chamou a fungéao fatorial, ou seja, na funcao main.

82

uma fung@o. Apenas ndao devem ser usadas se esse nao

o Operagoes de leitura e escrita nao sao proibidas dentro de
for o foco da funcao.

Uma funcéo deve conter apenas o trecho de codigo responsavel por fazer
aquilo que é o objetivo da fungdo. Isso ndo impede que operacoes de
leitura e escrita sejam utilizadas dentro da fungao. Elas sé ndo devem ser
usadas quando os valores podem ser passados para a fungao por meio
dos parametros.

Abaixo temos um exemplo de funcao que realiza operacgoes de leitura e
escrita:

Exemplo: funcao contendo operacoes de leitura e escrita.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int menu(){

4 int i;

5 do {

6 printf (”Escolha uma opcao:\n”);
7 printf (”(1) Opcao 1\n”);
8 printf (”(2) Opcao 2\n”);
9 printf (”(3) Opcao 3\n”);
10 scanf(’%d”, &i);

11 + while ((i < 1) || (i > 3));
12

13 return i;

14 }

15

16 int main(){

17 int op = menu() ;

18 printf (”Vc escolheu a Opcao %d.\n” ,op);
19 system(”pause”);

20 return 0;

21 }

Na fungao acima, um menu de opgdes é apresentado ao usuario que tem
de escolher dentre uma delas. A funcédo se encarrega de verificar se a
opcao digitada é valida e, caso nao seja, solicitar uma nova opcao ao
usuario.

6.1.3 RETORNO DA FUNCAO

O retorno da fungao é a maneira como uma fungao devolve o resultado (se
ele existir) da sua execucao para quem a chamou. Nas secdes anterores
vimos que uma fungao segue a seguinte forma geral:

83

tipo_retornado nome_fungao (lista_de_parametros){
sequéncia de declaracdes e comandos

}

A expressao tipo_retornado estabele o tipo de valor que a funcao ira de-

volver para quem chama-la. Uma fungao pode retornar qualquer tipo valido
em na linguagem C:

e tipos basicos pré-definidos: int, char, float, double, void e ponteiros;

e tipos definidos pelo programador: struct, array (indiretamente), etc.

Uma fungdo também pode NAO retornar um valor. Para
isso, basta colocar o tipo void como valor retornado.

O tipo void € conhecido como o tipo vazio. Uma funcao declarada com o
tipo void ird apenas executar um conjunto de comando e nao ira devolver
nenhum valor para quem a chamar. Veja o exemplo abaixo:

Exemplo: fung¢ao com tipo void

1 #include <stdio.h>
2 #include <stdlib.h>
3 void imprime(int n){

4 int i;

5 for (i=1; i<=n; i++)

6 printf(”Linha %d \n”,i);
7}

8

9 int main() {

10 imprime (5) ;

11

12 system(’pause”);
13 return O;

14 }

No exemplo acima, a fungao imprime ira apenas imprimir uma mensagem
na tela n vezes. Nao ha o que devolver para a funcdo main. Portanto,
podemos declarar ela como void.

Para executar uma fungao do tipo void, basta colocar no
codigo o nome da funcao e seus parametros.

84

Se a funcao nao for do tipo void, entdao ela devera retornar um valor. O
comando return ¢ utilizado para retornar esse valor para o programa:

return expressao;

A expressao da clausula return tem que ser compativel
. com o tipo de retorno declarado para a fungao.

A expressao do comando return consiste em qualquer constante, variavel
ou expressao aritmética que o programador deseje retornar para o trecho
do programa que chamou a funcao. Essa expressao pode até mesmo ser
uma outra funcao, como a funcao sqrt():

return sqgrt(x);

Para executar uma funcdo que tenha o comando return,
basta atribuir a chamada da fungao (nome da funcéo e
seus parametros) a uma variavel compativel com o tipo do
retorno.

O exemplo abaixo mostra uma funcao que recebe dois parametros inteiros
e retorna a sua soma para a fungao main:

Exemplo: funcao com retorno

1 #include <stdio.h>

2 #include <stdlib .h>

3 int soma(int x, int y){
return x + y;

}

int main () {
int a,b,c;
printf (”Digite a: ”);
scanf("%d”, &a);
11 printf (”Digite b: 7);
12 scanf("%d”, &b);
13 printf (”Soma =
14 system(”pause”);
15 return O;
16 }

=
O ©Woo~NO 0N

%d\n” ,soma(a,b)) ;

85

Note, no exemplo acima, que a chamada da funcao foi feita dentro do co-
mando printf. Isso é possivel pois a fungao retorna um valor inteiro (x+y)
e 0 comando printf espera imprimir um valor inteiro (%d).

o Uma fungao pode ter mais de uma declaracao return.

O uso de varios comandos return € Util quando o retorno da fungao esta
relacionado a uma determinada condi¢ao dentro da funcao. Veja o exemplo
abaixo:

Exemplo: fungao com varios return
1 int maior(int x, int y){

2 if (x> y)

8 return x;

4 else

5 return vy;

6 }

No exemplo acima, a funcao sera executada e dependendo dos valores
de x e y, uma das clausulas return sera executada. No entanto, é conve-
niente limitar as fungdes a usar somente um comando return. O uso de
varios comandos return, especialmente em funcao grandes e complexas,
aumenta a dificuldidade de se compreender o que realmente esta sendo
feito pela fungdo. Na maioria dos casos, pode-se reescrever uma fungao
para que ela use somente um comando return, como é mostrado abaixo:

Exemplo: substituindo os varios return da fungao

1 int maior(int x, int y){
2 int z;

3 if (x>vy)

4 Z = X;

5 else
6
7
8

zZ =Y;
return z;

}

No exemplo acima, os varios comando return foram substituidos por uma
variavel que sera retornada no final da funcao.

Quando se chega a um comando return, a fungao € encer-
rada imediatamente.

86

O comando return é utilizado para retornar um valor para o programa. No
entanto, esse comando também € usado para terminar a execugao de uma
funcao, similar ao comando break em um lago ou switch:

Exemplo: finalizando a fungao com return

1 int maior(int x, int y){

2 if (x >vy)

3 return x;

4 else

5 return y;

6 printf (”Fim da funcao\n”);
7

}

No exemplo acima, a fungao ira terminar quando um dos comando return
for executado. A mensagem "Fim da funcao”jamais sera impressa na tela
pois seu comando se encontra depois do comando return. Nesse caso, 0
comando printf sera ignorado.

O comando return pode ser usado sem um valor associado
a ele para terminar uma fungao do tipo void.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4 void imprime_log (float x){

5 if (x <= 0)

6 return; //termina a fungao
7 printf(”Log = %f\n”,log(x));
8 }

9 int main(){

10 float x;

11 printf (”Digite x: ”);
12 scanf("%f”, &f);

13 imprime_log (x) ;

14 system (”pause”) ;

15 return O;

16 }

Na fungao contida no exemploa cima, se o valor de x é negativo ou zero,
o0 comando return faz com que a fungcdo termine antes que o comando
printf seja executado, mas nenhum valor é retornado.

Q O valor retornado por uma fungao nao pode ser um array.

87

Lembre-se: a linguagem C ndo suporta a atribuicdo de um array para outro.
Por esse motivo, ndo se pode ter como retorno de uma fungao um array.

o E possivel retornar um array indiretamente, desde que ela
faca parte de uma estrutura.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 struct vetor{

) int v[5];

6 };

7

8 struct vetor retorna_array () {
9 struct vetor v = {1,2,3,4,5};
10 return v;

11 }

12

13 int main (){

14 int i;

15 struct vetor vet = retorna.array();
16 for (i=0; i<5; i++)

17 printf(”Valores: %d \n”,vet.v[i]);
18 system(”pause”) ;

19 return O;

20 }

A linguagem C nao suporta a atribuicdo de um array para outro. Mas ela
permite a atrbuigcao entre estruturas. A atribuicdo entre duas variaveis de
estrutura faz com que os contéudos das variaveis contidas dentro de uma
estrutura sejam copiado para outra estrutura. Desse modo, é possivel re-
tornar um array desde que o mesmo esteja dentro de uma estrutura.

6.2 TIPOS DE PASSAGEM DE PARAMETROS

Ja vimos que, na linguagem C, os parametros de uma funcao € o meca-
nismo que o programador utiliza para passar a informagao de um trecho
de codigo para dentro da funcao. Mas existem dois tipos de passagem de
parametro: passagem por valor e por referéncia.

Nas secoes seguintes, cada um dos tipos de passagem de parametros
sera explicado em detalhes.

88

6.2.1 PASSAGEM POR VALOR

Na linguagem C, os argumentos para uma fun¢do sao sempre passados
por valor (by value), ou seja, uma cépia do dado é feita e passada para a
funcao. Esse tipo de passagem de parametro € o padrao para todos os ti-
pos basicos pré-definidos (int, char, float e double) e estruturas definidas
pelo programador (struct).

Mesmo que o valor de uma variavel mude dentro da fungao,
nada acontece com o valor de fora da funcao.

1 include <stdio.h>
2 include <stdlib.h>

3

4 void soma_mais.um(int n){

5) n=n+1;

6 printf (”Antes da funcao: x = %d\n”,n);
7}

8

9 int main (){

10 int x = 5;

11 printf (”Antes da funcao: x = %d\n”,X);
12 soma_mais_.um(x) ;

13 printf (”Antes da funcao: x
14 system(”pause”);

15 return O;

16 }

Y%d\n” ,Xx) ;

Saida Antes da funcao: x = 5
Dentro da funcao: x = 6
Depois da funcao: x =5

No exemplo acima, no momento em que a funcdo soma_mais_um ¢ cha-
mada, o valor de x é copiado para o parametro n da fungao. O parametro
n é uma variavel local da funcao. Entao, tudo o que acontecer com ele (n)
nao se reflete no valor original da variavel x. Quando a fungao termina, a
variavel n é destruida e seu valor é descartado. O fluxo do programa é de-
volvido ao ponto onde a fungao foi inicialmente chamada, onde a variavel
X mantém o seu valor original.

modificagdes que a fungao fizer nos parametros existem

o Na passagem de parametros por valor, quaisquer
apenas dentro da propria fungao.

89

6.2.2 PASSAGEM POR REFERENCIA

Na passagem de parametros por valor, as funcdes nao podem modifi-
car o valor original de uma variavel passada para a fungdao. Mas exis-
tem casos em que é necessario que toda modificacdo feita nos valores
dos parametros dentro da funcao sejam repassados para quem chamou a
funcao. Um exemplo bastante simples disso é a funcao scanf: sempre que
desejamos ler algo do teclado, passamos para a funcao scanf o nome da
variavel onde o dado sera armazenado. Essa variavel tem seu valor modi-
ficado dentro da fungao scanf e seu valor pode ser acessado no programa
principal.

que altera o valor de uma variavel e essa mudanca se re-

o A fungao scanf € um exemplo bastante simples de fungao
flete fora da funcao.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){

4 int x = 5;

5 printf (”Antes do scanf: x = %d\n”,x);
6 printf (”Digite um numero: ”);

7 scanf ("%d”,&x) ;

8 printf ("Depois do scanf: x = %d\n”,x);
9 system(”pause”);

10 return O;

11 }

Quando se quer que o valor da variavel mude dentro da fungao e essa
mudanca se reflita fora da funcao, usa-se passagem de parametros por
referéncia.

para a fungcdo os valores das variaveis, mas sim os

o Na passagem de parametros por referéncia nao se passa
enderecos das variaveis na memoaria.

Na passagem de parametros por referéncia o que é enviado para a fungcao
€ o endereco de memoria onde a variavel esta armazenada, e nao uma
simples copia de seu valor. Assim, utilizando o endereco da variavel na
memoria, qualquer alteracdo que a variavel sofra dentro da fungcao sera
também refletida fora da fungao.

90

rador "’na frente do nome do parametro durante a

o Para passar um parametro por referéncia, usa-se o ope-
declaragao da fungao.

Para passar para a fungao um parametro por referéncia, a fungao precisa
usar ponteiros. Um ponteiro € um tipo especial de variavel que armazena
um endereco de memoria, da mesma maneira como uma variavel arma-
zena um valor. Mais detalhes sobre 0 uso de ponteiros serdo apresentados
no capitulo seguinte.

O exemplo abaixo mostra a mesma funcao declarada usando a passagem
de parametro de valor e por referéncia:

Exemplo: passagem por valor e referéncia
Por valor Por referéncia
1 void soma-mais_.um(int n) 1 void soma-mais_.um(int xn
{)
2 n=n+ 1; 2 *N = xn + 1;
31} 3}

Note, no exemplo acima, que a diferenga entre os dois tipos de passagem
de parametro € o uso do operador "*’na passagem por referéncia. Con-
sequentemente, toda vez que a variavel passada por referéncia for usada
dentro da funcao, o operador "*"devera ser usado na frente do nome da
variavel.

"&”na frente do nome da variavel que sera passada por re-

o Na chamada da funcao é necessario utilizar o operador
feréncia.

Lembre-se do exemplo da fungao scanf. A fungcao scanf € um exemplo
de funcao que altera o valor de uma variavel e essa mudanca se reflete
fora da funcdo. Quando chamamos a funcao scanf, & necessario colocar
0 operador "&”na frente do nome da variavel que sera lida do teclado. O
mesmo vale para outra funcées que usam passagem de parametro por
referéncia.

91

Na passagem de uma variavel por referéncia € necessario
i usar o0 operador "*"sempre que se desejar acessar 0
conteldo da variavel dentro da fungao.

1 include <stdio.h>
2 include <stdlib.h>

8

4 void soma_mais.um(int xn){

5) *N = xn + 1;

6 printf (”Antes da funcao: x = %d\n”,*n);
7}

8

9 int main (){

10 int x = 5;

11 printf (”Antes da funcao: x = %d\n” ,X);
12 soma_mais_.um(&x) ;

13 printf (”Antes da funcao: x = %d\n”,x);

14 system(”pause”) ;
15 return O;
16 }

Saida Antes da funcao: x = 5
Dentro da funcao: x = 6
Depois da funcao: x = 6

No exemplo acima, no momento em que a funcdo soma_mais_um ¢é cha-
mada, o endereco de x (&x) é copiado para o parametro n da fungao. O
parametro n é um ponteiro dentro da funcdo que guarda o endereco de
onde o valor de x esta guardado fora da fungdo. Sempre que alteramos
o valor de *n (contetdo da posicao de memoria guardada, ou seja, x), 0
valor de x fora da fungao também é modificado.

Abaixo temos outro exemplo que mostra a mesma funcao declarada usando
a passagem de parametro de valor e por referéncia:

92

Exemplo: passagem por valor e referéncia

Por valor Por referéncia

1 #include <stdio.h> 1 #include <stdio.h>

2 #include <stdlib.h> 2 #include <stdlib.h>

3 3

4 void Troca (int a,int b) 4 void Troca (intxa,intxb)

{ {

5 int temp; 5 int temp;

6 temp = a; 6 temp = xa;

7 a = b; 7 xa = xb;

8 b = temp; 8 xb = temp;

9 printf (”Dentro: %d e % 9 printf (”Dentro: %d e %

d\n”,a,b); d\n”,xa,*b);

10 } 10 }

11 11

12 int main (){ 12 int main (){

13 int x = 2; 13 int x = 2;

14 int y = 3; 14 int y = 3;

15 printf (”Antes: %d e 15 printf (”Antes: %d e
Y%d\n” ,X,y); Y%d\n” ,X,y);

16 Troca(x,y); 16 Troca(&x,&y) ;

17 printf (”Depois: %d e 17 printf (”Depois: %d e
%d\n” ,x,y); %d\n” ,x,y);

18 system (”pause”) ; 18 system (”pause”) ;

19 return 0; 19 return O0;

20 } 20 }

Saida Saida

Antes: 2e 3 Antes: 2e 3

Dentro: 3 e 2 Dentro: 3 e 2

Depois: 2 e 3 Depois: 3e 2

6.2.3 PASSAGEM DE ARRAYS COMO PARAMETROS

Para utilizar arrays como parametros de fungdes alguns cuidados simples
sao necessarios. Além do parametro do array que sera utilizado na fungao,
€ necessario declarar um segundo parametro (em geral uma variavel in-
teira) para passar para a funcao o tamanho do array separadamente.

Arrays sao sempre passados por referéncia para uma
B fungao.

Quando passamos um array por parametro, independente do seu tipo, o
que é de fato passado para a fungao é o endereco do primeiro elemento

93

do array.

A passagem de arrays por referéncia evita a copia des-

0' necessaria de grandes quantidades de dados para outras

. areas de memoria durante a chamada da funcao, o que
afetaria o desempenho do programa.

Na passagem de um array como parametro de uma fungao podemos de-
clarar a fungao de diferentes maneiras, todas equivalentes:

void imprime (int *m, int n);
void imprime (int m[], int n);

void imprime (int m[5], int n);

Mesmo especificando o tamanho de um array no parametro

0' da funcao a semantica € a mesma das outras declaracoes,
pois nao existe checagem dos limites do array em tempo
de compilagao.

O exemplo abaixo mostra como um array de uma unica dimensao pode ser
passado como parametro para uma fungao:

Exemplo: passagem de array como parametro

#include <stdio.h>
#include <stdlib.h>

AN =

void imprime (int xn
, int m){
int i;
for (i=0; i<m;i++)
printf ("%d \n”,
nfil);

N o O

8 }

10 int main (){

11 int v[5] =
{1,2,3,4,5};

12 imprime(v,5);

13 system(”pause”);

14 return O;

15 }

94

Note, no exemplo acima, que apenas o nome do array € passado para a
funcao, sem colchetes. Isso significa que estamos passando o array inteiro.
Se usassemos o colchete, estariamos passando o valor de uma posicao
do array e nao o seu endereco, o que resultaria em um erro.

Na chamada da funcdo, passamos para ela somente o

o nome do array, sem os colchetes: o programa “ja sabe’que
um array sera enviado, pois isso ja foi definido no protétipo
da fungao.

Vimos que, para arrays, nao € necessario especificar o nimero de elemen-
tos para a fungao no parametro do array:

void imprime (int *m, int n);
void imprime (int m[], int n);

Arrays com mais de uma dimensao (por exemplo, matri-
! zes), precisam da informagao do tamanho das dimensoes
extras.

Para arrays com mais de uma dimensao € necessario o tamanho de todas
as dimensoes, exceto a primeira. Sendo assim, uma declaragao possivel
para uma matriz de 4 linhas e 5 colunas seria a apresentada abaixo:

void imprime (int m[][5], int n);

A declaragao de arrays com uma dimensao e com mais de uma dimensao é
diferente porque na passagem de um array para uma fungao o compilador
precisar saber o tamanho de cada elemento, ndo 0 numero de elementos.

Um array bidimensional poder ser entendido como um ar-
ray de arrays.

Para a linguagem C, um array bidimensional poder ser entendido como um
array de arrays. Sendo assim, o seguinte array

int m[4][5];

95

pode ser entendido como um array de 4 elementos, onde cada elemento
€ um array de 5 posicoes inteiras. Logo, o compilador precisa saber o
tamanho de um dos elementos (por exemplo, 0 niumero de colunas da
matriz) no momento da declaracdo da funcao:

void imprime (int m[][5], int n);

Na notagao acima, informamos ao compilador que estamos passando um
array, onde cada elemento dele é outro array de 5 posicoes inteiras. Nesse
caso, o array tera sempre 5 colunas, mas podera ter quantas linhas quiser
(parametro n).

Isso & necessario para que o programa saiba que o array possui mais de
uma dimensao e mantenha a notacdao de um conjunto de colchetes por
dimensao.

O exemplo abaixo mostra como um array de duas dimensdes pode ser
passado como parametro para uma funcao:

Exemplo: passagem de matriz como parametro

1 #include <stdio.h>
#include <stdlib.h>

void imprime_matriz(int m[][2], int n){
int i,j;
for (i=0; i<n;i++)
for (j=0; j< 2;j++)
printf ("%d \n”, m[il[j]);
}

11 int main (){

12 int mat[3][2] = {{1,2},{3,4}.,{5,6}};
13 imprime_matriz (mat,3) ;

14 system(”pause”);

15 return O;

16 }

=
O OWONO O~ WN

As notacdes abaixo funcionam para arrays com mais de uma dimensao.
Mas o array € tratado como se tivesse apenas uma dimensao dentro da
funcao

void imprime (int *m, int n);
void imprime (int m[], int n);

O exemplo abaixo mostra como um array de duas dimensdes pode ser
passado como um array de uma unica dimensao para uma fungao:

96

Exemplo: matriz como array de uma dimensao

1 #include <stdio.h>
2 #include <stdlib.h>

void imprime_matriz(int xm, int n){
int i;
for (i=0; i<n;i++)

printf ("% \n”, m[i]);
}

10 int main (){

11 int mat[3][2] =
12 imprime_matriz (&
13 system(”pause”);
14 return O;

15 }

© oo ~NOO O~ W

{{1.2},{3,4}.{5.,6}};
mat[0][0],6) ;

Note que, nesse exemplo, ao invés de passarmos o nome do array nos
passamos o enderecgo do primeiro elemento (&mat[0][0]). Isso faz com que
percamos a notacado de dois colchetes para a matriz, e ela seja tratada
como se tivesse apenas uma dimensao.

6.2.4 OPERADOR SETA

De modo geral, uma estrutura & sempre passada por valor para uma funcao.
Mas ela também pode ser passada por referéncia sempre que desejarmos
alterar algum dos valores de seus campos.

Durante o estudo dos tipos definidos pelo programador, vimos que o ope-
rador ””(ponto) era utilizado para acessar os campos de uma estrutura.
Se essa estrutura for passada por referéncia para uma funcao, sera ne-
cessario usar ambos os operadores "*’e ”para acessar os valores origi-
nais dos campos da estrutura.

e operador ™*”: acessa 0 conteldo da posicao de memdria (valor da
variavel fora da funcao) dentro da funcao;

e operador ”.”: acessa 0s campos de uma estrutura.

” 9

res "*”’e ”.’no acesso ao campo de uma estrutura passada

o O operador seta "->"substitui 0 uso conjunto dos operado-
por referéncia para uma funcao.

O operador seta "->"¢ utilizado quando uma referéncia para uma estrutura
(struct) é passada para uma fungao. Ele permite acessar o valor do campo

97

M%)

da estrutura fora da fungao sem utilizar o operador ™*”. O exemplo abaixo
mostra como os campos de uma estrutura passada por referéncia podem
ser acessado com ou sem o0 uso do operador seta "->":

Exemplo: passagem por valor e referéncia
Sem operador seta Com operador seta
1 struct ponto { 1 struct ponto {
2 int x, y; 2 int x, y;
3 }; 3 };
4 4
5 void func(struct ponto =x 5 void func(struct ponto x
p){ p){
6 (xp).x = 10; 6 p—>x = 10;
7 (xp).y = 20; 7 p—>y = 20;
8 } 8 }

6.3 RECURSAO

Na linguagem C, uma funcdo pode chamar outra funcao. Um exemplo
disso é quando chamamos qualquer uma das nossas fungdes implemen-
tadas na fungdo main. Uma fung¢ao pode, inclusive, chamar a si propria.
Uma fungao assim é chamada de fungao recursiva.

o A recursao também é chamada de definigao circular. Ela
ocorre quando algo é definido em termos de si mesmo.

Um exemplo classico de funcao que usa recursao é o calculo do fatorial de
um numero. A funcao fatorial € definida como:

0! =1
Nl=N*(N-1)!

A idéia basica da recursao € dividir um problema maior em um conjunto
de problemas menores, que sao entao resolvidos de forma independente
e depois combinados para gerar a solucao final: dividir e conquistar.

Isso fica evidente no calculo do fatorial. O fatorial de um nimero N é o
produto de todos os numeros inteiros entre 1 e N. Por exemplo, o fatorial
de 3 éiguala1*2*3, ouseja, 6. No entanto, o fatorial desse mesmo

98

namero 3 pode ser definido em termos do fatorial de 2, ou seja, 3! =3 *
2!. O exemplo abaixo apresenta as fun¢cdes com e sem recursdo para o
calculo do fatorial:

Exemplo: fatorial
Com Recursao Sem Recursao
1 int fatorial (int n){
2 if (n == 0)
1 int fatorial (int n){ 3 return 1;
2 if (n == 0) 4 else {
S return 1; 5 int i, f=1;
4 else 6 for (i=2; i <= n;i
5 return nxfatorial (n ++)
—1); 7 f=f % i;
6 } 8 return f;
9 }
10 }

Em geral, as formas recursivas dos algoritmos sao consideradas "mais
enxutas”e "mais elegantes’do que suas formas iterativas. Isso facilita a
interpretacao do cdédigo. Porém, esses algoritmos apresentam maior difi-
culdade na deteccao de erros e podem ser ineficientes.

Todo cuidado € pouco ao se fazer fungoes recursivas, pois
! duas coisas devem ficar bem estabelecidas: o critério de
parada e o parametro da chamada recursiva.

Durante a implementagao de uma fungao recursiva temos que ter em mente
duas coisas: o critério de parada e o parametro da chamada recursiva:

e Critério de parada: determina quando a funcéo devera parar de
chamar a si mesma. Se ele ndo existir, a funcao ira executar infi-
nitamente. No calculo de fatorial, o critério de parada ocorre quando
tentamos calcular o fatorial de zero: 0! = 1.

e Parametro da chamada recursiva: quando chamamos a funcao
dentro dela mesmo, devemos sempre mudar o valor do parametro
passado, de forma que a recursao chegue a um término. Se o va-
lor do parametro for sempre o mesmo a funcao ira executar infinita-
mente. No calculo de fatorial, a mudanga no parametro da chamada
recursiva ocorre quando definimos o fatorial de N em termos no fato-
rialde (N-1): N/I=N*(N-1)!.

99

O exemplo abaixo deixa bem claro o critério de parada e o parametro da
chamada recursiva na fungao recursiva implementada em linguagem C:

Exemplo: fatorial

1 int fatorial (int n){

2 if (n == 0) //critério de parada

3 return 1;

4 else //pardmetro do fatorial sempre muda
5 return nxfatorial (n—1);

6 }

Note que a implementacao da fungao recursiva do fatorial em C segue
exatamente o que foi definido matematicamente.

Algoritmos recursivos tendem a necessitar de mais tempo
. e/ou espago do que algoritmos iterativos.

Sempre que chamamos uma fungao, é necessario um espaco de memoria
para armazenar os parametros, variaveis locais e endereco de retorno da
funcao. Numa fungao recursiva, essas informagoes sao armazenadas para
cada chamada da recursao, sendo, portanto a memdria necessaria para
armazena-las proporcional ao nimero de chamadas da recursao.

Alem disso, todas essas tarefas de alocar e liberar memoria, copiar informagoes,
etc. envolvem tempo computacional, de modo que uma funcao recursiva
gasta mais tempo que sua versao iterativa (sem recursao).

O que acontece quando chamamos a funcao fatorial com
um valor como N = 3?

Nesse caso, a funcao sera chamada tantas vezes quantas forem necessarias.
A cada chamada, a funcao ira verificar se o valor de N é igual a zero. Se
nao for, uma nova chamada da funcao sera realizada. Esse processo,
identificado pelas setas pretas, continua até que o valor de N seja decre-
mentado para ZERO. Ao chegar nesse ponto, a fungado comega o processo
inverso (identificado pelas setas vermelhas): ela passa a devolver para
quem a chamou o valor do comando return. A figura abaixo mostra esse
processo para N = 3:

Outro exemplo classico de recursao é a seqliéncia de Fibonacci:

0,1,1,2,3,5,8,13,21, 34, 55,89, ..

100

fatorial(3); nu=
intfatorimigntnfled ™ intfatorial (int n)

if(n==0) if(n==0)
return1; return1;
else else

retur n1fatorial(n-1b-,
} i |

n==(
inf fatorial (intn inf fatorial (int n
if (n==0) if (n==0)
else else |
return n*fatorial(n-1); - return nifatorial(n-1);
} }

A sequénciade de Fibonacci é definida como uma fungao recursiva utili-
zando a formula abaixo:

0, sen=0;
FT;Q =k L sen=1:
Fin—=1)4+ F(n-2) outros casos.

O exemplo abaixo apresenta as fungdes com e sem recursao para o calculo
da sequéncia de de Fibonacci:

Exemplo: sequiéncia de Fibonacci
Com Recursao Sem Recursao
1 int fibo (int n){
1 int fibo(int n){ 2 int i,t,c,a=0, b=1;
2 if (n == [| n==1) 3 for(i=0;i<n;i++){
3 return n; 4 c=a+ b;
4 else 5 a=>b;
5 return fibo(n—1) + 6 b CE
fibo (n—2); 7 3}
6 } 8 return a;
9}

Como se nota, a solugao recursiva para a seqiiéncia de Fibonacci é muito
elegante. Infelizmente, como se verifica na imagem abaixo, elegancia nao
significa eficiéncia.

Na figura acima, as setas pretas indicam quando uma nova chamada da
funcao é realizada, enquanto as setas vermelhas indicam o processo in-
verso, ou seja, quando a funcdo passa a devolver para quem a chamou

101

o valor do comando return. O maior problema da solugao recursiva esta
nos quadrados marcados com pontilhados verde. Neles, fica claro que
o mesmo calculo é realizado duas vezes, um desperdicio de tempo e
espaco!

Se, ao invés de calcularmos fibo(4) quisermos calcular fibo(5), teremos
um desperdicio ainda maior de tempo e espago, como mostra a figura
abaixo:

102

