~ |Uma abordagem da
- |Engenharia de Software

Tiago Barros - 2002

Obra licenciada sob licenca Creative Commons Atribuicdo-Nao-Comercial- @ @ @
Compartilhamento pela mesma licenca 2.5 Brasil

indice Analitico

Indice Analitico

CAPITULO I 7

Engenharia de Software Estruturada...........eeeeneeiseecsennseenssenssnecseccssneecsssssescsssnenesss 7

Engenharia de Software Estruturada: 0 uso de funcoes..........cceeveesecseeesseenssneecsaeccsneecane 8
O CH DASICO.ccccueirensuinsansnnsansssnssssssissasses 8
Tipos: estruturas, Unides € tiPpoS ENUMETAAOS.cccveruterteriertiritenieeterteete e ettt etesbeetesbeestesbeestesbeesteeabaeesabeeeanes 8
DIECIATANAO AITAYS.c..ceutetieitietieitiettete ettt ettt ettt ettt et b e et bt et b et eb e et ebe e et sa e e bt satenbeembe bt eatenbeesbenbaeenabaeenenes 8
Definind0 NOVOS LIPOS....coueeuiruertirtirtenteteteteteeeet ettt ettt sttt be st sttt et st et e st ebeeaesat et e eb e s bt st et et et emtenseneeneeneenane 8
MOdIfICAAOTES @ LIPOS...cuveureureuriuieiieiieiteieet ettt sttt ettt ettt ae bttt besae st et e st e e et et et e bt e s beeseneenneensees 10

TIERITIA. ..ottt e b ettt b e et h e et h et b et b et eb e bt ebe e et sabbeesataee e 10
CONVETSOES A€ LIPOS. ce.uveeurierureeiieritestteeteeittesteeteesteesteessteeseesstessaesseessseesssessseesssessseeseessseenssessseesssessssseesssnssees 11
LaC0S € COMAICIONALS.cutentieuiietieteettete ettt ettt et sh et e s bt e teeb e es e eb e et e e st e bt e st e sbeeateebeemaesbeenbeebeenbeebeenbeeseenteesnneens 12
POMERITOS. ...ttt ettt et s a et sat e bt e bt et e e bt et e e st e bt en e e bt en b e e bt et e eheebeehte e e beeeenaeean 14
Uma breve discussao sobre enderecos de MEMOTIA.eevuueeruieriiriierrieeiierieeieesiteeieesieeebeesieesbeesieesateesseesanees 14
COMO AECIATAT PONLEITOS. ..ccuuveeutieiteeiieeieetee st et e sttt et e sttt ebeesate s bt e satesabeesbteenbe e btesabeeseesabeensaesateensaessseenbaesnseeas 14
UtIlIZANAO POMEEITOS. ..c.eteteentertieie ettt eit et ettt ea et eat e st e e et sbeestesat e beeste s bt eabe s bt eeseabeenbeebeenbeesabeeebeeesnbaeesnbeeas 14
Criando varidveis em tempo de execuc¢ao: os operadores new € delete..........cocueverierieiiineineneenenieeeieeeenn 16
Ponteiros para tipoSs AETIVAOS.ccoueiruiiiriierieiieeeteete ettt ettt ettt ettt e bt et e bt esabeesatesateenbaeeeseabaees 17
PONLEITOS © AITAYS. .. uteeutiiiiiiiiieeie ettt ettt et e sttt et e s ab e et e e s bt e e bt e bt e e bt e bt e sabeesbtesateenbtesabe e baesaseennees 17
USando NEW € dEIELE COM AITAYS. ..c...erueeuririeeterieetertteieeitente ettt et e st e et e bt est e s bt et e sbtesteebeetesatenbesmaeesnbeeesasaeesaneeas 18
ATIEMELICA A PONLEITOS.eeuviveeniiriiiieeitenteetent ettt sttt et te et eb st sbte bt e bt e s bt eat e s bt eebesbeesbesbeeabeesbbeeebeeesasaeesaneeas 18
PONEEITOS © COMSE....euutiuiieiieitteie ettt ettt ettt ettt et e sttt e s ae et e s h e et e e st et e e s ee b e estenteeseenbeemeeeseeneesaeentesaeenneeeenneens 18
FUNGOES. ...ttt et e a e st e st e e s es 19
DEfiNINAO fUNCOES. ... eeuieiiieiieeite ettt ettt et e sa bt e bt e s ate s bt e sabesabeesbbesabeenbtesabeesaeesabeenseesaseesaennneas 19
Argumentos € tipos de TetOTNO A€ FUNCOES.cocuieriiiriiiiieiie ettt ettt et et st et e e e eabbaeeessnseeas 20
PONLEIT0S PArA FUNGOES. ..c..vetieniitieieeiiete ettt b et et ettt et e st e s bt eaaesbe et e s bt et e sbeebeebeenbeesmaeeas 21
FUNGOES IN-LINC....c.eetieiietee ettt h et e h ettt e bt e et e s bt et e s bt e st e eb e en b e ebeemteeambeeebbeesnbeeesnneeas 22
UM POUCO MAIS SODTE ATGUIMEIILOS. ..ccuuveeurierurerteeriteerttentteerteesitesteesatesateesseeeseesseesseesseesaseesstesaseessaesseesseesnsesnses 22
SODIECATZA @ fUNCOES. ... eeutietieeiieette ettt ettt ettt st esa e et e e s bt e e beesabe e bt e sabeeabeesabeestesabbaeessansaeas 24
Seciao pratica: definindo nosso projeto SR -1
CAPITULO II 27

Do C ao C++: uma abordagem da Engenharia de Software

Tiago G. Barros

Engenharia de Software Baseada em Objetos -y
Engenharia de software baseada em objetos S .
Modularidade, COESA0 € ACOPIAMEIILO.eeuueeieiertieiietieteetierteette et e e st eteseeetesseeteeseenseeseeseeseeseeneenseeneesseenneens 28
INfOrmation HIAQING.ccueoveiiiiiiiiiein sttt ettt sttt ettt ettt b e bt s ebees 28
Suporte 2 MOAUIATIAAAE 1M CH....oeeiiiiiiiiiiieerie ettt ettt et e et esaae e bt esateebeesabeenbeesabeebeesasaeessnsees 28
Suporte a reusabilidade: Modelos de fUNCAO.........covuieiiiriiiiierie ettt ettt st e saeesteesbre e s sneeees 30
Secao pratica: estruturando 0 nosso projeto em MOAUIOS.......ccoveersressecsssrcssarsssrosassssnass 32
CAPITULO I1I 33
Engenharia de Software Baseada em Classes.........cccceevueissencsunissnnssencssnnsssncssnnsssncssnsssnnns 33
Engenharia de Software Baseada em Classes SR
CIASSES TN CAe.ceie ittt ettt b et sttt st a e s bt e bt s at e bt e et e bt e et e sb e et e sbe et sate bt eat e bt e e snbeeesaneees 34
Classes: OrganizZagao €M ATQUIVOS.ee.eeueeurerteerterteetesteeeesueeeesueessesseesesseeseessenseensesseensesseensesseensesseeesaseeesnseens 36
Modificadores de MELOAOS.ccueeuiiruieiietieeet ettt ettt ettt ettt et s bt et e e b et e ebe et e eaee bt eseesbeeaeesbeeaaesbeensesbeensens 37
COMmO Criar MEMDIOS ESTALICOS.ceuviruietirieiertenteetente ettt eete st et ste et e eueestesste st saeesaeemsesbeessesbeesaneeesreesanaeesaneees 38
O PONLEITO THIS..eeuutiiuiieiitiitieete ettt ettt ettt e sttt et e s bt e e bt e satesabeesateeabeesbteesbeebtesabeesstesabeensaesateesennbbaeessnnsneas 38
Sobrecarga de MELOAOS € CONSIITLOIES.cc.ueruteruertietertieteettenteettesteeate st estesteetesbeestesbeetesbeenbesbsebesseenseeseenseeneenns 39
CONSIULOTES A8 COPIA...nveuvienteriientiritentieite ettt st e bttt e st sat et sbt e st e e bt e s bt eate bt es e e s bt eateebeentesbee bt sbte bt embeeebeeesnbaeesnaeeas 39
Fungdes, métodos € Classes fTIENM.co.eiiuiiiiiiiiiiieie ettt st s 40
CONVETSOES ENLIE ODJELOS. ...c..eiuiiiiiiiieiiiiete ettt ettt st e st st s b s b e et e eneeesaneees 42
SODIECArZa dE OPEIAAOTES.coueeuiiiieiiirtieiiettet ettt ettt et ettt b et sbe et sbe et sbte bt sbtenbeemtenbeessenbeeaneesabneenan 43
MOAEIOS A& CLASSES.......eeueeiienieriieieeiteteet ettt ettt sttt et ettt ee et e et e s bttt sbe et e ebe e bt sbte bt smbeeebeeesmbaeesaneees 46
Secao pratica: Criando classes para o jogo .49
CAPITULO IV 51
Engenharia de Software Orientada a Objetos) |
Engenharia de Software Orientada a Objetos w52
HETANEA E1MN .ttt ettt et e st e et e s at e e bt e sat e e beesaeesabeessbesabeesaeenbeensaesnbeenseesaseensaessnnsaees 52
Overload de construtores, deStrUtOrES € MIETOTOS.uueeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e eeeeeeeeeeeeeeseeeeseeaaeeeeenaaaaaaees 52
M¢étodos virtuais: dynamic DINAING.ccoueeieriiriiieieee ettt sttt ettt st sse e e aeeeenaeeas 53
CLASSES ADSTIALAS. c..eeuveevrentieitetieiterteet sttt ettt ettt et et e b e eet et e et e s bt e st e sbeemaesat e bt sae e bt eas e bt eane bt eaneebteesasaeesaneeen 55
HEranga MUIPLA........coouiiiiiiiee ettt ettt e st e et e e s bt e e bt e bae s bt e aeesabeesstesabeensaesaseenbaesaseenseas 56
EIXCBEORS. -ttt et ettt et h et s h e et e h bt e h e e bt eh e bt e h e e bt e a b bt et eh e et she e bt eat e bt e e ebteeenaeeas 58
Secao pratica: Utilizando heranca S 1 |
CAPITULO V. 62

indice Analitico

Recursos avancados do C++: RTTI € STLeiienennecsnnnsenseensnecsenssnessssnecssncessneecssnes 62
A RTTI (runtime type information).......ccceececeeccssnccssencssssnesssssessascssssssssssssssssssssssssssassose 63
O OPETraAdOr AYNAMIC_CAST..c..eetiemiiiiienteitieteeit ettt ettt et st et bt et sbt et e ebt e b e e st e bt eate st e eatesbeemtesbeenbesbaeesmbaeesaneeas 63
Utilizando o operador typeid € a classe type_iNfO........cocuerieririeniiiiniiiereee ettt e 63
A STL (standard template LiDrary).......cccceveeccecsennsnnsnncseicsnnssnnsssnecssssessssssssscsssssecssanss 65
CONLEINETES A STL......niiiiiiieie ettt ettt e b e et e bt e et e e bt e s bt e sbtesateeeeabbaeeesanbaees 65
TEETAOTES. ...ttt ettt ettt st b s b sa e be ettt ettt et s e 81
AlOTIMOS dA STL.....coiiiiiiiiie ettt sttt et ettt e et e s bt et sbee et sbteesbaeesaaeeen 82
[0 0) 11101 E 1114 Lot T TSRS 87

Capitulo |

Engenharia de Software Estruturada

Capitulo | — Engenharia de Software Estruturada

Engenharia de Software Estruturada: o uso
de funcoes

Nos primérdios da programacao, os programas eram criados seguindo uma tnica seqiiéncia, ou seja, tinhamos
programas completos escritos sem nenhuma estruturacio. A idéia de fun¢do, cédigo que pode ser chamado
vdrias vezes em diferentes partes do programa e com diferentes pardmetros, trouxe uma grande estruturacdo a
programacdo. Neste capitulo veremos como utilizar fungdes, e na se¢lo pratica, como estruturar nosso
programa em fungdes. Para isto, comecaremos com uma visdo geral do bésico de C++, para que tenhamos o
suporte necessdrio para utilizar as funcdes.

O C++ basico

Tipos: estruturas, unioes e tipos enumerados

Como vocé ji deve saber, quando nos referimos a tipo, estamos falando do tipo da varidvel (porcdo de
memoria utilizada para guardar dados). Os tipos diferem no formato como os dados sdo armazenados e na
quantidade de meméria utilizada. Também diferem na semantica, pois embora possam ter a mesma
quantidade de memodria, dois tipos podem guardar informacdes de significado diferente. O C++ é uma
linguagem fortemente tipada, o que significa que as operagdes sobre varidveis sdo realizadas apenas entre
variaveis do mesmo tipo, ou de tipos compativeis. A linguagem C++ define varios tipos préprios, chamados
tipos bdsicos. Suas caracteristicas, que vocé ji deve conhecer, podem ser encontradas no Apéndice A, de
forma que ndo prolongarei aqui uma discussao sobre declaragdo e utilizacdo de tipos basicos.

Declarando arrays

Array nada mais € do que um conjunto de varidveis do mesmo tipo que sdo acessadas pelo mesmo nome e um
indice.
Para declarar um array de char, por exemplo, fazemos:

char array de char[20];

O valor entre parénteses é a quantidade de posi¢des que o array possui, ou seja, array _de char possui 20
varidveis do tipo char. Veremos a importincia dos arrays e como utilizar arrays multidimensionais e
ponteiros com arrays mais adiante, neste capitulo.

Definindo novos tipos

Além dos tipos de dados simples como int, float, double, char, ...; podemos definir os nosso préprios tipos
de dados. Estes tipos sdo definidos através das palavras-chave struct, union e enum (e posteriormente, como
veremos, class).

Estruturas

As estruturas de C++ funcionam como tipos compostos, em que se pode guardar diversas informagdes
agrupadas em um mesmo nome. Por exemplo, para definir o tipo composto bola, utilizamos struct de acordo
com a sintaxe abaixo:

struct TBall
{
int x;
int y;

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

int radius;
TColor color;

};

A bola que definimos tem, portanto, uma posicao (X, y), um raio e uma cor. Se criarmos uma varidvel do tipo
bola, que acabamos de definir, podemos acessar as caracteristicas da bola da seguinte forma:

TBall bola;
bola.x = 10;
bola.y = 15;

bola.radius = 5;
bola.color = clBlue;

Note, que TColor nao € um tipo de dados simples, de forma que podemos criar tipos de dados compostos a
partir de outros tipos compostos também.
Unides

Uma unido é um tipo composto parecido com uma estrutura. A diferenca é que na unido, os diversos
“membros” compartilham a mesma 4rea de memoria, ou seja, alterando um membro da unido, na realidade
estamos alterando todos. As unides sdo utilizadas quando queremos acessar uma mesma informagdo de
diversas formas, sobre a 6tica de diversos tipos de dados, ex:

union TCharInt

{
char c;
short i;

b

int main()

{
TCharInt var;
var.c = ‘A’;
cout << “0 codigo ASCII da letra A e " << var.i;
cin.get();
return 0;

}

No cédigo acima, nés atribuimos uma constante do tipo char a unido var. Posteriormente, acessamos a unido
var através do seu membro i, do tipo short int. Como a letra A ¢é representada internamente através do seu
c6digo numérico, quando acessamos a varidvel como um tipo short int, teremos como retorno o valor
numérico (do c6digo ASCII) da letra A. Portanto, o exemplo acima exibira:

0 codigo ASCII da letra A e 65
Tipos enumerados
Os tipos de dados enumerados sao utilizados para representar tipos conceituais que ndo estdo presentes no C+

+ padrdo. Por exemplo, para representar o tipo de dados cor, que pode assumir os valores vermelho, verde,
azul, amarelo, ciano, magenta, branco e preto; poderiamos utilizar um tipo de dados enumerado:

Capitulo | — Engenharia de Software Estruturada

enum TColor {clRed, clGreen, clBlue, clYellow, clCian, clMagenta,
clWhite, clBlack };

Desta forma, as varidveis do tipo TColor s6 aceitariam um dos valores acima, que, internamente estao
representados por nimeros, mas no cédigo t&ém uma seméntica que € bastante util para quem for utilizar.

Modificadores de tipos

Em C++, podemos modificar a forma como as varidveis sdo declaradas e alocadas, seu escopo e a sua ligacdo
(capacidade de um item ser usado em diferentes arquivos de um mesmo programa). Isto é feito com a
utilizacdo dos modificadores de tipo. Para entender melhor o seu funcionamento, veremos alguns conceitos
bdsicos necessarios, antes de falar dos modificadores de tipos propriamente ditos.

Escopo

Varidveis em C++ podem ter escopo local (ou de bloco) ou global (ou de arquivo). Varidveis globais ficam
disponiveis a todo o cédigo do arquivo, enquanto as varidveis locais estdo disponiveis apenas dentro do bloco
em que foram criadas e nos blocos internos a ele.

Classes de armazenamento

A memoria de armazenamento (espago reservado as varidveis) de um programa em C++ € dividida em trés
classes:

* Armazenamento automdtico: onde as varidveis de um bloco sdo alocadas e armazenadas quando o
programa entra no bloco. Seu escopo € local.

* Armazenamento estdtico: drea de armazenamento persistente. Os dados com armazenamento estatico
estdo disponiveis durante toda a execucdo do programa. Isto significa que os dados estdticos ndo sdao
reinicializados a cada vez que uma funcdo € chamada, como ocorre com 0 armazenamento automético.

* Armazenamento livre: drea de alocacdo de memoria em tempo de execugdo. Toda varidvel alocada em
tempo de execucdo é armazenada nesta drea. E de suma importincia que as varidveis criadas nesta 4rea
sejam desalocadas sempre que nao forem mais ser utilizadas.

Ligacao

A ligacdo (lincagem) se refere a capacidade de um item ser utilizado em diversos arquivos de um programa.
Varidveis externas (declaradas fora de qualquer fun¢io) possuem também ligacdo externa, o que significa que
elas ficam disponiveis a qualquer arquivo do mesmo programa. J4 as varidveis de ligag¢@o interna sé estdo
disponiveis no arquivo em que foram criadas.

Os conceitos vistos acima estdo relacionados de forma ndo sistematica, sendo as vezes dificil de se entender
claramente. Portanto, abaixo segue uma lista das possiveis associacdes entre classes de armazenamento,
escopo e ligacdo:

Tipo da variavel Forma de declaracao Escopo Ligacao
Variaveis automaticas Declaradas dentro de um bloco Local Interna
Varidveis externas Declaradas fora de qualquer fungdo Global Externa
Varidveis externas estaticas Varidveis externas declaradas com a Global Interna
palavra-chave static

Varidveis externas constantes | Varidveis externas declaradas com a Global Interna
palavra-chave const

Varidveis estéticas Varidveis automaticas declaradas com a Local Interna
palavra-chave static

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Depois de entendidos estes conceitos, vamos aos modificadores propriamente ditos.
Modificadores:

static: € utilizado para declarar varidveis na classe de armazenamento estatico.

const: ¢ utilizado para declarar constantes, que, obviamente, ndo podem ter o seu conteido alterado.

extern: ¢ utilizado para indicar que estamos utilizando uma varidvel externa, que foi declarada em outro
arquivo.

register: ¢ utilizado para “pedir” ao compilador que armazene a varidvel em um registrador da CPU. Isto
acelera o acesso a varidvel, mas ndo deve ser utilizado para todas as varidveis pois os computadores possuem
geralmente registradores de 32 bits (em alguns computadores, 64 bits), que ¢ um tamanho menor do que
alguns tipos como double, e em nimero limitado.

volatile: indica que um valor de uma varidvel pode ser alterado por fatores externos ao c6digo do programa,
como, por exemplo, uma varidvel que aponte para o endereco do reldgio do sistema, e que, portanto, é
atualizada pelo hardware. Varidveis em programas multithreaded' que sdo alteradas e lidas em threads
diferentes também devem ser declaradas como volatile.

mutable: indica que um membro de uma estrutura (ou classe) pode ser alterado mesmo que faca parte de uma
varidvel declarada como constante.

Conversoes de tipos

Quase sempre, em um programa, existe a necessidade de se fazer a conversdo entre tipos de dados para que se
possa realizar operagdes com varidveis de tipos diferentes. A conversdo de tipos (ou fype casting) pode ser
realizada da forma implicita ou explicita.

Cast implicito

Ocorre quando fazemos conversdo entre varidveis de tipos compativeis, onde ndo hd a necessidade de
utilizacdo de palavras-chave para informar a conversiao ao compilador. Ex:

short int numShort = 1234;
long int numLong = 314153256;
long int result;

result = numShort + numLong;

Cast explicito

Utilizamos o cast explicito quando queremos “informar” ao compilador que ndo estamos fazendo uma
conversdo indesejada, e também quando os tipos ndo sdo compativeis mas a conversio é necessaria. Abaixo
seguem as formas de fazer o cast explicito em C++:

(tipo): conversdo explicita de tipos estilo C. E considerada antiga e obsoleta.

static_cast <tipo> (expressao): é utilizado quando queremos fazer um cast em “tempo de compilagio”, ou
seja, ndo ha verificacio de tipos em “tempo de execucao”. Ex:

int sum;
int num = 10;
float pi = 3.14159;

' Programa com vdrias linhas de execucfio, chamadas threads, que rodam em paralelo, na 6tica do programa.

10

Capitulo | — Engenharia de Software Estruturada

sum = static_cast <int> (pi) + num;

const_cast <tipo> (expressao constante): ¢ utilizado para retirar a “constincia” de expressdes. No exemplo
abaixo, podemos desconsiderar o fato que const_ptr € um ponteiro constante quando atribuimos ele a um
ponteiro normal (ndo se preocupe, veremos o uso de ponteiros mais adiante):

char * ptr;
const char * const ptr;

ptr = const cast <char *> (const ptr);

reinterpret_cast <tipo> (expressao): o reinterpret_cast é a forma mais poderosa de conversdo de tipos. Ele
forca a reinterpretacdo dos bits da expressdo, de forma que os valores reais dos bits de um valor sdo
utilizados. Devido ao seu poder, seu uso € bastante perigoso, pois fazer um reinterpret_cast de um float para
um int, por exemplo, poderia resultar em um valor inteiro completamente sem sentido. Um exemplo de uso do
reinterpret_cast pode ser visto a seguir:

pointer = reinterpret cast <int *> (0xBOOQ0000O);

Este exemplo faz com que o ponteiro pointer aponte para o enderego de meméria OxBOOOOOOO . Se ndo
utilizdssemos o reinterpret_cast, o exemplo acima ndo compilaria, pois o compilador ndo considera a
conversdo do tipo unsigned long para int * algo que se possa fazer implicitamente.

dynamic_cast <tipo> (expressao): ¢ utilizado para fazer conversdes em tempo de execugdo. Ele faz parte da
RTTI (runtime type identification — identificacido de tipos em tempo de execugdo) e serd visto com detalhes
no Capitulo V.

Lacos e Condicionais

Elementos essenciais em linguagens de programacao, as instrucdes condicionais (ou instrucdes de selecdo, de
acordo com a especificagdo do ANSI/ISSO C++) e as instrucoes de iteracdo serdo abordadas nesta secdo,
bem como as instrugdes de controle de fluxo (break, continue, exit e abort).

A instrucao if

E utilizada para testar expressdes e tomar decisdes. Se a expressdo entre parénteses for avaliada como
verdadeira ou diferente de zero, seu bloco de instru¢des correspondente serd executado. Possui uma cldusula
opcional, else, que executa um bloco de instrugdes caso a expressdo entre parénteses seja avaliada como falsa.
Podemos ter varios blocos if-else aninhados, por exemplo para testar uma varidvel sucessivamente, até
encontrarmos uma correspondéncia. A sintaxe da instrucio if é:

if (expressao)

bloco de instrugdes que
serao executadas caso expressdo seja
avaliada como verdadeira;

}

else

bloco de instrucdes que
serao executadas caso expressao seja

11

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

avaliada como falsa;

}

A instrucao switch

Uma alternativa para a utilizacdo de if-else aninhados € a instrucdo switch. Esta instrucdo € utilizada para
desvios miiltiplos, de uma forma mais sintética. A sintaxe do switch é:

switch (expressao)

{

case valorl:
instrucdol;
[break;]

case valor2:
instrucao?;
[break;]

case valor3:
instrucao3;
[break;]

default:
instrucao padrao;

}

Caso a instrugdo break nio seja utilizada, o programa continuard executando as instrugdes do préoximo case
até que haja um break ou que acabe o bloco switch.

Os lacos while e do-while

Um laco while executa seu bloco de instrugcdes enquanto a sua expressdo for avaliada como verdadeira (ou
diferente de zero). Possui as seguintes sintaxes:

while (expressdo)

{
}

instrucodes;

ou

do

{
instrucdes;
} while (expressdo);

A diferenga, é que no laco while puro, a expressdo é avaliada antes de executar as instru¢des, enquanto no
laco do-while as instrucdes sdo executadas e a expressdo € avaliada no final (portanto as instru¢des sdo
executadas pelo menos uma vez).

O laco for

12

Capitulo | — Engenharia de Software Estruturada

O laco for ¢ utilizado quando desejamos utilizar um indice numérico, que seja incrementado/decrementado a
cada iteracdo. Sua sintaxe é:

for (inicializacgao; expressao de teste; expressao de iteracao)

{
}

instrucodes;

A inicializacdo é executada antes de comecarem as iteragdes do laco. E geralmente onde inicializamos as
varidveis de indice que serdo utilizadas no lago. A cada iteracdo, a expressdo_de_teste € avaliada e o laco €
encerrado quando ela se torna falsa. Apds cada execucdo do corpo do laco, a expressdo_de_iteracdo é
executada. Essa expressao é, geralmente, um incremento/decremento da(s) variavel(is) de indice.

Instrucoes de controle de fluxo

break: ¢ utilizada para terminar a execucéo de um laco ou de um bloco switch.

continue: faz com que a execugcdo do programa pule para a proxima iteracdo de um laco, ou seja, as
instrucdes entre continue e o fim do corpo do lago ndo sdo executadas.

goto label: transfere o fluxo do programa para a instru¢do seguinte a label. Seu uso é extremamente
desaconselhado, pois torna o fluxo do programa bastante dificil de acompanhar e depurar. Sempre existe uma
forma de escrever um programa sem goto. Portanto nao use esta instrucao.

exit: termina a execug@o do programa. Pode ser chamada de qualquer fun¢@o, ndo apenas da fungdo main.
abort: termina imediatamente a execuc¢do do programa, sem executar as instru¢des de encerramento de tempo
de execugdo do C++ (como chamar os destrutores dos objetos globais por exemplo).

Ponteiros

As varidveis ponteiro sdo um dos maiores recursos de C++ pelo seu poder, mas também um dos maiores
causadores de bugs e o terror de alguns programadores. Nesta sess@o veremos que os ponteiros sdo um dos
nossos maiores aliados e também veremos como no cair nas suas armadilhas.

Uma breve discussao sobre enderecos de memdria

Todas as varidveis de C++ possuem um nome e um contetido, e estdo armazenadas em alguma posi¢do de
memoria. No nosso programa utilizamos esses nomes para referenciar os conteidos das varidveis. Uma outra
forma de referenciar uma posicdo de memoria é através do seu endereco direto. Para obter o endereco de
elementos de memdria o C++ possui o operador &, chamado operador endereco ou referéncia. Desta forma,
podemos declarar varidveis que guardem em vez de valores de tipos, enderecos de memoria. Isto nos permite
criar varidveis em tempo de execugdo e guardar o seu endere¢o nestas varidveis especiais, chamadas
ponteiros. Veremos como declarar e manipular ponteiros nas secdes a seguir.

Como declarar ponteiros

Apesar de utilizarem espacos de memoria do mesmo tamanho, pois todos os ponteiros guardam enderecos de
memoria, cada ponteiro precisa ser do mesmo tipo do dado que ele aponta, ou seja um ponteiro para inteiros
deve ser do tipo int, enquanto um ponteiro para double deve ser do tipo double. Para declarar ponteiros,
utilizamos um asterisco, *, apds o nome do tipo, da seguinte forma:

int *ponteiro para int;
double *ponteiro para double;

13

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Utilizando ponteiros
Para utilizarmos os ponteiros para apontar para uma varidvel, utilizamos o operador endereco, & :

int um inteiro = 10;
double um double = 3.14159;
ponteiro para_int = &um_inteiro;
ponteiro para double = &um double;

Para acessar o conteddo das varidveis apontadas pelo ponteiro, utilizamos o operador desreferéncia, *, que
também € um asterisco:

cout << “0 valor de um inteiro é: "
cout << “0 valor de um double é:

<< *ponteiro para int;
<< *ponteiro para double;

n

Que nos dara como saida:

0 valor de um inteiro é: 10
0 valor de um double é: 3.14159

O operador desreferéncia faz com que, em vez de exibir o contetido da varidvel ponteiro, que € o endereco de
um_inteiro, utilize esse contetido como endereco e exiba o conteido deste enderego, que € 10.
Complicado? Nao, é muito mais simples do que se imagina. Vejamos alguns exemplos de uso dos operadores
& e *, e 0 que aconteceria em cada caso:

Exemplo 1:

n

cout << “0 valor de um inteiro é: << &um_inteiro;
Apesar de passar pelo compilador, este exemplo estaria semanticamente incorreto, pois o que seria exibido € o
enderego de um_inteiro e ndo o seu valor.

Exemplo 2:

n

cout << “0 valor de um inteiro é: << *um_inteiro;

Este exemplo causa erro de compilag¢do pois a varidvel um_inteiro, apesar de ter o mesmo tamanho de um
ponteiro e guardar um valor numérico, nio foi declarada como ponteiro, e ndo pode ter seu contetido utilizado
para enderecar memoria.

Exemplo 3:

n

cout << “0 valor de um _inteiro é: << §ponteiro _para_int;

Neste exemplo, estariamos exibindo o enderego de ponteiro para_int, e ndo o contetido do endereco
que ele aponta. Se estivéssemos atribuindo &ponteiro para_int para uma varidvel, como esta varidvel
deveria ser declarada? Correto se respondeu: int **ponteiro_duplo; Pois o endereco de um ponteiro
deve ser guardado em um ponteiro para ponteiro.

Exemplo 4:

n

cout << “0 valor de um inteiro é: << *ponteiro para int;

14

Capitulo | — Engenharia de Software Estruturada

Esta seria a forma correta de utilizar o ponteiro, e 0 que seria exibido seria o valor guardado no endereco
guardado no ponteiro.

Como veremos mais adiante, além dos tipos basicos, podemos utilizar ponteiros para tipos compostos, objetos
e fungdes.

Criando variaveis em tempo de execucao: os operadores new e
delete

Até agora, toda a memoria que nds utilizamos era alocada através da declaracdo de varidveis, o que significa
que estdvamos informando ao C++ o quanto de memoria que o nosso programa iria utilizar. Como vimos
anteriormente, a memoria do nosso programa estd dividida em trés classes de armazenamento: o
armazenamento automadtico (para varidveis declaradas localmente), o armazenamento estitico (para varidveis
declaradas com static e para as varidveis globais) e o armazenamento livre (para as varidveis declaradas em
tempo de execucdo). Portanto, podemos alocar e liberar memoria da drea de armazenamento livre, em tempo
de execucdo, o que nos permite uma maior eficiéncia no gerenciamento de memoria. Isto € feito através dos
operadores new e delete.

O operador new retorna um ponteiro para o tipo especificado, de forma que, se quisermos criar um inteiro em
tempo de execugdo, devemos proceder da seguinte forma:

int *ponteiro para int;
ponteiro para int = new int;

Agora vocé entende o uso de ponteiros, pois ndo fez muito sentido o seu uso como nos exemplos da se¢io
utilizando ponteiros, certo?

As varidveis da drea de armazenamento automadtico sdo desalocadas logo que o programa sai do seu escopo,
automaticamente (dai o nome armazenamento automatico). Isto ndo ocorre com as varidveis da area de
armazenamento livre. Embora possam estar sendo referenciadas por ponteiros declarados localmente (e
portanto, localizados na 4rea de armazenamento automdtico), todas as varidveis criadas dinamicamente
continuam a existir durante toda a execug¢do do programa, ou até que sejam desalocadas explicitamente.
Vejamos um mau uso de alocag@o dinamica:

for (int i=0; i < 1000; i++)

{
double *pointer;
pointer = new double;
pointer = i * 3.14159;
}

Neste exemplo, a varidvel pointer ¢ declarada dentro do corpo do for, e por isso € criada na drea de
armazenamento automadtico. Entdo, no inicio da execucdo de cada iteracdo, é alocada memdria para esta
variavel. Depois, com o operador new, é alocada memoria (desta vez na drea de armazenamento livre) para
uma varidvel do tipo double, e o endereco é guardado em pointer, de forma a poder utilizar esta drea de
memoria. No fim da execugdo da iteracdo, a varidvel pointer é desalocada. Entdo vocé deve estar se
perguntando: o que acontece com a drea alocada pelo operador new? Exatamente! Como ndo existe nenhum
ponteiro que referencie a drea alocada e como ela ndo foi liberada, ficard ocupando espaco até o final do
programa. Desta forma, ao final deste lago, teremos 1000*8 bytes de memoéria (o tamanho do double é
geralmente 8 bytes) que estd alocada mas ndo podera ser utilizada. Abaixo veremos o cédigo escrito de forma
correta:

for (int i=0; i < 1000; i++)

double *pointer;

15

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

pointer = new double;
pointer = i * 3.14159;
delete pointer;

}

A diferenca entre este exemplo e o anterior € a tltima instru¢do do corpo do lago: delete pointer; Esta
instrucdo desaloca a memdria alocada pelo new. Portanto, é de suma importancia a desalocacdo das varidveis
que ndo serdo mais utilizadas, sob pena de causar um estouro de memoria no programa. Uma observacio que
deve ser feita aqui é: quando utilizamos o new, caso ele ndo consiga alocar a memoria correspondente,
retornard um ponteiro nulo (que possui o valor zero). Portanto, sempre que alocarmos memdria
dinamicamente, devemos verificar se isto realmente foi feito com sucesso, comparando o ponteiro com a

constante NULL, para que o programa ndo encerre abruptamente devido a erros em tempo de execugio.

Ponteiros para tipos derivados

Podemos utilizar ponteiros para apontar para qualquer tipo de dados em C++, inclusive arrays, estruturas,
unides e tipos enumerados (e objetos, como veremos posteriormente). Abaixo segue um exemplo de como
utilizar ponteiros com estruturas (o uso com unides é andlogo):

struct TBall
{ 1
int x,
int vy,
int radius,
TColor color
} ball 1, *pointer;

pointer = &ball 1;

10;

(*pointer).x =
= 20;

pointer->y

Portanto, para acessar um membro da estrutura, basta utilizar (*pointer) pois isto desreferencia o
ponteiro. Podemos utilizar também o operador seta, ->. Com o operador seta, podemos utilizar o ponteiro
diretamente, sem precisar desreferencid-lo com *.

Ponteiros e arrays

Em C++, ponteiros e arrays sdo bastante semelhantes. Podemos utilizar ponteiros como se fossem arrays (com
o operador colchetes, []) e 0 nome do array como um ponteiro para a sua primeira posi¢do. Abaixo segue um
exemplo de como utilizar ponteiros como arrays:

int array[5];
int *pointer;
array[0] = 10;

array[l] = 20;
array[2] = 30;
array[3] = 40;
array[4] = 50;

pointer = &array[0];

cout << pointer[2];

16

Capitulo | — Engenharia de Software Estruturada

O exemplo acima exibird 30 como saida. Poderiamos fazer a atribui¢io pointer = &array[0]; da
seguinte forma: Pointer = array; pois o nome do array funciona como um ponteiro para a sua primeira
posicdo. Observe que, embora possamos utilizar o nome de um array como ponteiro, ndo podemos fazer
coisas do tipo: array = &array?2[0]; Portanto, devemos considerar arrays como ponteiros constantes.

Usando new e delete com arrays
Podemos criar arrays em tempo de execucido com o operador new em conjunto com []:

int *pointer;
pointer = new int[10];
pointer[0] = 10;

Como C++ permite utilizarmos ponteiros com o operador colchetes, [], pointer se comportard como um
array. Para desalocar a memoria alocada com new[], utilizamos delete[]:

delete[] pointer;
Aritmética de ponteiros

Como sabemos, os ponteiros sdo varidveis que guardam enderecos de memoria. Por serem valores inteiros,
podemos utilizar operacdes aritméticas com ponteiros. A diferenca € que, se executarmos a instrugdo:
um_inteiro++; a varidvel um_inteiro serd acrescida de 1. Se executarmos: pointer++; a varidvel pointer serd
acrescida de um niimero igual ao tamanho do tipo de pointer, ou seja, se pointer for um ponteiro para int, seu
valor serd acrescido de 4 (um inteiro tem geralmente 4 bytes), de forma que, se pointer estiver apontando para
uma seqiiéncia de inteiros, pointer++ fard com que ele aponte para o préximo elemento. Para ilustrar melhor a
aritmética com ponteiros, segue um exemplo:

int *pointer, array[10];
pointer = array;

for (int i=0; i<10; i++)
{
*pointer = i*2;
pointer++;

Neste exemplo, em vez de acessarmos os elementos do array através do operador colchetes, [], utilizamos um
ponteiro para percorré-lo. Como vimos anteriormente, arrays e ponteiros sdo semelhantes, de forma que esta
aritmética também vale para arrays: * (array+n) € equivalente a array[n].

Ponteiros e const

Além de podermos declarar ponteiros para varidveis, C++ nos permite declarar ponteiros para valores
constantes:

const int *pointer;
Isto ndo significa que o ponteiro s6 poderd apontar para constantes. Na realidade o que estamos fazendo €
informando ao compilador que ele deve tratar o valor para o qual o ponteiro aponta como uma constante, e

qualquer tentativa de tratd-lo de forma diferente causard erro de compilagdo. A importincia de utilizar
ponteiros desta forma, é nos prevenirmos de erros que ocorreriam se o valor fosse inadvertidamente alterado.

17

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Outro motivo é que s6 ponteiros para constantes podem apontar para constantes, 0s ponteiros normais nao
(isto € um tanto quanto 6bvio).

A palavra-chave const também pode ser utilizada para declarar ponteiros constantes (note a diferenca de
ponteiros para constantes). Como era de se esperar ponteiros constantes sé poderdo apontar para um endereco
de memdria constante, ou seja, ndo podem alterar o endereco contido nele. Exemplo:

int um inteiro;
int *const pointer = &um inteiro;

Portanto, como vocé ja deve desconfiar, também podemos criar ponteiros constantes para constantes, o que
significa que ndo poderemos alterar o endereco contido nele e que o valor contido neste endereco serd tratado
como constante:

int um inteiro;
const int *const pointer = &um inteiro;

Funcoes

Como vimos no inicio do capitulo, as funcdes sdo a base da engenharia de software estruturada. Entdo vamos
a elas!

Definindo funcoes
Para definir uma funcio, utilizamos a seguinte estrutura:

tipo nome(argumentos...)

{
instrucdes;
return expressao de retorno;

Onde:

tipo: o tipo de retorno da funcio.

nome: é o nome da funcdo.

argumentos: lista de zero ou mais pardmetros que devem ser passados a fung¢do quando a mesma é
chamada.

instrugdes: conjunto de instru¢des que serdo executadas quando a fungdo for chamada.
expressao de retorno: expressio retornada para o ponto onde a fungdo foi chamada. Deve ser do
mesmo tipo de tipo.

Abaixo segue um exemplo de uma definicao de fungdo:

int add(int numero 1, int numero 2)

{
int numero_ 3;
numero 3 = numero_1 + numero_2;
return numero 3;

}

Claro que as func¢des que nds criamos sdo geralmente um pouco mais complexas, mas este exemplo ilustra
bem os elementos da defini¢do de uma funcio.

Em C++, além de definirmos uma fung¢do (com todos os seus elementos), devemos também declarar as
funcdes que definimos. Esta declaragdo é chamada de protétipo de uma funcdo. O protétipo de uma funcio
nada mais € do que a primeira linha da definicdo da fun¢do seguida de um ponto-e-virgula. Ex:

18

Capitulo | — Engenharia de Software Estruturada

int add(int numero 1, int numero 2);
O c6digo acima demonstra o protétipo da fungdo add, definida no exemplo anterior.

Para estruturar melhor o cédigo, criamos um arquivo com extensdo cpp com as defini¢des das funcdes e um
arquivo com extensdo .h com os protétipos das funcdes.

Argumentos e tipos de retorno de fungoes

Podemos passar qualquer tipo de dados como argumento (ou pardmetro) para uma funcido. Abaixo veremos
algumas peculiaridades dos tipos de dados mais complexos, € como retornar estes tipos.

Funcoes e arrays
Para passar um array para uma funcéo, basta adicionar [] a0 nome do argumento, ex:

int add(int array[], int num elementos)

{
int resultado=0;
for (int i=0; i<num elementos; i++)
{
resultado += array[i];
}
return resultado;
}

E bastante importante ressaltar o que estd acontecendo aqui. Ao lembrarmos que C++ trata o nome de arrays
como ponteiros constantes, podemos perceber que o que estamos passando como argumento nao € uma copia
de qualquer elemento do array, mas sim um ponteiro para o array original. Como podemos utilizar ponteiros
como arrays (com o operador []), a primeira vista, o cddigo acima pode nido demonstrar o realmente estd
acontecendo. Portanto, se alterdssemos qualquer elemento do array, estariamos alterando no array original.
Para prevenirmos alteragcdes inadvertidas, devemos declarar o pardmetro do array como constante, como
veremos abaixo:

int add(const int array[], int num elementos)

{
int resultado=0;
for (int i=0; i<num elementos; i++)
{
resultado += array[i];
}
return resultado;
}

Desta forma, garantimos que a passagem de parametros por referéncia que estd implicita ndo implique em um
erro grave no nosso programa.

Retornando um array de uma funcao
O C++ nao permite atribuir um array inteiro a outro, nem retornar um array inteiro de uma fungdo. Portanto,
para retornar um array de uma funcdo (e eventualmente atribuir isto a outro), devemos usar ponteiros. Como

existe uma semelhancga entre ponteiros e arrays, este processo ¢ bastante simples. Vejamos um exemplo:

int *init array(int num elementos)

19

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

{ int *retorno = new int[num elementos];
for (int i=0; i<num elementos; i++)
{ retorno[i] = 0;

) }return retorno;

Devemos observar os seguintes aspectos no trecho de cédigo acima:

* O tipo de retorno da fun¢do € na realidade um ponteiro, como ji foi explicado antes. Portanto, o
resultado desta funcdo s6 pode ser atribuido a ponteiros, € ndo a arrays.

e A varidvel de retorno ndo foi declarada como um array normal - como: int
array[num_elementos] - pois, se fosse declarada desta forma, seria alocada na 4rea de
armazenamento automdtico, sendo desalocada ao final do seu escopo, ou seja, no fim da fungdo.
Entdo, quando tentdssemos utilizar o array de retorno da fung@o estarfamos trabalhando com uma
drea de memoria desalocada, que poderia conter qualquer coisa, ou pior, ter sido alocada para outra
varidvel.

* Note que alocamos memoria dentro desta funcio e ndo desalocamos. Portanto, € tarefa do cédigo que
chamou a funcdo desalocar esta memoria com o operador delete[], quando ela deixar de ser utilizada.

Funcodes e estruturas

Em C++, as estruturas sdo passadas para as fungdes como valor, de forma que passar uma estrutura para uma
fungdo é o mesmo que passar uma varidvel simples. Exemplo:

struct structure

{
int um_inteiro;
char um_char;
b
void function(structure uma estrutura)
{
cout << “Exibindo o numero: "<<uma estrutura.um inteiro<<endl;
cout << “Exibindo o char: " << uma estrutura.um char << endl;
}

Na passagem de pardmetros por valor, o que acontece é que a estrutura passada é copiada para uma varidvel
local, no armazenamento automatico. Portanto, para passar estruturas grandes podemos optar por passar um
ponteiro para a estrutura, evitando assim o overhead® da copia.

O mesmo se aplica ao retornar estruturas de uma fung¢ao, a estrutura também é passada por valor. Exemplo:

structure get structure()

{
structure estrutura;
estrutura.um inteiro = 0;
estrutura.um char = ‘A’;
return estrutura;

}

* Tempo gasto com execucio de cédigo que nio foi criado pelo programador, e que portanto, nio faz parte do
programa diretamente.

20

Capitulo | — Engenharia de Software Estruturada

Como a estrutura € passada por valor, ndo precisamos nos preocupar com seu escopo. Na realidade, a varidvel
estrutura perde o escopo ao fim da fun¢do, mas como o que é retornado € uma cépia da mesma, ndo
precisamos nos preocupar com isto.

Ponteiros para funcoes

Como vimos anteriormente, podemos utilizar ponteiros para qualquer tipo de dados. Nesta se¢do veremos que
também podemos utilizar ponteiros para fungdes. Como as func¢des sdo dados compilados armazenados na
memoria, nada nos impede que tenhamos um ponteiro para estes dados. Um ponteiro para funcio aponta para
posicdo de memoria para a qual o programa € transferido quando a funcdo é chamada. Utilizamos ponteiros
para fungdes para passar estas funcdes como argumento para outras fungdes. Se o protétipo de uma fungdo é:

int funcao(int 1i);
Um ponteiro para esta fun¢do poderia ser declarado da seguinte forma:
int (*ponteiro para funcgao) (int i);

Da mesma forma que o nome de um array é um ponteiro constante para o array, o nome de uma fun¢io é um
ponteiro constante para a fungo, de forma que podemos inicializar o nosso ponteiro da seguinte forma:

ponteiro para funcao = funcao;
Para passarmos uma fun¢do como pardmetro para outra, passamos a fun¢do como ponteiro:

void fungao2((*ponteiro para funcao) (int 1))
{
int parametro = 13723;
(*ponteiro para funcao) (parametro);

}

Como podemos observar, Tun¢ao2 recebe uma fungdo como pardmetro € chama esta fungdo com o
argumento 13723.

Funcoes in-line

Quando fazemos uma chama a uma funcéo, o fluxo do programa é desviado para o endereco da funcio, seus
argumentos s@o colocados na pilha, entre outras coisas. Isto gera um overhead na execucido de um programa.
Para situacOes criticas, ou funcdes bastante pequenas (com uma ou duas instru¢des), C++ nos permite criar
fun¢des in-line. No lugar das chamadas a estas func¢des, o compilador coloca todo o cédigo da funcdo, de
forma que nenhum desvio € necessario. A defini¢do de uma fungio in-line é feita com a palavra-chave inline:

inline int dobro(int num)

{
}

return 2*num;

Desta forma, toda vez que fizermos uma chamada a fun¢ido dobro, o c6digo: 2*num serd colocado em seu
lugar.

Um pouco mais sobre argumentos

21

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

C+ também nos permite utilizar os argumentos de funcdo de forma bastante eficiente. Podemos definir
argumentos padrdo ou um nimero varidvel de argumentos para uma fungdo, como veremos a seguir.

Argumentos padrao

Definindo argumentos padrio para uma funcdo, estamos especificando um valor que serd utilizado caso néo
seja fornecido nenhum valor para o argumento. Para definir um argumento padrdo para uma funcdo,
utilizamos o igual, =, seguido pelo valor_padrao, na defini¢ao do protétipo da funcio:

int sum(int numl, int num2 = 1);

int sum(int numl, int num2)

{
}

return numl+num2;

result = sum(10);

No c6digo acima, como num2 foi declarado com valor padréo igual a 1, sempre que fizermos uma chamada a
sum sem o segundo argumento, o valor 1 serd utilizado no seu lugar. Portanto, quando definimos um valor
padrdo para um argumento, devemos omitir este argumento para utilizar seu valor padrdo. Isto quer dizer que
os argumentos padrdo devem ser os ultimos argumentos da funcdo, pois, caso isto ndo ocorra, o compilador
serd incapaz de identificar qual dos argumentos estd faltando.

Argumentos variaveis

Além de definir argumentos padrdo, C++ disponibiliza um conjunto de macros para que possamos definir
uma fun¢do com um nimero de argumentos varidvel. Estas macros sio:

va list: obtém a lista de argumentos passados para a fungio

va start(va list list, int num elementos) : inicializa a lista
va arg(va list list, tipo): retorna um argumento da lista

va _end(va list 1list): finaliza o uso da lista de argumentos

Para utilizarmos as macros, devemos incluir o arquivo de cabegalho cstdarg. Abaixo segue um exemplo
que mostra como criar uma fungdo com um nimero de argumentos variavel:

int sum(int...);

int main ()

{
cout “a soma de 1, 2 e 3 é: " << sum(3, 1, 2, 3) << endl;
return 0;

}

int sum(int num elementos ...)

{

int resultado = 0, numero;
va list lista;
va start(lista, num elementos);

for(int i = 0; i < num_elementos; i++)

{

numero = va_arg(lista, int);

22

Capitulo | — Engenharia de Software Estruturada

resultado += numero;

}
va_end(lista);

return resultado;

}

Neste exemplo, a fun¢do sum recebe um argumento obrigatério, que é a quantidade de argumentos varidveis
que estamos passando, seguido de vdrios argumentos. Entdo, utiliza as macros para percorrer a lista de
argumentos e soma-los.

Sobrecarga de funcoes

As vezes, desejamos criar uma fungdo que possa ser chamada com diferentes tipos de argumento. Isto nos
permite personalizar o c6digo e tornd-lo muito mais facil de trabalhar. C++ permite que sobrecarreguemos
fungdes para que estas aceitem argumentos de tipos e nimeros diferentes. Para isto, basta apenas definir as
funcdes tantas vezes quantas forem necessdrias. Note que a assinatura, lista de argumentos da funcio,deve ser
diferente, ou seja: o tipo ou a quantidade (ndo apenas o nome) dos argumentos deve ser diferentes, nas
diferentes versdes de uma funcéo sobrecarregada. Abaixo segue um exemplo de sobrecarga de fungdo:

int sum(int &numl, int num2);
char *sum(char *strl, const char *str2);

int main()
{
int numl= 10, num2 = 15, num3 = 20;
char const *strl = "World!";
char str2[20] = "great ";
char str3[20] = "Hello ";

cout << "--- Funcao sum com inteiros ---" << endl;
cout << "soma total: " << sum(num3, sum(num2, numl)) << endl;
cout << "numl: " << numl << endl;
cout << "num2: " << num2 << endl;
cout << "num3: " << num3 << endl << endl;
cout << "--- Funcao sum com strings ---" << endl;
cout << "Strings: " << sum(str3, sum(str2, strl)) << endl;
cout << "strl: " << strl << endl;
cout << "str2: " << str2 << endl;
cout << "str3: " << str3 << endl;
cin.get();
return 0;
}
int sum(int &numl, int num2)
{
return (numl = numl + num2);
}
char *sum(char *strl, const char *str2)
{
return strcat(strl, str2);
}

23

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

No cédigo acima, a funcdo sum pode ser utilizada da mesma forma com inteiros e strings. Foi utilizado
const char *str2, como segundo argumento, para garantir que este argumento ndo seria modificado no

corpo da funcgio.

24

Capitulo | — Engenharia de Software Estruturada

Secao pratica: definindo nosso projeto

Para fixar nossos conhecimentos, teremos como projeto pratico um jogo em C++. Este jogo ird evoluir a cada
capitulo, sempre utilizando os novos conceitos estudados.

Portanto, desenvolveremos um jogo do tipo Arcanoid, no qual o jogador controla uma barra, localizada em
baixo da tela, e tem como objetivo destruir um conjunto de blocos rebatendo uma bolinha. Este jogo sera
desenvolvido em modo texto, pois estamos focando o ANSI/ISO C++, que é compativel com qualquer
sistema operacional, e a utilizacdo de um ambiente grafico depende do sistema operacional utilizado. Abaixo
segue um modelo da tela do jogo:

—1

Como pritica deste capitulo, iremos projetar o nosso jogo utilizando fun¢des. Iremos criar fungdes para:

* Apagar atela

* Desenhar e apagar um bloco em uma posi¢ao da tela
e Desenhar e apagar a barra em uma posicao da tela

* Desenhar e apagar a bola em uma posic¢ao da tela

* Mover a bola e testar a colisdo com os outros objetos
* Mover a barra de acordo com entrada do teclado

Abaixo seguem as seqii€ncias de caracteres de escape que modificam o estado da tela, se enviadas para cout
(ESC significa o caractere de escape, cujo codigo ascii € 27):

Fungdo Seqiiéncia de caracteres
Norma'l ESC[Om
Bold ESC[1Im
Blink (piscando) ESC[5m
(cores do texto e fundo trocadas) ESC[7m
Mover para a posicao 0,0 ESC[T
Mover para a posicao X,y ESC[f ESC[yB ESC[xC
Apagar a tela ESC[f ESC[2J
Mudar a cor para atr,fg,bg (atr=0(normal) ou ESC[atr; £g; bgnm
atr=1 (highlight), fg=texto, bg=fundo)

Note que atr e fg definem a cor do texto enquanto bg define a cor de fundo. Os valores que atr, fg e bg
podem assumir sao:

25

Do C ao C++: uma abordagem da Engenharia de Software

Tiago Barros

Cor Valor de atr | Valor de fg | Valor de bg
Preto 0 30 40
Vermelho 0 31 41
Verde 0 32 42
Marrom 0 33 43
Azul 0 34 44
Magenta 0 35 45
Ciano 0 36 46
Cinza-claro 0 37 47
Cinza-escuro 1 30 -
Vermelho-claro | 1 31 -
Verde-claro 1 32 -
Amarelo 1 33 -
Azul-claro 1 34 -
Magenta-claro | 1 35 -
Ciano-claro 1 36 -
Branco 1 37 -

Agora ja temos como manipular a saida de caracteres na tela. Vocé€ deve utilizar o arquivo screen.h que
contém as defini¢cdes mencionadas acima e criar a primeira versao do nosso jogo, que implemente as func¢des
necessdrias vistas anteriormente.

26

Capitulo II

Engenharia de Software Baseada em
Objetos

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Engenharia de software baseada em
objetos

Modularidade, coesao e acoplamento

Com o crescimento da complexidade dos programas, tornou-se de grande valia a decomposi¢do dos mesmos
em unidades menores. A decomposicio de um programa em modulos permite diminuir o tempo de
programacao ao se programar os modulos em paralelo, divide o problema a ser resolvido em partes menores e
mais ficeis de serem implementadas e permite compilar e testar estas partes separadamente. Mas a
modularizacdo ndo traz s6 vantagens. Uma modulariza¢cdo mal feita pode acarretar em problemas com
reusabilidade, extensibilidade, compatibilidade, etc. Os fatores que influenciam na modulariza¢do sdo: a
coesdo, interdependéncia das funcdes e estruturas internas de um moédulo; e o acoplamento, nivel de
dependéncia entre os mdédulos. Portanto, para modularizar um programa corretamente, devemos:

* Maximizar a coesdo: as funcdes e estruturas de dados que implementam uma funcionalidade (ou
conjunto de funcionalidades relacionadas) do programa devem estar no mesmo médulo.

e Minimizar o acoplamento: os mddulos devem funcionar os mais independentes possiveis dos outros
modulos, para que ao modificarmos um mdédulo ndo seja necessario modificar os demais.

A modulariza¢do também deve seguir dois principios: information hidding’ e reusabilidade, que veremos a
seguir.

Information Hidding

Para garantir um fraco acoplamento entre os moédulos, devemos fazer com que um médulo “conhega”
somente o necessario sobre o funcionamento interno dos médulos que ele utiliza. Portanto, devemos definir
uma interface para comunicagdo entre os médulos, de forma que ndo seja visivel a sua estrutura interna,
apenas a sua interface.

Entdo, depois de definidos os conceitos basicos da engenharia de software baseada em objetos, podemos
formular uma definicdo de médulo mais concreta e que serd usada de agora em diante:

“Um médulo possui uma série de operacbes (funcdes) e um estado
(varidveis), que guarda o efeito das operacdes. Possui também uma
interface: conjunto de dados e operacbdes que estdo disponiveis aos
outros médulos; e uma implementacdo: definicdo das estruturas de
dados e do corpo das funcdes. Esta definicdo de médulo é o que
chamamos de estrutura de dados abstrata.”

Suporte a modularidade em C++

C++ permite a divisdo de nossos programas em diversos arquivos, de forma a podermos ter arquivos para
cada moédulo de nosso programa. As interfaces dos médulos sdo definidas em arquivos com extensdo .h
(arquivos de cabecalho de C++) enquanto a implementago estd nos arquivos com extensdo .cpp. Quando um
médulo necessitar utilizar outro, deve incluir o arquivo de cabecalho correspondente e a interface do médulo
a ser utilizado ficard disponivel.

Definindo interfaces

? Information hidding é um conceito de engenharia de software que consiste em encapsular os dados de um
mddulo de forma que estes s6 sejam acessiveis através da interface do médulo.

28

Capitulo Il — Engenharia de Software Baseada em Objetos

As interfaces dos médulos sdo criadas em arquivos .h. C++ permite a criagdo de espagos de nomes separados
para cada médulo, para que ndo se corra o risco de existir conflito entre nomes de dados ou fun¢des iguais em
modulos diferentes. Isto € feito utilizando-se a palavra-chave namespace.

Como vimos anteriormente, podemos utilizar as palavras-chave extern e static para definir a ligacdo (externa
ou interna) dos dados. Veremos estes conceitos na pratica na préxima secao.

Organizacao dos arquivos

Abaixo segue um modelo bésico dos arquivos de um mdédulo chamado modulol, com explicagdes sobre suas
partes:

[== m oo
/* Arquivo modulol.h */

#ifndef MODULO1 H // verifica se o arquivo ja foi chamado
#define MODULO1 H // anteriormente para que ndo haja redefinicao

// do mddulo

namespace modulol // indica que as definicbes abaixo pertencem ao
{ // espaco de nomes do modulol

// definicdo das funcles e estruturas de dados da interface
// do médulo

extern void printResults();
extern int funcaol(int numl, int num2);
extern char *stril;

}
#endif /* fim de modulol.h */

[== e e e e oo
/* Arquivo modulol.cpp */

#include “modulol.h” // inclui a interface do modulo 1

namespace modulol // indica que as definicbes abaixo pertencem
{ // ao modulol

// definicoes privadas
static int funcaol(int numl, int num2);
static char *strl = "Modulo 1 - variavel privada";

// variavel publica
char *str2 = "Modulo 1 - variavel publica";

// funcoes publicas
int funcao2(int numl, int num2)

{
return numl*num2;
}
void printResults()
{

cout <<"Usando funcaol do modulo 1: "<<funcaol(1l, 2)<<endl;

29

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

cout <<"Imprimindo strl do modulo 1l: "<< strl << endl;

}

// funcao privada
static int funcaol(int numl, int num2)

{

}
} /* fim do arquivo modulol.cpp */

J /e e e e

return numl+num2;

Tipos abstratos de dados

Neste capitulo, aprendemos conceitos importantes da Engenharia de Software baseada em objetos. A
modularizacdo de um programa traz diversas vantagens, pois permite a divisdo de tarefas, torna mais fécil a
implementacdo e permite testes mais especificos. Mas o que fazer se necessitarmos de mais de uma instincia
de um modulo? Uma solug@o seria copiar e colar os médulos em arquivos diferentes, tantas vezes quantas
forem necessdrias, mas isto vai de encontro aos principios da extensibilidade e reusabilidade. No capitulo
anterior, vimos como criar tipos de dados compostos, estruturas e unides. Como uma estrutura ¢ um novo tipo
de dado, podemos ter vérias instancias de uma estrutura. A combinacio da divisdo do programa em mdédulos
com a representacdo dos dados do mddulo através de estruturas é o que chamamos de Tipos de Dados
Abstratos (ADT — Abstract Data Type).

Além das regras a serem seguidas para constru¢do de médulos e estruturas, a construcdo de um ADT deve

levar em conta as seguintes funcionalidades:

* Construgdo: deve ser possivel alocar e inicializar novas instancias do ADT.

* Atribuicdo: devemos poder copiar os dados de uma instincia para outra.

* Comparagdo: deve ser possivel comparar duas instancias de um ADT (atencdo as diferencas entre
identidade e igualdade)

* Manipulagio dos dados: devemos poder manipular os dados de um ADT sem se preocupar com a
forma de armazenamento interno, de forma a encapsular o ADT.

* Destruicdo: devemos ter a possibilidade de liberar a memdria alocada por um ADT, quando nio
formos mais utilizé-lo.

Ao definirmos um ADT tendo em mente estas responsabilidades estaremos implicitamente aplicando todos os
conceitos de engenharia de software que aprendemos até agora.

Suporte a reusabilidade: Modelos de funcao

Como vimos, C++ € uma linguagem fortemente tipada, o que nos impede de, ao definirmos uma fun¢do que
manipula inteiros, utiliza-la com nimeros de ponto flutuante, por exemplo. Se desejarmos uma funcdo que
tenha o mesmo comportamento (as mesmas instru¢cdes) para ambos os casos, podemos sobrecarregar esta
funcdo, mas isto feriria o conceito de reusabilidade de cddigo, pois terfamos cédigos idénticos replicados.
Mas o C++ oferece uma alternativa para isto: podemos criar modelos de fungfo, que independam do tipo de
dados, e utilizar este modelo para ambos os tipos. Para criar modelos de fungdo (function templates),
utilizaremos as palavras template e typename:

template <typename T>
void add(T &num);

int main()

{

int numl = 10;

30

Capitulo Il — Engenharia de Software Baseada em Objetos

float num2 = 12.34;
double num3 = 56.7890;

add (numl);
add (num2) ;
add (num3) ;
cout << “numl: "
cout << “num2:
cout << “num3:

<< numl << endl;
<< num2 << endl;
<< num3 << endl;

n

n

cin.get();

return 0;

}

template <typename T>
void add(T &num)
{

}

num++;

Como podemos perceber, o compilador se encarregou de “gerar” a funcdo para cada tipo dedado. Mas o que
ocorreria se utilizdssemos um tipo para o qual a fun¢do ndo é adequada? A fun¢do add funciona muito bem
para tipos numéricos, mas ndo seria adequada para strings por exemplo. Podemos, entdo definir uma fungéo
add para o tipo string que exiba uma mensagem de erro, informando que add nio é adequada para strings. Isto
é feito criando especializacdes da fungdo template. Para criar uma especializacdo para um determinado tipo,
utilizamos template<>, e declaramos a fun¢do com o tipo desejado:

template <>
void add (char *str)

{
}

n

cout << “Ndo é possivel adicionar um a string << str << endl;

31

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Secao pratica: estruturando o nosso
projeto em modulos

Continuando com o projeto do nosso jogo, iremos dividir o nosso projeto em mddulos buscando torné-los o
mais independente possivel uns dos outros. Os médulos podem ser divididos da seguinte forma:

screen.cpp — responsdvel pelas rotinas de desenho e manipulacdo de imagens na tela.

game.cpp — responsdvel pelo controle principal do jogo, pontuacdo e entrada do teclado.
sprites.cpp — responsavel pelo controle e movimentagdo dos elementos do jogo (blocos, bola e barra).
noid.cpp — Possui a funcdo main e possiveis fun¢des auxiliares.

Devemos definir as interfaces de cada mddulo antes de comegar a implementd-los. Faga diagramas
representando as relacdes entre os médulos para ajudd-lo. Os médulos devem ser implementados seguindo os
principios de um ADT.

32

Capitulo I

Engenharia de Software Baseada em
Classes

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Engenharia de Software Baseada em
Classes

No capitulo anterior, vimos como criar tipos abstratos de dados. O processo de dividir um problema em partes
facilmente manipuldveis é chamado de abstracdo. O C++ fornece um suporte a construg¢do de tipos abstratos,
com a utilizagdo de estruturas, e funcdes que as manipulem. Embora seja funcional, esta abordagem ndo esta
completamente de acordo com os conceitos de encapsulamento e modularidade. Para resolver estes problemas
foi introduzido em C++ o conceito de classe. Uma classe ¢ um molde a partir do qual pode-se criar tipos
abstratos, ou, como chamamos, objetos. Neste capitulo veremos como definir classes e vdrias peculiaridades
destas entidades em C++.

Classes em C++

Vamos iniciar o nosso aprendizado partindo de uma estrutura. Da mesma forma que adicionamos varidveis,
podemos adicionar fun¢des a uma estrutura:

struct TBall
{

int x, y;
TColor color;
int radius;

void move(int x step, int y step)
{

X += X _step;

y += y step;

Y

Portanto, a estrutura TBall agora possui uma fun¢do-membro. Isto significa que a funcio pertence a estrutura
e s6 pode ser chamada a partir dela. Também podemos observar que os membros da estrutura sdo visiveis
dentro da fun¢do-membro. Para transformar esta estrutura em uma classe, as Unicas coisas que devemos fazer
sdo: substituir struct por class e adicionar a palavra-chave public: para indicar que podemos acessar
os membros da classe:

class TBall

public:
int x, y;
TColor color;
int radius;

void move(int x step, int y step)

{
X += X _step;
y += y step;

};

Com estes exemplos podemos perceber uma das diferengas entre classes e estruturas: nas estruturas, todos os
membros sdo publicos, enquanto nas classes podemos determinar a visibilidade dos membros através dos
seguintes modificadores:

34

Capitulo Il — Engenharia de Software Baseada em Classes

+ public: torna os membros da classe visiveis fora da classe

» protected: os membros da classe s6 sdo visiveis dentro da prépria classe e nas classes derivadas
(veremos como criar classes derivadas, ou subclasses, no proximo capitulo).

e private: os membros da classe s6 sdo visiveis dentro da propria classe.

Portanto, uma vez visto como definir uma classe, eis um exemplo da classe TBall com todos os requisitos
de um ADT:

class TBall
{

private: // os atributos da classe sdo todos privados
// lembre-se do conceito de information hidding
int x, y;
TColor color;
int radius;

public: // Todos os métodos de manipulacdo de atributos, os
// construtores e o destrutor devem ser publicos.

// Construtores da classe TBall, servem para alocar meméria
// e inicializar os objetos da classe.

// 0s construtores sdo métodos que devem possuir o mesmo

// nome da classe e sdo chamados sempre que um novo

// objeto da classe é criado. Abaixo temos dois construtores
// para a classe:

// Construtor 1: ndo possui pardmetros, inicializando os
// atributos com valores padréo.

TBall ()
{
X = 0;
y =06;
color = clBlack;
radius = 1;
}

// Construtor 2: permite que os atributos sejam inicializados
// com os valores desejados.
TBall (int x1, int yl1l, TColor c, int r)

{
X = x1;
y =vyl;
color = c;
radius = r;
}
// Destrutor da classe TBall. Deve possuir o mesmo nome da
// classe precedido de um ~. E chamado toda vez que um

// objeto é destruido (com o operador delete).

// No seu corpo geralmente existem instrucbes para desalocar as
// variaveis criadas dinamicamente. Como ndo existem atributos

// desta forma, o corpo do destrutor estd vazio e sua

// declaracdo poderia ser omitida. Foi exibida aqui a titulo de
// exemplo de destrutor.

~TBall{}

// Além dos construtores e do destrutor, devemos fornecer

35

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

// métodos publicos para manipular os atributos da classe.
void move(int x step, int y step)

{
X += X_step;
y +=y step;
}
int getX()
{
return Xx;
}
int getY()
{
return y;
}
TColor getColor()
{
return color;
}
int getRadius()
{
return radius;
}
void setColor(TColor c)
{
color = c;
}
void setRadius(int r)
{
radius = r;
}

};

Portanto, af estd a nossa primeira classe, seguindo todos os requisitos da engenharia de software. E importante
salientar que uma classe pode conter tantos construtores quantos forem necessarios, mas deve possuir um
tnico destrutor. Como o destrutor € chamado pela estrutura interna do programa, quando um objeto sai do
escopo ou quando utilizamos o operador delete, um destrutor ndo possui pardmetros.

Classes: organizacao em arquivos

Apesar de poder criar classes da forma como criamos anteriormente, C++ nos dd a possibilidade de
separarmos a declaragdo da classe (arquivos .h) de sua implementacéo (arquivos .cpp). Desta forma, podemos
utilizar a classe em diversos outros arquivos, bastando para isto incluir o arquivo de cabegalho que contém a
definicdo da classe. Na realidade, esta € a forma correta de implementagdo, pois ao definirmos uma classe
com o corpo dos métodos na declara¢do, o compilador trata isto como se fosse uma declaragdo implicita de
métodos in-line, o que ndo € desejado para todos os métodos. Abaixo segue um exemplo resumido de como
dividir uma classe em arquivos de cabecalho e implementagdo:

/* Arquivo TBall.h */

36

Capitulo Il — Engenharia de Software Baseada em Classes

#ifndef TBALL H
#define TBALL H
class TBall

{
private:
int x, y;
TColor color;
int radius;
public:
void move(int x step, int y step); // declaragao dos métodos
b
#endif

/* fim de TBall.h */

/*Arquivo TBall.cpp*/

void TBall::move(int x step, int y step) // corpo do método
{

X += X_step;
y += y step;

/* fim de TBall.cpp*/

Como uma classe define um escopo, a implementag¢do dos métodos de uma classe deve vir precedida do nome
da classe seguido pelo operador de escopo : :.

Modificadores de métodos

Além da forma normal de declarar métodos, C++ oferece um conjunto de modificadores de métodos (alguns
j& vistos com fung¢des) que alteram a forma como estes sao utilizados.

Métodos in-line

Como vimos anteriormente, os métodos cuja implementacdo estd dentro da definicdo da classe sdo, por
padrdo, in-line. Uma outra forma de criar métodos in-line € utilizando a palavra clave inline, como veremos a
seguir:

inline void TBall::setColor(TColor c)

{
}

color = c;

A declara¢do do método na defini¢cdo da classe continua sendo feita da mesma forma.

Métodos constantes

37

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Se declararmos um objeto de uma classe como constante, com o uso de const, s6 poderemos chamar os
métodos do objeto que forem constantes também, ou seja, um método ser chamado constante significa que o
método ndo alterard os atributos do objeto. Os métodos constantes também sdo declarados com a palavra-
chave const colocada apds a lista de argumentos do método:

TColor TBall::getColor() const
{

}

return color;

Como criar membros estaticos

Como vimos anteriormente, podemos declarar varidveis externas como estdticas para tornar sua ligacdo
interna e declarar varidveis automdticas como estdticas para mudar a sua classe de armazenamento para
estatica. Em uma classe podemos utilizar o modificador static de duas formas:

* Usando static com um atributo, tornamos este atributo compartilhado com todos os objetos da classe,
ou seja, todos os objetos da classe compartilham a mesma posi¢cdo de memdria para este atributo.

* Usando static com um método, este se torna método da classe, e ndo do objeto, de forma que ndo
precisamos instanciar um objeto da classe para chamar o método. Como os métodos estiticos nao
fazem parte de nenhum objeto de memoria, eles s6 podem acessar os atributos estiticos da classe.
Para chamar um método estatico, procedemos da seguinte forma:

class TBall

{
public:
static string getInfo();
}
static string TBall::getInfo()
{
return “This is a ball”;
}
int main ()
{
cout << TBall::getInfo() << endl;
return 0;
}

O ponteiro this

Toda classe em C++ possui um ponteiro especial chamado this, que aponta para a instancia atual do objeto.
Por exemplo, se criarmos um método que necessite retornar o préprio objeto, podemos utilizar this para isto.
Ex:

class TBall

TBall & compare(const TBall &ball);

38

Capitulo Il — Engenharia de Software Baseada em Classes

}
TBall & TBall::compare(const TBall &ball)
{
if (radius >= ball.radius)
return *this;
else
return ball;
}
int main ()
{
TBall balll(10, 20, clWhite, 30);
TBall ball2(30, 100, clBlack, 10);
cout << “A bola maior é a ” <<
balll.compare(ball2).getColor.getName() << endl;
return 0;
}

A saida do programa sera:

7

A bola maior é a branca

Podemos perceber, neste exemplo, que passamos e retornamos o objeto TBall por referéncia. Por que isto é
feito? Vocé deve lembrar que o C++, ao passar um estrutura para uma funcdo, passa-a por valor, fazendo uma
cOpia da estrutura na drea de armazenamento automditico. Com objetos acontece o mesmo. Para evitar este
overhead da cOpia, os pardmetros sdo passados por referéncia, e, quando nao serdo alterados dentro do
método, sdo passados como referéncia constante.

Sobrecarga de métodos e construtores

Do mesmo modo que sobrecarregamos fungdes, C++ nos permite sobrecarregar métodos e construtores. Para
isto, redefinimos o método ou construtor com uma assinatura (lista de argumentos) diferente. Entdo o
compilador se encarrega de verificar qual das formas sobrecarregadas do método ou construtor sera utilizada,
com base na sua lista de argumentos.

Construtores de cdépia

Os objetos, como as estruturas, sdo passados de e para fun¢des/métodos por valor. Isto que dizer que, ao
retornarmos um objeto, por exemplo, uma cépia do objeto € passada em seu lugar. Isto também ocorre quando
fazemos uma atribui¢do, com o operador igual, = (veremos como corrigir este problema com a sobrecarga do
operador igual, =, mais a frente, neste capitulo). Entdo o que acontece se o objeto tiver membros que so
ponteiros? Exatamente! Apesar do ponteiro ser copiado, ele continua apontando para a mesma posicdo de
memoria que o ponteiro do objeto antigo. Portanto, o objeto antigo e o novo terdo uma mesma 4area de
memoria compartilhada.

Para resolver este problema, C++ oferece os construtores de cépia. Na realidade, toda classe possui um
construtor de cépia padrdo, que simplesmente copia os valores dos membros de um objeto para o outro.
Quando definimos uma classe que tem membros que sdo ponteiros, devemos criar 0 nosso proprio construtor
de copia. Para isto, basta criarmos um construtor que receba uma referéncia constante para um objeto da
mesma classe. Neste construtor, podemos reinicializar quaisquer ponteiros ou outros dados, conforme a
necessidade, para criarmos a nova cépia do objeto. Vejamos um exemplo:

39

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

class TPlayer

{
private:
char *name;
int score;
public:
TPlayer(char *str, int scr);
Tplayer(const TPlayer & player);
b
TPlayer::TPlayer(char *str, int scr)
{
name = new char[strlen(str)+1];
strcpy(name, str);
score = scr;
}
TPlayer::TPlayer(const TPlayer & player)
{
name = new char[strlen(player.name)+1];
strcpy(name, player.name);
score = player.score;
}

Usar construtores de cépia deve se tornar um hébito daqui para frente, principalmente se tivermos objetos que
armazenem ponteiros.

Funcoes, métodos e classes friend
Criando funcoes friend

Funcgdes friend (“amiga”) é uma classe especial de fun¢des que tem acesso a todos os membros (publicos,
protegidos e privados) de uma classe. Isto é bastante 1til quando temos varias classes e ndo queremos criar
um mesmo método utilitdrio para cada classe. Em vez disso, declaramos uma fun¢@o como friend de todas as
classes. Exemplo:

class TPlayer
{

private:
char *name;
int score;
public:
friend void display(const Tplayer & player);

};

void display(const TPlayer & player)
{

40

Capitulo Il — Engenharia de Software Baseada em Classes

n

cout << “Nome:
cout << “Score:

<< player.name << endl;
<< player.score << endl;

n

}

Devemos utilizar as fungdes friend com bastante cuidado, pois seu uso indevido pode causar um furo no
conceito de informtion hidding. Nas proximas se¢des veremos mais alguns motivos para criarmos funcoes
friend.

Além de poder criar fungdes friend, podemos criar métodos e classes friend. Veremos isto nas secdes a seguir.
Criando métodos friend

A criag@o de um método friend é andloga a de uma fung¢@o friend, a Unica diferenca é que estamos utilizando
um método e ndo uma fungdo (claro!). Vejamos um exemplo:

class TPlayer;

class TScreen

{
public:
void display(const TPlayer & player);
b
class TPlayer
{
private:
char *name;
int score;
public:
friend void TScreen::display(const TPlayer & player);
b
void TScreen::display(const TPlayer & player)
{
cout << “Nome: " << player.name << endl;
cout << “Score: " << player.score << endl;
}

Note que tivemos que declarar a classe TPlayer (veja a primeira linha do exemplo) antes de utilizd-la no
método display de TScreen. Ndo podiamos simplesmente ter colocado a classe TP1layer antes pois ela
declara o método display de TScreen como friend, e o compilador “reclamaria” que ainda ndo “viu” a
classe TScreen.

Criando classes friend

Ao declarar uma classe como friend de outra classe, a primeira tem acesso a todos os membros da segunda
(como j4 era de se esperar). Portanto, todos os seus métodos tornam-se friend da segunda classe. Exemplo:

class TPlayer
{

private:
char *name;
int score;

41

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

friend class TScreen;

b
class TScreen
{
public:
void display(const TPlayer & player);
b
void TScreen::display(const TPlayer & player)
{
cout << “Nome: " << player.name << endl;
cout << “Score: " << player.score << endl;
}

Conversoes entre objetos

Além de conversdes entre tipos bdsicos, C++ nos permite definir conversdes entre os nossos objetos,
tornando-os o mais parecidos possivel com os tipos basicos da linguagem.

Conversoes para objetos

Para converter um tipo de dados para um objeto, devemos criar um construtor de conversao. Este construtor
recebe como argumento o tipo de dados e cria um novo objeto, atribuindo este tipo ao membro
correspondente do objeto criado. Por exemplo, se quiséssemos atribuir um inteiro a um objeto do tipo TBall
e este inteiro representasse o raio da bola, deveriamos criar um construtor da seguinte forma:

TBall::TBall(int r)

{
X = 0;
y=20;
radius = r;
color = clBlack;
}

Entdo, o c6digo abaixo funcionaria corretamente:

TBall balll;
balll = 10;

Conversao a partir de objetos

Para converter um objeto para um tipo de dado, utilizamos métodos especiais. Por exemplo, para converter
um TBall para um int (que representaria o raio da bola), declaramos um método de nome:

operator int();
Eis um exemplo:

class TBall
{

42

Capitulo Il — Engenharia de Software Baseada em Classes

private:
int x, y;
TColor color;
int radius;

public:
operator int() const;

b
TBall::operator int() const
{
return radius;
}

Assim, o cédigo abaixo também funcionara corretamente:

TBall balll(10, 20, clBlack, 30);
int raio;
raio = balll;

Sobrecarga de operadores

Um dos recursos mais interessantes e potentes de C++ (e uma das diferencas entre C++ e outras linguagens
POO como Java, por exemplo) é a possibilidade de sobrecarregar operadores para manipular os objetos das
classes que criamos. Ao fazer sobrecarga de operadores, devemos seguir as seguintes restri¢des:

* ndo podemos sobrecarregar os operadores: sizeof, ., ::, .*, ?:, type_id, const_cast, dynamic_cast,
reinterpret_cast e static_cast;

* os operadores sobrecarregados devem ser usados com pelo menos um operando do tipo
sobrecarregado;

* ndo € possivel criar operadores completamente novos nem mudar um operador de bindrio para undrio
e vice-versa.

Apesar disto, podemos sobrecarregar todos os demais operadores, inclusive new, delete, [], +=, << e >>.

A sobrecarga de operadores é semelhante a sobrecarga de métodos, a diferenga € que utilizamos a palavra-
chave operator para indicar que estamos sobrecarregando um operador. Nas sec¢des seguintes, veremos
algumas peculiaridades da sobrecarga de operadores que necessitam de uma atencio a mais.

Sobrecarregando operadores unarios, como ++ e --
Para sobrecarregar um operador undrio, devemos criar um método na classe com a seguinte sintaxe:

tipo operatorop()

{
}

Onde tipo, € o tipo de retorno do operador, que neste caso € o nome da classe e op é o operador em si, como +
+ou --.

Portanto, para sobrecarregar o operador ++ da classe TBall que incrementa o raio da bola, procedemos da
seguinte forma:

43

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

class TBall

{
private:
int x, y;
TColor color;
int radius;
public:
TBall & operator++();
+;
TBall & TBall::operator++()
{
radius++;
return (*this);
}

Devemos observar que este codigo s6 sobrecarrega o operador ++ pré-fixado. Para sobrecarregar o operador
pos-fixado, utilizamos:

TBall operator++(int);
Onde o argumento int diferencia os operadores.
Sobrecarregando operadores binarios, como + e -
Para sobrecarregar operadores bindrios, devemos passar como argumento do operador um objeto do tipo do
segundo operando (isto permite que utilizemos este operador com objetos de tipos diferentes, por exemplo). A

sintaxe é:

class TBall

{
private:
int x, y;
TColor color;
int radius;
public:
TBall(const TBall &ball);
TBall operator+(const TBall &ball);
b
TBall TBall: :operator+(const TBall &ball)
{

TBall retBall(0, 0, clBlack, 0);
retBall.x = balll.x + ball2.x;
retBall.y = balll.y + ball2.y;

44

Capitulo Il — Engenharia de Software Baseada em Classes

retBall.radius = radius + ball.radius;
return retBall;

}

Note que criamos um novo objeto dentro do corpo do operador e retornamos este objeto (na realidade uma
cOpia deste objeto).

Mas o que aconteceria se desejdssemos fazer coisas do tipo: ball = ball + 2ouball = 2 + ball?
Como na segunda expressdo, o operando ndo é um objeto, devemos definir uma funcéo friend que receba
ambos os operandos. Vejamos um exemplo:

class TBall
{

private:
int x, y;
TColor color;
int radius;

public:
TBall(int x1, int yl1, TColor c, int r);
TBall(int r);
friend TBall operator+(const TBall &balll, const TBall &ball2);

}

TBall::TBall(int r)
{
X = 0;
y =0;
radius = r;
color = clBlack;

}

TBall operator+(const TBall &balll, const TBall &ball2)
{
TBall retBall(®, 0, clBlack, 0);
retBall.x = balll.x + ball2.x;
retBall.y = balll.y + ball2.y;
retBall.radius = balll.radius + ball2.radius;
return retBall;

}

Devemos notar que criamos um construtor de conversdo de int para TBall, de modo esta solugdo atende a
todas as expressdes vistas anteriormente. Este ¢ um dos principais motivos do uso de funcdes friend.

Sobrecarregando os operadores >> e <<

C++ permite sobrecarregar os operadores de inser¢do e extracdo de fluxo: >> e <<. Para sobrecarregar estes
operadores, devemos passar como parametro e retornar o fluxo correspondente (ostream ou istream), para
que estes operadores possam ser encadeados. E padrio tornar estes operadores friend da classe para o qual
estd sendo sobrecarregado. Vejamos a sintaxe da sobrecarga deste operador:

friend ostream & operator<<(ostream &stream, const tipo classe &c);
friend istream & operator>>(istream &stream, const tipo classe &c);

45

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Sobrecarregando o operador []

O operador [], de indice de array, também pode ser sobrecarregado. Isto nos permite utilizar indices de array
com os objetos para retornar dados do armazenamento interno do objeto. Para sobrecarregar este operador
devemos criar um método da seguinte forma:

tipo operator[](int index);
O indice do operador € passado para o método pelo seu argumento inteiro, no nosso caso index.
Sobrecarregando o operador =

A sobrecarga do operador de atribui¢cdo, =, tem a mesma importancia e uso da criacdo de construtores de
copia. Caso este operador ndo seja sobrecarregado, o compilador utiliza o operador padrdo, que simplesmente
copia o objeto membro a membro, causando os mesmos problemas com membros ponteiro que vimos
anteriormente. Para sobrecarregar este operador, criamos um método na classe com a seguinte sintaxe:

tipo da classe & operator=(const tipo da classe & objeto);
Note que se passarmos o argumento por referéncia, devemos retornar o objeto por referéncia para que
possamos encadear o operador sucessivamente.

Modelos de classes

O C++ permite criar modelos de classes (class templates) da mesma forma que criamos modelos de fungao,
para dar uma maior generalizacdo ao nosso c6digo. Estes modelos nos permitem usar um mesmo algoritmo
para vérios tipos de dados, evitando reescrever uma classe para cada tipo. Para criar modelos de classes,
procedemos de forma andloga a criacdo de modelos de fung¢ao:

template <lista de paréametros>
class nome da classe

{

};
Abaixo veremos a classe TStack, uma pilha genérica.

template <typename T>
class TStack
{

private:

T element;

TStack *next;

public:

TStack();

TStack(const T &e);

TStack(const TStack &stack);

~TStack();

TStack & operator=(const TStack &stack);

46

Capitulo Il — Engenharia de Software Baseada em Classes

bool isEmpty()
void push(T &e
T pop();

);
};

template <typename T> TStack<T>
{

}

next = NULL;

template <typename T> TStack<T>
{

element = e;

next = NULL;

}

template <typename T> TStack<T>
{

element stack.element;

if (stack.next !'= NULL)
next new TStack(stack

else

next

new TStack();
}

template <typename T> TStack<T>
{

1 TStack()

::TStack(const T &e)

::TStack(const TStack &stack)

.hext);

1:~TStack()

template <typename T> T& TStack<T>::operator=(const TStack &stack)

if (next !'= NULL)
delete next;
}
{
element = stack.element;
if (stack.next != NULL)
next = new TStack(stack
else
next = new TStack();
return *this;
}
template <typename T> bool TStack<T>
{
bool ret = false;
if (next == NULL)
ret = true;
return ret;
}

template <typename T> void TStack<T>

{

.next);

::isEmpty ()

::push(const T &e)

47

Do C ao C++: uma abordagem da Engenharia de Software

Tiago Barros

}

template <typename T> T TStack<T>::pop()

{

}

if (next != NULL)

{
next->push(e);
}
else
{
element = e;
next = new TStack();
}

T e;
if (next !'= NULL)
{
if (next->next != NULL)
e = next->pop();
else
{
e = next->element;
delete next;
}
}
else
{
e = NULL;
}
return e;

Devemos notar os seguintes aspectos nesta implementacdo: por utilizar membros ponteiros, a classe deve ter
um construtor de cépia, um destrutor (para liberar a memoria alocada para o ponteiro) e o operador de

atribui¢do sobrecarregado (para garantir a copia do objeto na atribui¢@o).

Além da palavra-chave typename, pode ser vista a declaracdo de uma classe remplate utilizando a palavra-
chave class em seu lugar. Esta forma de implementacdo, no entanto, estd em desuso, pois typename ¢ muito
mais genérico do que class.
Os modelos de classe também permitem mais de um tipo de dados como parametro do modelo. O seguinte

c6digo mostra como definir um modelo de classe dependente de dois tipos de dados:

Template <typename T1, typename T2>

Class nome da classe

{

b

Note que os outros parimetros podem ser tipos de dados genéricos (declarados com typename) como
também tipos especificos (char ou int, por exemplo).

48

Capitulo Il — Engenharia de Software Baseada em Classes

Secao pratica: Criando classes para o jogo

Agora que aprendemos a definir classes em C++, iremos modificar o nosso jogo para que seja baseado em
classes. As classes sugeridas para o nosso jogo sio:

TScreen - representando a tela do jogo.

TBall, TBlock e TBar - representando os sprites do jogo. Estas classes devem prover comunicagdo
com TScreen, como métodos para serem dsenhados, etc.

TGame - classe para controlar a dindmica do jogo. Se desejado, pode conter niveis.

TPlayer - possui métodos para intera¢do com o jogador e guarda as suas informacdes.

Devemos também criar um arquivo que contém a funcdo main e todos os objetos necessdrios para o
funcionamento do jogo. As classes acima sdo apenas sugestdes, e € importante perceber que podemos (na
realidade devemos) criar classes auxiliares para representar tipos de dados utilizados pelas classes principais,
por exemplo.

Note que provavelmente serd necessdrio sobrecarregar operadores (podemos sobrecarregar os operadores >> e
<< para conectar a entrada e saida do jogo com os nossos objetos). Nao esqueca também que devemos
implementar as nossas classes com no minimo:

* Construtor padrdo

* Construtor de cépia

* Operador de igualdade sobrecarregado
* Destrutor

49

Capitulo IV

Engenharia de Software Orientada a
Objetos

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Engenharia de Software Orientada a
Objetos

Além de poder definir objetos, C++ nos permite definir objetos a partir de outros objetos. E o conceito de
heranca. Quando uma classe (chamada de subclasse ou classe derivada) “herda” de outra classe (chamada
superclasse ou classe base), a subclasse passa a possuir todos os membros da superclasse, podendo adicionar
membros novos ou redefinir os antigos. Isto possibilita ao programador uma alta reusabilidade de cédigo,
como também permite modelar o sistema de uma forma mais fiel ao que acontece na realidade. Neste
capitulo, veremos como utilizar heranca em C++ e como aproveitar todos os beneficios que isto representa,
desenvolvendo um cédigo realmente orientado a objetos.

Heranca em C++

Vejamos um exemplo de como utilizar heranca em C++. Definiremos uma classe chamada TShape. A partir
desta classe, criaremos TBlock (bloco) e TBall (bola):

class TShape
{

}

class TBlock : public TShape
{

+;

class TBall : public TShape
{

};
Como podemos perceber, para criar uma classe que herda de outra, basta apenas incluir:
: modificador nome_ superclasse

ap6s o nome da subclasse. O modificador serve para especificar como a superclasse serd “vista” dentro da
subclasse. O modificador public indica que os membros ptiblicos da superclasse continuam sendo puiblicos na
subclasse. Analogamente, os modificadores protected e private tornam os membros da superclasse
protegidos ou privados na subclasse.

Overload de construtores, destrutores e métodos

Vimos no capitulo anterior, como sobrepor os métodos de uma classe. Quando criamos uma classe derivada,
também podemos sobrepor os métodos da superclasse, inclusive os construtores e destrutores. Quando a
superclasse ndo tem um construtor definido, ao criarmos um objeto da subclasse, o construtor da superclasse é
chamado automaticamente. Mas quando temos construtores definidos na superclasse, devemos especificar

52

Capitulo IV — Engenharia de Software Orientada a Objetos

quais argumentos serdo passados para esses construtores, quando um objeto da subclasse € criado. Isto € feito
utilizando-se inicializadores:

class TShape

{
protected:
int x;
int y;
char *name;
public:
TShape(int x1, int yl, const char *n);
~TShape() ;
b
class TBlock : public TShape
{
private:
char *pattern;
public:
TBlock(int x1, int yl, const char *pat);
~TBlock();
b
TShape: :TShape(int x1, int yl, const char *n)
{
X = x1;
y =vyl;
name = new char[strlen(n)+1];
strcpy(name, n);
}

TShape: :~TShape()

delete[] name;

}

TBlock::TBlock(int x1, int yl, const char *pat)
:TShape(x1, yl, “block”)
{

pattern = new char[strlen(pat)+1];
strcpy(pattern, pat);
}

TBlock: :~TBlock()

delete[] pattern;
}

Note que utilizamos :TShape(x1l, yl, “block”) para chamar o construtor da superclasse. Os
construtores das superclasses sdo sempre chamados antes dos construtores das subclasses. Com os destrutores
ocorre o inverso: os destrutores das subclasses sdo chamados antes dos das superclasses.

A sobreposi¢do de métodos ocorre de forma semelhante, a diferenca é que, para chamarmos métodos da
superclasse dentro da subclasse utilizamos: nome_superclasse: :metodo(parametros).

Métodos virtuais: dynamic binding

53

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Como ja vimos, € possivel termos ponteiros para objetos de uma classe. O C++ também permite que ponteiros
para uma superclasse apontem para objetos de uma classe derivada, apesar de ndo poder acessar os membros
especificos desta. Este processo, de um ponteiro poder apontar para diversos objetos derivados distintos é
chamado polimorfismo. Entdo vocé deve estar pensando: o que acontece se tivermos um método sobreposto
na subclasse e, com um ponteiro da superclasse apontando para um objeto da subclasse, chamarmos o
método? Esta confuso? Vejamos um exemplo que ilustre isto melhor:

class TShape

{
protected:
int x;
int y;
char *name;
public:
TShape(int x1, int yl, const char *n);
~TShape() ;
void draw();
b
class TBlock : public TShape
{
private:
char *pattern;
public:
TBlock(int x1, int yl, const char *pat);
~TBlock();
void draw();
b
void TShape::draw()
{
cout << “Drawing a shape” << endl;
}
void TBlock::draw()
{
cout << “Drawing a block” << endl;
}
int main()
{
TBlock block(10, 20, “####");
TShape shape(10, 20, “shape”);
TShape *shapePtr;
shapePtr = &shape;
shapePtr->draw();
shapePtr = █
shapePtr->draw();
return 0O;
}

A saida do programa sera:

54

Capitulo IV — Engenharia de Software Orientada a Objetos

Drawing a shape
Drawing a shape

Por que? Bem, o ponteiro shapePtr é do tipo TShape e, apesar de podermos apontar para um objeto do
tipo TBlock (afinal um TBlock € um TShape), ao chamarmos um método através do ponteiro, o
compilador fard uma ligacdo estética (static biding — ligacdo em tempo de compila¢do) da varidvel ponteiro
com o método de sua classe. Isto fard com que o método da classe TShape seja chamado independentemente
de para qual objeto o ponteiro aponte (afinal, em tempo de compilacdo ndo € possivel saber o contetido do
ponteiro).

Entdo, como chamarfamos o método correto? O C++ oferece uma alternativa que permite que a ligagdo do
objeto com o método seja feita dinamicamente (dynamic biding — ligagdo em tempo de execuc¢do). Isto € feito,
declarando o método da superclasse como virtual. Quando declaramos um método desta forma, estamos
“avisando” ao compilador para fazer a ligacdo do objeto com o método em tempo de execucdo, para que o
método do objeto correto seja chamado. Se na declaragdo da classe TShape do exemplo anterior, tivéssemos
a seguinte linha:

virtual void draw();
A saida do programa seria:

Drawing a shape
Drawing a block

Isto quer dizer que shapePtr—->draw () chama TShape: :draw () quando shapePtr aponta para um
objeto do tipo TShape e chama TBlock: :draw () quando shapePtr aponta para um objeto do tipo
TBlock.

Portanto, é padrio para os programadores C++ definir sempre os destrutores de uma classe como virtuais.
Desta forma, estaremos assegurando que o destrutor correto serd chamado quando um objeto de uma classe
derivada for destruido.

Classes abstratas

Uma classe € dita abstrata quando possui um ou mais métodos que ndo foram implementados (chamados
métodos virtuais puros). Isto significa que ndo podemos instanciar um objeto desta classe, mas apenas de
suas classes derivadas, onde estes métodos serdo implementados. Continuemos com nosso exemplo, em que
temos uma classe TShape e uma classe TBlock. Vamos incluir as classes TBall e TBar que herdam de
TShape também. Portanto, no nosso programa, todo shape ou é um bloco, ou uma bola, ou uma barra, e que
qualquer objeto que herde da classe TShape tenha que possuir o método draw () . Entdo devemos declarar o
método draw () de TShape como virtual puro, transformando a classe TShape em classe abstrata e
forcando soas subclasses a implementarem o método. Isto € feito colocando =0 no lugar do corpo do método
(indicando que o método ndo possui implementacao nesta classe) como veremos a seguir:

class TShape

{
public:
Qirtual void draw()=0;
b
class TBlock : public TShape
{

55

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

public:

void draw();

I
void TBlock::draw()
¢ cout << “Drawing a block” << endl;
}
class TBall : public TShape
t public:
void draw();
b
void TBall::draw()
¢ cout << “Drawing a ball” << endl;
}
class TBar : public TShape
t public:
void draw();
I
void TBar::draw()
; cout << “Drawing a bar” << endl;

Como vimos, todas as classes derivadas de TShape deverdo implementar o método draw ().

Heranca multipla
O C++ permite que uma classe herde de vdrias outras, incorporando os membros das duas classes. A heranca
multipla é contestada por alguns programadores, pois isto facilita o conflito entre os membros das classes.

Vejamos como declaramos uma classe com heranga multipla:

class TScreenObjects : public TBall, public TBar, public TBlock
{

};

56

Capitulo IV — Engenharia de Software Orientada a Objetos

Portanto, a classe TScreenObjects possui os membros de todas as classes que ela herda. Mas o que
acontece se chamarmos o método draw (), que existe em todas as superclasses de TScreenObjects?
Neste caso, o compilador geraria um erro, pois ndo saberia de que classe chamar o método. Uma solucio seria
fazer uma heranca privada das superclasses (de forma que seus membros nio ficassem visiveis a partir da
subclasse) e definir métodos para chamar o método draw () de cada superclasse:

class TScreenObjects : private TBall, private TBar, private TBlock

{
public:
drawBall() { TBall::draw(); }
drawBar() { TBar::draw(); }
drawBlock() { TBlock::draw(); }
b

Outro problema que enfrentamos com a heranca multipla é que, quando criamos um objeto da subclasse,
estamos criando um objeto interno de cada superclasse. E se as superclasses herdarem de uma mesma classe-
base? Serfo criados vérios objetos internos da classe-base (note que serdo criados varios objetos internos
idénticos), e quando chamarmos um método desta classe-base, o compilador ndo saberd de qual dos objetos
internos chamar o método. Para resolver isto, as classes devem fazer uma herancga virtual da classe-base, de
forma que um unico objeto da classe base serd criado:

class TBall : public virtual TShape
{

b
class TBar : public virtual TShape
{

b
class TBlock : public virtual TShape
{

b
class TScreenObjects : private TBall, private TBar, private TBlock

{

};
Usar herancga virtual elimina o conflito de usarmos classes-base compartilhadas. Mas e se as superclasses de
TScreenObjects possuirem construtores que passem argumentos distintos para a classe TShape? Como
o programa sé pode criar um objeto compartilhado da classe TShape, o C++ desativa a passagem automaética

de parametros (com inicializadores) das classes intermedidrias para a classe-base virtual e no seu lugar chama
o construtor padrdo desta classe. Vejamos este exemplo:

57

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

TScreenObjects(int x1, int yl, const char *pattern) : TBall(xl, yl,
pattern), TBar(x1l, yl, pattern), TBlock(xl, yl, pattern) {};

Neste exemplo, os construtores das classes TBall, TBar e TBlock ndo terdio permissdo para passar os
argumentos para a classe TShape. Para que este exemplo funcione corretamente, devemos chamar também o
construtor da classe TShape:

TScreenObjects(int x1, int yl, const char *pattern) : TShape(x1,

yl, “screenObject”), TBall(x1l, yl, pattern), TBar(x1l, yl, pattern),

TBlock(x1l, yl, pattern) {};

Assim garantimos a inicializacdo correta dos objetos da classe TScreenObjects.

Excecoes

Excecdes sdo erros de tempo de execucdo, ou seja, ndo sio bugs (erros da légica do programa), mas sim erros
gerados pela manipulacdo de dados inadequados (geralmente fornecidos por usudrios). Vejamos um exemplo

deste tipo de erro:

int main ()

{
int numl, num2;
cout << “Digite dois nUmeros: ” ;
cin >> numl >> num2;
cout << “A divisdo do nilmero " << numl << “pelo nlmero ";
cout << num2 << “é " << (numl/num2) << endl;
return 0;
}

Neste exemplo, apesar da logica estar correta, poderfamos ter um erro de tempo de execucdo (runtime error)

caso o usudrio informasse o valor zero para o segundo niimero.

Para estes tipos de problema é que existem as excecdes. O mecanismo de exce¢des nos permite “tentar”

executar (try) um determinado c6digo, caso o cédigo ndo possa ser executado “langamos” (throw) uma

excecdo que serd “capturada” (catch) e tratada em outra parte do cédigo. Vejamos como isto funciona:
int main ()

{

int numl, num2;

n

cout << “Digite dois numeros: ;
cin >> numl >> num2;

try
{
if (num2 == 0)
{
throw string(“Erro: divisao por zero.”);
}

n n

<< numl << “pelo numero ”;
<< (numl/num2) << endl;

cout << “A divisdo do nuUmero

cout << num2 << “é "

58

Capitulo IV — Engenharia de Software Orientada a Objetos

}
catch(string str)
{
cout << str << endl;
}
return 0;

}

No cédigo acima, a parte “sensivel” (onde pode ocorrer uma excecdo), € colocada dentro de um bloco try.
Caso haja um erro, langcamos uma exce¢do com throw, e o fluxo do programa serd desviado para fora do
bloco try. A partir deste momento, o programa ird procurar um bloco catch que capture uma exce¢do do
mesmo tipo que a lancada (no nosso caso string). Caso ndo encontre, passa o fluxo do programa a
fun¢do/método que chamou o cédigo que lancou a excegdo, subindo pela pilha de chamadas de fungdes (call
stack) até a funcdo main. Se na fun¢do main também nao houver um bloco catch para este tipo de exce¢do, o
programa € encerrado.

Como vocé ja deve ter percebido, podemos lancar uma excecio de qualquer tipo de dado (inclusive classes
especificas para tratamento de excecdes, com cdédigo e mensagens de erro, etc..). O ANSI/ISO C++ define
uma classe de excec¢do padrdo chamada exception. Esta classe possui um método constante chamado
what () que retorna um const char* contendo uma mensagem de erro da excegdo. Portanto, podemos
criar nossas classes de excecdo herdando da classe exception e sobrescrevendo o método what () para
que exiba a mensagem de erro adequada. Vejamos um exemplo:

class TDivideByZeroException : public exception

{
private:
char *msg;
public:
const char *what() const {return msg;}
TDivideByZeroException() {msg = “Erro: divisdo por zero.”;}
b
int main ()
{

int numl, num2;

n

cout << “Digite dois numeros: ;
cin >> numl >> num2;

try
{

if (num2 == 0)

throw TDivideByZeroException();

}

cout << “A divisado do nuUmero

“u L n

n a n

<< numl << “pelo numero ”;

cout << num2 << “é << (numl/num2) << endl;
iatch(exception &e)
{ cout << e.what() << endl;
}
return 0;

59

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

}

Podemos observar que o bloco catch (exception &e){...} captura uma exceg¢do do tipo
exception bem como todas que herdam dela, como TDivideByZeroException.

Mas como tratar excegdes inesperadas? Por padrio, o programa chama a fungdo unexpected quando encontra
uma excecdo que ndo é capturada por nenhum bloco catch. Esta fung@o, por sua vez chama a funcdo
terminate que chama abort. O arquivo de cabecalho exception possui as fungdes set_unexpected e
set_terminate, para definir fungdes de tratamento de excecdes inesperadas. Podemos definir uma
funcdo com set_unexpected e esta funcdo pode levantar uma exce¢do que possa ser capturada por
algum bloco catch ou encerrar o programa, chamando terminate, exit ou abort. Isto é uma forma de
converter uma excecao inesperada para uma exce¢ao que possamos tratar. Podemos também utilizar a fungéo
set_terminate para definir uma fungdo a ser chamada antes que o programa termine de forma anormal.
Exemplo:

void exitFunction()

{
cout << “Antes de terminar, imprimo isto.” << endl;
exit(1);
}
int main ()
{
set terminate(exitFunction);
try
{
throw string(“Erro”);
}
catch(float f){}
return 0O;
}

Neste caso, como a excecdo nao foi capturada, o programa terminou, mas a fun¢do exitFunction () foi
chamada antes.
Podemos também criar blocos catch que capturem literalmente qualquer coisa. Isto € feito da seguinte forma:

catch (...)
{

)

Assim, qualquer excecdo levantada serd capturada por este bloco.

60

Capitulo IV — Engenharia de Software Orientada a Objetos

Secao pratica: Utilizando heranca

Nesta se¢do iremos “incrementar” o nosso jogo utilizando heranca de classes. Podemos criar uma classe
abstrata, TShape que agrupe os atributos comuns as classes TBall, TBlock e TBar. Esta classe também deve
ter o conceito de “desenhdvel”, ou seja, todo objeto que precise ser desenhado na tela, pode herdar de TShape
e a classe TScreen receberd um objeto TShape no método de desenhar objetos na tela:

TScreen

TBlock

Podemos, pensando analogamente, verificar todo o nosso programa em busca de grupos de classes que podem
ser generalizadas, aumentando a reusabilidade do nosso cédigo.

61

Capitulo V

Recursos avancados do C++: RTTl e
STL

Capitulo V — Recursos avancados do C++: RTTl e STL

A RTTI (runtime type information)

Com a introducdo do polimorfismo em tempo de execucdo (um ponteiro pode apontar para elementos do seu
tipo e dos tipos derivados), as vezes torna-se Util saber a que classe pertence o objeto para o qual o ponteiro
estd apontando. Isto é feito com os elementos da RTTI (runtime type information — informagdes de tipo em
tempo de execucdo) de C++. Os componentes da RTTI sao:

* O operador dynamic_cast: faz o cast entre um ponteiro do tipo base para um ponteiro do tipo
derivado (se nao for possivel, retorna NULL).

* O operador typeid: que retorna informagdes sobre o tipo de dados especificado.

* A classe type_info: armazena informagGes sobre os tipos de dados retornadas por typeid.

Note que para utilizar os elementos da RTTI de C++ € necessario incluir o arquivo de cabecgalho typeinfo.

O operador dynamic_cast

Este operador € utilizado quando necessitamos converter um ponteiro de uma classe-base para uma classe
derivada, para poder utilizar os membros da classe derivada. Isto s6 é possivel, se o ponteiro da classe-base
estiver apontando para um objeto da classe derivada. Se ndo for o caso, o operador retorna NULL (ponteiro
nulo). Vejamos um exemplo:

int main()

{
TBall bola;
TShape *shapePtr = &bola;
TBall *ballPtr = NULL;
ballPtr = dynamic_cast <TBall *> (shapePtr);
if (ballPtr != NULL)
{
cout << “cast realizado com suceso!” << endl;
}
else
{
cout << “ndo foi possivel realizar o cast!” << endl;
return 0;
}

Note que um ponteiro do tipo TShape pode apontar tanto para um objeto TShape quanto para objetos das
classes derivadas, como TBall. O que o operador dynamic_cast faz € utilizar as informagdes de tempo de
execucdo de cada tipo para saber se é possivel realizar o cast.

Utilizando o operador typeid e a classe type_info

O operador typeid ¢ utilizado para obter informagdes de um determinado tipo em tempo de execugdo. Ele
retorna um objeto da classe type_info, com as informag¢des do tipo. Os membros da classe type_info variam
de acordo com o compilador (pois os fabricantes estdo sempre querendo “incrementar” as capacidades dos
seus compiladores). O ANSI/ISO C++ determina que esta classe deve ter um construtor, um construtor de
copia, um operador de atribui¢do, um destrutor € um método chamado name (), que retorna o nome do tipo
do objeto. Vejamos um exemplo:

63

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

int main()

{
TBall bola;
TShape *shapePtr = &bola;
TBall *ballPtr = NULL;

if (typeid(*shapePtr) == typeid(TBall))
{

cout << “cast dinamico pode ser realizado!” << endl;
ballPtr = dynamic_cast <TBall *> (shapePtr);
}

else
{
}

cout << “o tipo do objeto apontado por shapePtr é ”;
cout << typeid(*shapePtr).name() << endl;

cout << “cast dinamico ndo pode ser realizado!” << endl;

return 0;

}

Neste caso, comparamos o tipo do objeto apontado por shapePtr com o tipo TBall, para nos
certificarmos que shapePtr aponta para um objeto do tipo TBall, antes de fazer o cast dindmico. No fim

do programa exibimos o nome do tipo do objeto apontado por shapePtr, que é TBall (em alguns
compiladores existe uma variacdo deste nome, e vocé poderia ver 4TBall, por exemplo).

64

Capitulo V — Recursos avancados do C++: RTTl e STL

A STL (standard template library)

Nos capitulos anteriores, vimos como criar classes template, reutilizando algoritmos com diversos tipos de
dados. Além de permitir o uso de classes template, o C++ oferece um conjunto de classes template ja prontas
para serem utilizadas pelos programadores. Este conjunto de classes template ¢ chamado de STL (standard
template library — biblioteca de modelos padrdao). A STL faz parte do ANSI/ISO C++, de forma que todo
compilador que deseje estar de acordo com o C++ padrdo ANSI/ISO, deverd dar suporte a STL na sua
totalidade, embora isto seja dificil de acontecer.

A STL ¢ dividida em quatro grupos de classes:

* Contéineres: classes utilizadas para armazenar e manipular conjuntos de objetos.

» Iteradores: ponteiros especiais para os contéineres da STL, que nos permitem percorrer os dados do
contéiner.

* Algoritmos: conjunto de fungdes que podemos aplicar aos contéineres da STL.

e Objetos-fun¢do: podemos personalizar o comportamento de alguns algoritmos da STL, utilizando
objetos-fun¢do, ou functores.

Veremos agora cada um dos grupos de elementos da STL detalhadamente.

Contéineres da STL

A STL do C++ possui onze contéineres. Antes de conhecé-los, veremos os tipos comuns a todos os
contéineres, que sdo utilizados para criar nossas varidveis (na lista abaixo, contéiner representa o nome do
contéiner):

e contéiner::value type: retorna o tipo do elemento do contéiner.

« contéiner::reference: retorna uma referéncia para o contéiner. E equivalente a T&.

« contéiner::const reference : retorna uma referéncia constante para o contéiner. E
equivalente a const T&.

e contéiner::iterator: o tipo do iterator do contéiner. Um iterator € uma generalizagio para
T*.

« contéiner::const iterator: o tipo do iterator constante do contéiner. E uma generalizagido
para const T*.

 contéiner::difference type : um tipo inteiro com sinal que representa a distincia entre
iteradores.

e contéiner::size type : um tipo inteiro sem sinal que representa o tamanho de objetos de
dados, nimero de elementos e indices.

Além destes tipos, existem um conjunto de métodos que sdo comuns a todos os contéineres (exceto bitset) e
serdo mostrados abaixo:

e begin : retorna um iterador para o primeiro elemento do contéiner.

* end: retorna um iterador para o elemento apés o dltimo, do contéiner.

e rbegin : retorna um iterador reverso para o primeiro elemento do contéiner.

e rend : retorna um iterador reverso para o elemento apds o dltimo, do contéiner.

e Size:retorna o nimero de elementos do contéiner.

e maxsize :retorna o tamanho mdximo do contéiner.

* empty : retorna true se o cont€iner estiver vazio.

* Swap : permuta o contetido de dois contéineres.

* Operadores condicionais ==, !=, <, >, <= e >=: utilizados para comparar dois contéineres.

65

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Agora que conhecemos um pouco dos contéineres da STL, veremos cada um detalhadamente. Abaixo segue
uma lista com o nome, descri¢do, interface e o arquivo de cabegalho associado a cada contéiner:

vector

Descricdo Representa um array unidimensional. A principal vantagem de utilizar este
contéiner, em vez de um array, é que podemos alterar o seu tamanho facilmente
em tempo de execugao.

Arquivo de cabegalho | vector

Interface template <class T, class Allocator = allocator<T> >

class vector

{

public:

// Typedefs

typedef T value type;

typedef Allocator allocator type;

typedef typename Allocator::reference reference;

typedef typename Allocator::const_reference
const_reference;

class iterator;

class const_iterator;

typedef typename Allocator::size_type size_type;

typedef typename Allocator::difference_type
difference_type;

typedef typename std::reverse_iterator<iterator>
reverse_iterator;

typedef typename std::reverse_iterator<const iterator>
const_reverse_iterator;

// Construtores/Cépia/Destrutores

explicit vector (const Allocator& = Allocator());
explicit vector (size_type, const Allocator& =
Allocator ());
vector (size_type, const T&, const Allocator& =
Allocator());

vector (const vector<T, Allocator>&);
template <class InputIterator>
vector (Inputlterator, Inputlterator,
const Allocator& = Allocator ());
~yvector ();
vector<T,Allocator>& operator= (const
vector<T, Allocator>&);

template <class InputIterator>

void assign (InputlIterator first, Inputlterator last);
void assign (size_type, const);

allocator_type get_allocator () const;

// Iterators

iterator begin ();

const_iterator begin () const;

iterator end ();

const_iterator end () const;
reverse_iterator rbegin ();
const_reverse_iterator rbegin () const;

66

Capitulo V — Recursos avancados do C++: RTTl e STL

reverse iterator rend ();
const reverse iterator rend () const;

// Capacidade
size type size () const;
size type max size () const;

void resize (size type);
void resize (size type, T);
size type capacity () const;
bool empty () const;

void reserve (size_type);

// Acesso aos elementos

reference operator[] (size_type);
const_reference operator[] (size_type) const;
reference at (size_type);

const_reference at (size_type) const;

reference front ();
const_reference front () const;
reference back ();
const_reference back () const;

// Modificadores

void push_back (const Ts&);

void pop_back ();

iterator insert (iterator, const T&);

void insert (iterator, size_type, const Ts);

template <class InputlIterator>

void insert (iterator, InputIterator, InputIterator);
iterator erase (iterator);

iterator erase (iterator, iterator);

void swap (vector<T, Allocator>&);

void clear ()

}i

list

Descricao

Representa uma lista duplamente encadeada. Devemos utilizar este contéiner
quando necessitamos de freqiientes insercdes e remoc¢des no meio da lista, pois
este contéiner oferece um tempo de acesso constante aos elementos, independente
do tamanho da lista.

Arquivo de cabecalho

list

Interface

template <class T, class Allocator = allocator<T> >
class list
{
public:
// typedefs
class iterator;
class const_iterator;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference
const_reference;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type

67

Do C ao C++: uma abordagem da Engenharia de Software

Tiago Barros

//

//

//

//

//

difference type;
typedef T value type;
typedef Allocator allocator type;
typedef typename std::reverse_iterator<iterator>
reverse_iterator;
typedef typename
std::reverse_iterator<const_iterator>
const_reverse_iterator;

Construtores/Cépia/Destrutores
explicit list (const Allocator& =
explicit list (size_type);

Allocator());

list (size_type, const T&, const Allocatoré& =
Allocator())
template <class InputIterator> list (InputlIterator,
InputIterator, const Allocator& =

Allocator());

list (const 1ist<T,
~list ();
1list<T,Allocator>& operator=
1list<T,Allocator>&);
template <class InputIterator> void assign
(InputIterator, Inputlterator);
void assign (size_type n, const T&);
allocator_type get allocator () const;

Allocator>& x);

(const

Iterators

iterator begin ();
const_iterator begin ()
iterator end ();
const_iterator end () const;
reverse_iterator rbegin ();
const_reverse_iterator rbegin ()

const;

const;

reverse_iterator rend ();

const_reverse_iterator rend () const;

Capacidade
bool empty ()
size_type size () const;
size_type max_size () const;
void resize (size_type);
void resize (size_type,

const;

T);

Acesso aos elementos
reference front ();
const_reference front ()
reference back ();
const_reference back ()

const;
const;

Modificadores
void push_front
void pop_front
void push_back
void pop_back

(const T&);

(O
(const T¢&);

(O

68

Capitulo V — Recursos avancados do C++: RTTl e STL

iterator insert (iterator, const T&);

void insert (iterator, size type, const T&);

template <class InputIterator>
void insert (iterator, InputlIterator,
InputIterator);

iterator erase (iterator);

iterator erase (iterator, iterator);

void swap (list<T, Allocator>§);

void clear ();

// Operacbes especiais
void splice (iterator, 1list<T, Allocator>&);
void splice (iterator, 1list<T, Allocator>s,
iterator);
void splice (iterator, 1list<T, Allocator>g,
iterator, iterator);
void remove (const T&);
template <class Predicate> void remove_if
(Predicate) ;
void unique ();
template <class BinaryPredicate>
void unique (BinaryPredicate);
void merge (list<T, Allocator>¢§);
template <class Compare>
void merge (list<T, Allocator>&, Compare);
void sort ();
template <class Compare> wvoid sort (Compare);
void reverse () ;

i

deque

Descrigao Do inglés double ended queue, representa uma fila com dois finais, ou seja,
podemos adicionar ou remover elementos em ambas as extremidades. Possui
operagdes de inser¢do e apagamento com tempo constante para o inicio e final da
fila, mas o tempo de acesso cresce linearmente com o tamanho da fila para acessos
a elementos do meio.

Arquivo de cabecalho | deque

Interface template <class T, class Allocator = allocator<T> >

class deque
{
public:
// Typedefs
class iterator;
class const_iterator;
typedef T value_type;
typedef Allocator allocator_type;
typedef typename
Allocator::reference reference;
typedef typename
Allocator::const_reference const_reference;
typedef typename
Allocator::size_type size_type;
typedef typename
Allocator::difference_type difference_type;
typedef typename

69

Do C ao C++: uma abordagem da Engenharia de Software

Tiago Barros

std::reverse iterator<iterator>
reverse iterator;

typedef typename
std::reverse iterator<const iterator>
const reverse iterator;

// Construtores/Cépia/Destrutores
explicit deque (const Allocator& = Allocator());
explicit deque (size_type);
deque (size_type, const T& value,
const Allocator& = Allocator ());
deque (const deque<T,Allocator>§);
template <class InputlIterator>
deque (InputlIterator, InputlIterator,
const Allocator& = Allocator ());
~deque () ;
deque<T,Allocator>& operator=
(const deque<T,Allocator>&);
template <class InputIterator>

void assign (InputlIterator, InputlIterator);

void assign (size_type, const T&);
allocator_type get allocator () const;

// Iterators
iterator begin ();

const_iterator begin () const;
iterator end ();
const_iterator end () const;

reverse_iterator rbegin ();

const_reverse_iterator rbegin () const;
reverse_iterator rend ();
const_reverse_iterator rend () const;

// Capacidade
size_type size () const;
size_type max_size () const;
void resize (size_type);
void resize (size_type, T);
bool empty () const;

// Acesso aos elementos
reference operator|[] (size_type);
const_reference operator[] (size_type) const;
reference at (size_type);
const_reference at (size_type) const;

reference front ();

const_reference front () const;
reference back ();
const_reference back () const;

// Modificadores
void push_front (const T&);
void push_back (const T¢&);
iterator insert (iterator, const T&);
void insert (iterator, size_type, const T&);

70

Capitulo V — Recursos avancados do C++: RTTl e STL

template <class InputIterator>
void insert (iterator, Inputlterator,
InputlIterator);

void pop_front ();

void pop_back ();

iterator erase (iterator);

iterator erase (iterator, iterator);

void swap (deque<T, Allocator>é§);
void clear();
}i

queue

Descricao Representa uma fila em que podemos fazer inser¢des no inicio e remover
elementos do fim. E uma forma restrita do contéiner deque.

Arquivo de cabecalho | Queue

Interface template <class T, class Container = deque<T> >

class queue
{
public:
// typedefs
typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;

// Construtores/Cépia/Destrutores
explicit queue (const Container& = Container());

// Acesso
bool empty () const;
size_type size () const;
value_type& front ();
const value_type& front () const;
value_type& back ();
const value_type& back () const;

void push (const value_type&);
void pop ();
i

priority queue

Descricdo Representa uma fila de prioridade. A ordem dos elementos é determinada pelo
operador menor que, < ou pelo comparador compare. Isto significa que os
objetos guardados neste cont€iner devem ter este operador sobrecarregado além de
um construtor de cOpia, destrutor e operador =.

Arquivo de cabecalho | queue

Interface template <class T, class Container = vector<T>,

class Compare = less<typename
Container::value_type> >
class priority_queue
{
public:
// typedefs
typedef typename Container::value_type value_type;

71

Do C ao C++: uma abordagem da Engenharia de Software

Tiago Barros

typedef typename Container::size_type size_type;
typedef Container container_type;

// Construct
explicit priority_gqueue (const Compare& = Compare (),
const Container& =
Container());
template <class InputlIterator>
priority_queue (InputlIterator first,
InputIterator last,

const Compare& = Compare(),
const Container& = Container());
bool empty () const;
size_type size () const;
const value_type& top () const;

void push (const value_type&);
void pop();
}i

stack
Descrigao Representa uma pilha, com operagdes para empilhar, desempilhar e ver o topo da
pilha.
Arquivo de cabegalho | stack
Interface template <class T, class Container = deque<T> >
class stack
{
public:
// typedefs
typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;
// Construtor
explicit stack (const Containeré& = Container());
// Acesso
bool empty () const;
size_type size () const;
value_type& top ();
const value_type& top () const;
void push (const value_type&);
void pop ();
}i
set
Descrig@o Representa um conjunto de objetos, semelhante a um conjunto matematico, sendo
que cada elemento do conjunto deve ser Unico. Implementa as operacdes comuns
sobre conjuntos, como unido, intersecdo, etc.
Arquivo de cabecalho | set
Interface template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >

class set
{

72

Capitulo V — Recursos avancados do C++: RTTl e STL

public:

// typedefs

typedef Key key type;

typedef Key value type;

typedef Compare key compare;

typedef Compare value compare;

typedef Allocator allocator type;

typedef typename Allocator::reference reference;

typedef typename Allocator::const_reference
const_reference;

class iterator;

class const_iterator;

typedef typename Allocator::size_type size_type;

typedef typename Allocator::difference_type
difference_type;

typedef typename std::reverse_iterator<iterator>
reverse_iterator;

typedef typename std::reverse_iterator<const_iterator>
const_reverse_iterator;

// Construtores/Cdpia/Destrutor
explicit set (const Compares = Compare (),
const Allocator& = Allocator ());

template <class InputlIterator>
set (Inputlterator, Inputlterator,

const Compares = Compare(),

const Allocator& = Allocator ());
set (const set<Key, Compare, Allocator>s&);

~set ();

set<Key, Compare, Allocator>& operator=
(const set <Key, Compare, Allocator>s&);

allocator_type get_allocator () const;

// Iterators

iterator begin ();

const_iterator begin () const;

iterator end ();

const_iterator end () const;
reverse_iterator rbegin ();
const_reverse_iterator rbegin () const;
reverse_iterator rend ();
const_reverse_iterator rend () const;

// Capacidade

bool empty () const;
size_type size () const;
size_type max_size () const;

// Modificadores
pair<iterator, bool> insert (const value_typeé&);
iterator insert (iterator, const value_typeé&);
template <class InputIterator>

void insert (InputIterator, Inputlterator);
void erase (iterator);

73

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

size type erase (const key type&);

void erase (iterator, iterator);

void swap (set<Key, Compare, Allocator>§&);
void clear ();

// Observacao de elementos
key compare key comp () const;
value compare value comp () const;

// OperacOes sobre conjuntos
size type count (const key type&) const;

pair<iterator, iterator> equal_range (const key_typeé&)
const;

iterator find (const key_type&) const;

iterator lower_bound (const key_type&) const;

iterator upper_bound (const key_type&) const;

}i

multiset

Descricao O contéiner multiset representa um conjunto (semelhante ao set) em que os
elementos ndo precisam ser Gnicos.

Arquivo de cabecalho | set

Interface template <class Key, class Compare = less<Key>,

class Allocator = allocator<Key> >
class multiset
{
public:
// typedefs
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename
Allocator::const_reference const_reference;
class iterator;
class const_iterator;

typedef typename Allocator::size_type size_type;
typedef typename
Allocator::difference_type difference_type;

typedef typename std::reverse_iterator<iterator>
reverse_iterator;

typedef typename

std::reverse_iterator<const_iterator>

const_reverse_iterator;

// Construtores/Cépia/Destrutores
explicit multiset (const Compare& = Compare(),
const Allocator& = Allocator());

template <class InputIterator>
multiset (InputlIterator, Inputlterator,

74

Capitulo V — Recursos avancados do C++: RTTl e STL

//

//

//

//

//

const Compare& = Compare(),
const Allocator& = Allocator());
multiset (const multiset<Key, Compare, Allocator>&);
~multiset ();
multiset<Key, Compare, Allocator>&
operator= (const multiset<Key,
Compare, Allocator>&);

Iterators

iterator begin ();

const_iterator begin () const;

iterator end ();

const_iterator end () const;
reverse_iterator rbegin ();
const_reverse_iterator rbegin () const;
reverse_iterator rend ();

const_reverse_iterator rend () const;

Capacidade

bool empty () const;
size_type size () const;
size_type max_size () const;
Modificadores

iterator insert (const value_type&);
iterator insert (iterator, const value_typeé&);
template <class InputlIterator>

void insert (InputlIterator, InputlIterator);
void erase (iterator);
size_type erase (const key_typeé&);

void erase (iterator, iterator);
void swap (multiset<Key, Compare, Allocator>é§);
void clear ();

Observacdo de elementos
key_compare key_comp () const;
value_compare value_comp () const;

Operacées sobre Multiset
iterator find (const key_type&) const;
size_type count (const key_type&) const;
iterator lower_bound (const key_type&) const;
iterator upper_bound (const key_type&) const;
pair<iterator, iterator> equal_range

(const key_type&) const;

}i

map

Descri¢ao Este contéiner representa um mapa, associag@o chave/valor em que se usa a chave
para acessar o valor correspondente. Neste contéiner, cada chave deve ser tnica, de
modo que ndo podemos ter chaves repetidas.

Arquivo de cabecalho |map

Interface template <class Key, class T, class Compare = less<Key>

75

Do C ao C++: uma abordagem da Engenharia de Software

{

//

//

class Allocator = allocator<pair<const Key,
™ > >

class map

public:

typedefs
typedef Key key_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer
const_pointer;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename
Allocator::const_reference const_reference;
class iterator;
class const_iterator;
typedef typename
Allocator::size_type size_type;
typedef typename
Allocator::difference_type difference_type;
typedef typename std::reverse_iterator<iterator>
reverse_iterator;
typedef typename
std::reverse_iterator<const_iterator>
const_reverse_iterator;

class value_compare
public binary_function<value_type, value_type,

bool>

friend class map<Key, T, Compare, Allocator>;

protected

Compare comp;

value_compare (Compare c): comp(c) {}
public

bool operator () (const value_types,

const value_type&) const;

}i

Construtores/Cépia/Destrutores
explicit map (const Compare& = Compare(),
const Allocator& = Allocator ());
template <class InputIterator>
map (InputlIterator, InputlIterator,
const Compare& = Compare(),
const Allocator& = Allocator ());
map (const map<Key, T, Compare, Allocator>¢);
~map () ;
map<Key, T, Compare, Allocator>&
operator= (const map<Key, T, Compare,
Allocator>¢&);
allocator_type get_allocator () const;

Tiago Barros

Capitulo V — Recursos avancados do C++: RTTl e STL

// Iterators
iterator begin();
const iterator begin() const;
iterator end();
const iterator end() const;
reverse iterator rbegin();
const reverse iterator rbegin() const;

reverse iterator rend();
const reverse iterator rend() const;

// Capacidade
bool empty() const;
size_type size () const;
size_type max_size () const;

// Acesso aos elementos
mapped_type& operator|[] (const key_ typeé&);

// Modificadores
pair<iterator, bool> insert (const value_typeé&);
iterator insert (iterator, const value_typeé&);
template <class InputIterator>
void insert (InputlIterator, InputlIterator);
void erase (iterator);
size_type erase (const key_ typeé&);

void erase (iterator, iterator);
void swap (map<Key, T, Compare, Allocator>é&);
void clear();

// Observacdo de elementos
key_compare key_comp () const;
value_compare value_comp () const;

// Operacdes sobre map
iterator find (const key_valueé§);
const_iterator find (const key_value&) const;
size_type count (const key_type&) const;
iterator lower_bound (const key_typeé&);
const_iterator lower_bound (const key_type&) const;
iterator upper_bound (const key_ typeé&);
const_iterator upper_bound (const key_type&) const;
pair<iterator, iterator> equal_range (const
key_typeé&);

pair<const_iterator, const_iterator>

equal_range (const key_type&) const;

}i

multimap

Descricao O contéiner multimap representa um mapa, semelhante ao contéiner map, mas
possibilitando o armazenamento de multiplos valores para uma mesma chave.

Arquivo de cabegalho |map

Interface template <class Key, class T, class Compare =
less<Key>, class Allocator = allocator<pair<const Key,
> > >

77

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

class multimap
{
public:
// typedefs
typedef Key key type;
typedef T mapped type;
typedef pair<const Key, T> value type;
typedef Compare key compare;
typedef Allocator allocator type;
typedef typename Allocator::reference reference;
typedef typename
Allocator::const_reference const_reference;
class iterator;
class const_iterator;
typedef typename Allocator::size_type size_type;
typedef typename
Allocator::difference_type difference_type;
typedef typename std::reverse_iterator<iterator>
reverse_iterator;
typedef typename
std::reverse_iterator<const_iterator>
const_reverse_iterator;
class value_compare
public binary_function<value_type, value_type, bool>
{

friend class multimap<Key, T, Compare, Allocator>;

protected

Compare comp;

value_compare (Compare C) : comp(c) {}
public

bool operator() (const value_types,

const value_typeé&) const;
bi

// Construtores/Cépia/Destrutores
explicit multimap (const Compare& = Compare (),
const Allocator& = Allocator());
template <class InputIterator>
multimap (InputIterator, Inputlterator,
const Compare& = Compare(),
const Allocator& = Allocator());
multimap (const multimap<Key, T, Compare,
Allocator>&);
~multimap ();
multimap<Key, T, Compare, Allocator>& operator=
(const multimap<Key, T, Compare, Allocator>&);
allocator_type get_allocator () const;

// Iterators
iterator begin ();
const_iterator begin () const;
iterator end ();
const_iterator end () const;
reverse_iterator rbegin ();
const_reverse_iterator rbegin () const;

reverse_iterator rend ();

78

Capitulo V — Recursos avancados do C++: RTTl e STL

const reverse iterator rend () const;

// Capacidade
bool empty () const;
size_type size () const;
size_type max_size () const;

// Modificadores
iterator insert (const value_type&);
iterator insert (iterator, const value_typeé&);
template <class InputIterator>
void insert (Inputlterator, Inputlterator);
void erase (iterator);
size_type erase (const key_typeé&);
vold erase (iterator, iterator);
voilid swap (multimap<Key, T, Compare, Allocator>&);

void clear ();

// Observacdo de elementos
key_compare key_comp () const;
value_compare value_comp () const;

// Operacbes sobre Multimap
iterator find (const key_typeé&);
const_iterator find (const key_type&) const;
size_type count (const key_type&) const;
iterator lower_bound (const key_typeé&);
const_iterator lower_bound (const key_type&) const;
iterator upper_bound (const key_typeé&);
const_iterator upper_bound (const key_type&) const;
pair<iterator, iterator> equal_range (const

key_type&);

pair<const_iterator, const_iterator>
equal_range (const key_type&) const;
}i

bitset

Descricdo Este contéiner representa um conjunto de bits (bitset), que podem ser acessados
individualmente com o operador colchetes, []. Oferece operagdes logicas bit-a-bit
bem como métodos de manipulacdo dos bits individualmente ou em conjunto.

Arquivo de cabecalho [bitset

Interface template <size_t N>

class bitset
{
public:
// bit reference
class reference
{
friend class bitset;
public:
~reference () ;
reference& operator= (bool);
reference& operator= (const references);
bool operator~ () const;

79

Do C ao C++: uma abordagem da Engenharia de Software

Tiago Barros

operator bool () const;
reference& flip();
}i

// Construtores
bitset ();
bitset (unsigned long);
template<class charT,
explicit bitset
Allocator>,
<charT,

<charT,
::size_type=
traits,

bitset
bitset<N>& operator=

(const bitset<N>&);

// Operadores bit-a-bit

to_string();

}i

// Operadores nao-membros
template <size_t N> bitset<N>

class traits,
(const basic_string<charT,
typename basic_string
traits,
::size_type=0,
traits,

Allocator>::npos);

(const bitset<N>&);

bitset<N>& operator&= (const bitset<N>&);
bitset<N>& operator|= (const bitset<N>&);
bitset<N>& operator”= (const bitset<N>&);
bitset<N>& operator<<= (size_t);
bitset<N>& operator>>= (size_t);
// Set, Reset, Flip
bitset<N>& set ();
bitset<N>& set (size_t, int 1);
bitset<N>& reset ();
bitset<N>& reset (size_t);
bitset<N> operator~ () const;
bitset<N>& flip ();
bitset<N>& flip (size_t);
// Acesso aos elementos
reference operator[] (size_t);
unsigned long to_ulong () const;
template<class charT, class traits, class Allocator>
basic_string<charT, traits, Allocator>

size_t count () const;

size_t size () const;

bool operator== (const bitset<N>&) const;
bool operator!= (const bitset<N>&) const;
bool test (size_t) const;

bool any () const;

bool none () const;

bitset<N> operator<< (size_t) const;
bitset<N> operator>> (size_t) const;

operatoré& (const bitset<N>&,
template <size_t N> bitset<N>
operator| (const bitset<N>g,

class Allocator>
traits,

Allocator>

typename basic_string
Allocator>
basic_string<charT,

const bitset<N>&);

const bitset<N>¢g);

80

Capitulo V — Recursos avancados do C++: RTTl e STL

template <size t N> bitset<N>

operator”™ (const bitset<N>&, const bitset<N>&);
template <size_t N> istreams

operator>> (istream&, bitset<N>&);
template <size_t N> ostreamé&

operator<< (ostream&, const bitset<N>&);

O modelo ato_ptr

A biblioteca padrao do C++ possui um modelo de ponteiro, aut o_ptr, que oferece desalocagdo automética
da memodria quando o ponetiro sai do escopo. Portanto, ¢ ideal para utilizarmos ponteiros locais sem ter que
nos preocuparmos em estar liberando memdria quando sairmos do escopo. E importante lembrar que, como o
ponteiro chama o operador delete automaticamente, ndo podemos alocar arrays com auto_ptr, pois o
operador chamado ¢ delete e nao delete[].

Abaixo segue um exemplo de cédigo que utiliza o auto_ptr:

int main()

{
auto ptr<TBlock> block;
block = new TBlock(10, 20, “####");
block->draw();

}

A classe template valarray

A classe valarray ¢ um modelo de classe projetado para ser utilizado com valores numéricos. Semelhante ao
contéiner vector, valarray € otimizada para permitir aplicar operacdes e funcdes matemdticas ao array, com o
maximo de eficiéncia. Vejamos um exemplo de uso:

int main()

{

valarray<int> arrayl(10);
valarray<int> array2(10);

for(int 1 = 0; i<10; i++)

{
}

arrayl[i] = i;
array2 = arrayl + 10; // soma 10 a cada elemento de arrayl e
// atribui a array2
arrayl += array2; // soma cada elemento de arrayl com array2

for(int 1 = 0; 1i<10; i++)

{
}

i n

cout << arrayl[i] << ;
}

E importante salientar que apenas os tipos numéricos podem ser utilizados com valarray, e que esta classe
template também possui implementagdes das principais fun¢des matemadticas, como seno, cosseno, etc.

81

Do C ao C++: uma abordagem da Engenharia de Software Tiago Barros

Iteradores

A STL de C++ possui um conjunto de ponteiros genéricos utilizados para manipular os dados dos contéiners.
Da mesma forma que o uso de contéineres nos permite utilizar os algoritmos independente do tipo de dados,
os iteradores generalizam o uso dos algoritmos, independente do conté€iner. O uso de iteradores é semelhante
ao uso de ponteiros de forma que o c6digo abaixo:

int nums[10];

int *ptr;
for (int i=0, ptr = nums; ptr != nums+10; i++, ptr++)
*ptr = 1;

Pode ser escrito desta forma:

vector<int> nums(10);
vector<int>::iterator itr;

for (int i=0, itr = nums.begin(); itr !'= nums.end(); i++, itr++)
*itr = 1i;

Entdo, por que utilizar iteradores? Porque em contéineres diferentes, operacdes como se mover para o
préximo elemento causam resultados diferentes também. Entdo, utilizamos iteradores com qualquer fungdo
STL sem nos preocuparmos com o tipo de contéiner em que os dados estdo armazenados, pois o uso dos
iteradores é o mesmo.

Vejamos alguns iteradores predefinidos da STL:

* iterator: iterador padrao.

* ostream_iterator: iterador de manipulacdo de fluxos ostream, como cout.
* istream_iterator: iterador de manipulagdo de fluxos istream, como cin.

* reverse_iterator: iterador que percorre os dados em sentido reverso.

* insert_iterator: iterador de inserg@o.

* front_insert_iterator: insere elementos em um contéiner a partir do inicio.
* back_insert_iterator: insere elementos em um contéiner a partir do fim.

Algoritmos da STL

Os algoritmos da STL trabalham junto com os iteradores para manipular os dados dos contéineres da STL.
Como os iteradores sdo idependentes dos tipos dos contéineres, podemos aplicar os algoritmos aos iteradores
de qualquer contéiner, pois os iteradores € que se encarregardo de percorrer internamente os dados
contéineres. Vejamos os algoritmos da STL:

accumulate

Descricao acumula valores de operagdes matemadticas sucessivas.

Arquivo de cabecalho | numeric

Interface template <class Inputlterator, class T>
T accumulate (InputlIterator first,
InputIterator last,
T init);

82

Capitulo V — Recursos avancados do C++: RTTl e STL

template <class InputIterator,
class T,
class BinaryOperation>
T accumulate (InputlIterator first,
InputIterator last,
T init,
BinaryOperation binary_op);

copy

Descrigao Copia dados entre contéineres.

Arquivo de cabecalho [algorithm

Interface template <class InputlIterator, class OutputIterator>
OutputIterator copy(Inputlterator first,
InputIterator last,
OutputIterator result);
template <class BidirectionalIteratorl,
class BidirectionalIterator2>
BidirectionallIterator?2
copy_backward (BidirectionalIteratorl first,
BidirectionalIteratorl last,
BidirectionalIterator2 result);

count e count if

Descricdo Conta o nimero de elementos de um contéiner. O algoritmo count_if conta os
elementos do contéiner que satisfazem um predicado.

Arquivo de cabegalho |algorithm

Interface template <class Inputlterator, class T> typename
iterator_traits<InputIterator>::difference_type
count (InputIterator first, InputlIterator last,
const T& value);

template <class Inputlterator, class T, class Size>

void count (InputIterator first, Inputlterator last,
const T& value, Sizeé& n);

template<class InputIterator, class Predicate> typename
iterator_traits<InputIterator>::difference_type
count_if (InputIterator first, InputlIterator

last, Predicate pred);

template <class InputlIterator, class Predicate,

class Size> wvoid count_if (InputlIterator
first, InputlIterator last, Predicate pred,
Size& n);

equal

Descricao Compara os elementos de dois conté€ineres dentro de uma faixa delimitada pelos
iteradores first e last.

Arquivo de cabecalho [algorithm

Interface template <class InputlIteratorl, class InputIterator2>
bool equal (InputIteratorl firstl, InputlIteratorl
lastl, InputlIterator2 first2);
template <class InputIteratorl, class InputlIterator2,
class BinaryPredicate>

83

Do C ao C++: uma abordagem da Engenharia de Software

Tiago Barros

bool equal(InputlIteratorl firstl, InputlIteratorl
lastl, InputIterator2 first2,
BinaryPredicate binary pred);

find
Descricdo Procura por um determinado valor no cont€iner e retorna sua primeira ocorréncia.
Se ndo encontrar, retorna o iterator last.
Arquivo de cabecalho [algorithm
Interface template <class InputIterator, class T>
InputIterator find(InputIterator first,
InputIterator last, const T& value);
for_each
Descri¢ao Aplica uma fung¢do a todos os elementos do contéiner no intervalo entre first e last.
Arquivo de cabe¢alho |algorithm
Interface template <class InputIterator, class Function>

void for_each (InputIterator first,
Function f);

InputIterator last,

min element e max element

Descrigao Retornam um iterador que aponta para o minimo e o maximo elemento do
contéiner, respectivamente.

Arquivo de cabegalho | algorithm

Interface template <class ForwardIterator> ForwardIterator

min_element (ForwardIterator first,
ForwardIterator last);
template <class ForwardIterator, class Compare>
InputIterator min_element (ForwardIterator
first, ForwardIterator last, Compare comp);

template <class ForwardIterator> ForwardIterator
max_element (ForwardIterator first,
ForwardIterator last);
template <class ForwardIterator, class Compare>
ForwardIterator max_element (ForwardIterator
first, ForwardIterator last, Compare comp);

random shuffle

Descricdo Embaralha aleatoriamente os elementos dentro do intervalo de itaradores first e
last, com distribui¢@o uniforme. Pode receber como argumento um objeto-fungdo
que gere nimeros aleatérios para alterar a distribuicao.

Arquivo de cabe¢alho |algorithm

Interface template <class RandomAccessIterator>

void random_shuffle (RandomAccesslIterator first,
RandomAccessIterator last);
template <class RandomAccessIterator,
class RandomNumberGenerator>
void random_shuffle (RandomAccesslIterator first,
RandomAccessIterator last,

RandomNumberGeneratoré& rand);

84

Capitulo V — Recursos avancados do C++: RTTl e STL

remove
Descri¢ao Remove elementos de um contéiner que satisfazem a condi¢ao elemento == valor.
Arquivo de cabecalho |[algorithm
Interface template <class ForwardIterator, class T>
ForwardIterator remove (ForwardIterator first,
ForwardIterator last, const T& value);
replace
Descricdo Substitui elementos de um contéiner que sdo iguais a o1d_value por
new_value.
Arquivo de cabegalho |algorithm
Interface template <class ForwardIterator, class T>
void replace (ForwardIterator first,
ForwardIterator last, const T& old_value,
const T& new_value);
reverse
Descrigao Inverte a ordem dos elementos do contéiner que estdo no intervalo (first, last).
Arquivo de cabegalho |algorithm
Interface template <class Bidirectionallterator>
void reverse (BidirectionalIterator first,
BidirectionalIterator last);
rotate
Descrigao Rotaciona os elementos do segmento que vai de first até middle—1 com os
elementos do segmento de middle até last . O algoritmo rotate_copy retorna
uma cOpia do contéiner rotacionado.
Arquivo de cabe¢alho |algorithm
Interface template <class ForwardIterator>
void rotate (ForwardIterator first,
ForwardIterator middle,
ForwardIterator last);
template <class ForwardIterator, class OutputIterator>
OutputIterator rotate_copy (ForwardIterator first,
ForwardIterator middle,
ForwardIterator last,
OutputIterator result);
search
Descricdo search procura no intervalo (first1, lastl) por uma seqiiéncia igual a do
intervalo (first2, last?2), enquanto search_n retorna um iterador para a
subseqiiéncia de count elementos que sdo iguais a value. Podemos também
especificar um predicado para que seja testado na busca.
Arquivo de cabe¢alho |algorithm
Interface template <class ForwardIteratorl,

class ForwardIterator2>

85

Do C ao C++: uma abordagem da Engenharia de Software

Tiago Barros

ForwardIteratorl search (ForwardIteratorl firstl,
ForwardIteratorl lastl,
ForwardIterator2 first2,
ForwardIterator2 last2);

template <class ForwardIteratorl,

class ForwardIterator?2,

class BinaryPredicate>
ForwardIteratorl search (ForwardIteratorl firstl,
ForwardIteratorl lastl,

ForwardIterator2 first2,
ForwardIterator2 last2,
BinaryPredicate binary_pred);
template <class ForwardIterator,
class size, class T>
ForwardIterator search_n (ForwardIterator first,
ForwardIterator last,
Size count, const T& value);
template <class ForwardIterator,
class size, class T, class BinaryPredicate>
ForwardIterator search_n (ForwardIterator first,
ForwardIterator last,
Size count, const T& value,
BinaryPredicate pred)

sort

Descrigao Ordena os elementos de um contéiner. Para comparacio entre os elementos do
contéiner, pode ser utilizado o operador menor que, <, ou um objeto-fun¢do
compare.

Arquivo de cabegalho |algorithm

Interface template <class RandomAccessIterator>

void sort (RandomAccessIterator first,
RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>

void sort (RandomAccessIterator first,
RandomAccessIterator last, Compare comp);

swap e swap_ranges

Descricao

swap permuta o conteido de dois contéineres, enquanto swap_ ranges
permuta os elementos do intervalo (firstl, lastl) com os elementos de um
intervalo do mesmo tamanho que iniciaem first2.

Arquivo de cabecalho

algorithm

Interface

template <class T> void swap (T& a, T& Db);

template <class ForwardIteratorl,

class ForwardIterator2>
ForwardIterator2 swap_ranges (ForwardIteratorl firstl,
ForwardIteratorl lastl,

ForwardIterator?2 first2);

transform

Descri¢ao

Aplica uma fun¢@o a um intervalo de valores de um contéiner.

86

Capitulo V — Recursos avancados do C++: RTTl e STL

Arquivo de cabecalho

algorithm

Interface

template <class InputlIterator, class OutputlIterator,
class UnaryOperation> OutputIterator
transform (InputlIterator first, Inputlterator last,
OutputIterator result, UnaryOperation op);
template <class InputIteratorl, class InputlIterator2,
class OutputIterator, class BinaryOperation>
OutputIterator transform (InputlIteratorl firstl,
InputIteratorl lastl, InputIterator2 first2,
OutputIterator result, BinaryOperation binary_op);

unique e unique_copy

Descrig¢ao

Unique apaga os valores duplicados consecutivos em um contéiner. Unique_copy
copia o primeiro elemento de cada grupo de elementos iguais consecutivos para
result. Podemos utilizar um predicado para determinar a selecdo dos objetos.

Arquivo de cabecalho

algorithm

Interface

template <class ForwardIterator> ForwardIterator
unique (ForwardIterator first, ForwardIterator last);

template <class ForwardIterator, class BinaryPredicate>
ForwardIterator unique (ForwardIterator first,
ForwardIterator last,
BinaryPredicate binary_pred);

template <class InputlIterator, class OutputIterator>
OutputIterator unique_copy (InputIterator first,
InputIterator last,
OutputIterator result);

template <class InputlIterator, class OutputlIterator,
class BinaryPredicate> Outputlterator
unique_copy (InputlIterator first, InputlIterator last,
OutputIterator result,
BinaryPredicate binary_pred);

Objetos-funcao

Alguns algoritmos da STL recebem classes especiais, que contém func¢des para serem utilizadas com os
algoritmos da STL. Sdo chamados de objetos-fung¢do, que podem possuir fun¢des normais e ponteiros para

fungdes e objetos, sob
operator () ().

recarregando o operador paréntesis, bastando para isto, definir um método

Objetos-funcdo podem ser divididos nos seguintes grupos:

* Geradores: objet

os-funcéo que ndo recebem argumentos.

* Funcgdes undrias: objetos-fungdo que recebem um argumento.

* Fungoes bindrias: objetos-funcdo que recebem dois argumentos.

* Predicados: fungdes undrias que retornam um valor boleano.

* Predicados bindrios: fun¢des bindrias que retornam um valor boleano.

87

Do C ao C++: uma abordagem da Engenharia de Software

Tiago Barros

Existem varios objetos-fun¢do predefinidos na STL de C++. Para utilizé-los, deveremos incluir o arquivo de
cabegalho functional. Todas as operagdes matemdticas e lGgicas simples possuem objetos-fungdo

predefinidos, observe a tabela abaixo:

Operador Objeto-funcao correspondente
+ plus
- minus
* multiplies
/ divides
% modulus
- (unario) negate
== equal to
I= not equal to
> greater
< less
>= greater equal
<= less equal
&& logical and
| | logical or
! logical not

Com isto encerramos a nossa visdo geral da STL. Estamos prontos para utilizar todos os recursos desta

poderosa ferramenta do C++.

88

	Capítulo I
	Engenharia de Software Estruturada
	Engenharia de Software Estruturada: o uso de funções
	O C++ básico
	Tipos: estruturas, uniões e tipos enumerados
	Declarando arrays
	Definindo novos tipos
	Modificadores de tipos
	Interna

	Conversões de tipos
	Laços e Condicionais
	Ponteiros
	Uma breve discussão sobre endereços de memória
	Como declarar ponteiros
	Utilizando ponteiros
	Criando variáveis em tempo de execução: os operadores new e delete
	Ponteiros para tipos derivados
	Ponteiros e arrays
	Usando new e delete com arrays
	Aritmética de ponteiros
	Ponteiros e const
	Funções
	Definindo funções
	Argumentos e tipos de retorno de funções
	Ponteiros para funções
	Funções in-line
	Um pouco mais sobre argumentos
	Sobrecarga de funções

	Seção prática: definindo nosso projeto

	Capítulo II
	Engenharia de Software Baseada em Objetos
	Engenharia de software baseada em objetos
	Modularidade, coesão e acoplamento
	Information Hidding
	Suporte à modularidade em C++
	Suporte à reusabilidade: Modelos de função

	Seção prática: estruturando o nosso projeto em módulos

	Capítulo III
	Engenharia de Software Baseada em Classes
	Engenharia de Software Baseada em Classes
	Classes em C++
	Classes: organização em arquivos
	Modificadores de métodos
	Como criar membros estáticos
	O ponteiro this
	Sobrecarga de métodos e construtores
	Construtores de cópia
	Funções, métodos e classes friend
	Conversões entre objetos
	Sobrecarga de operadores
	Modelos de classes

	Seção prática: Criando classes para o jogo

	Capítulo IV
	Engenharia de Software Orientada a Objetos
	Engenharia de Software Orientada a Objetos
	Herança em C++
	Overload de construtores, destrutores e métodos
	Métodos virtuais: dynamic binding
	Classes abstratas
	Herança múltipla
	Exceções

	Seção prática: Utilizando herança

	Capítulo V
	Recursos avançados do C++: RTTI e STL
	A RTTI (runtime type information)
	O operador dynamic_cast
	Utilizando o operador typeid e a classe type_info

	A STL (standard template library)
	Contêineres da STL
	Iteradores
	Algoritmos da STL
	Objetos-função

