Shell Script do zero

Indice

Capitulo 1 - Basico do Basico

Capitulo 2 - Variaveis

Capitulo 3 - Operadores L.6gicos de comparacdo
Capitulo 4 - Condicéao IF e escrevendo o primeiro script
Capitulo 5 - Operadores L6gicos de Conexao

Capitulo 6 - Usando os Conectores

Capitulo 7 - Fazendo loops com o “for” e script remoto
Capitulo 8 - While e Until

Capitulo 9 - OperacOes matematicas e inicializacdo de scripts
Capitulo 10 - Comando case

Capitulo 11 - Funcao e Parametro

Capitulo 12 - Comandos sed, cut, pipeline, tr e grep

Capitulo 13 - Ultimos comandos
Capitulo 14 - Indentacéo

Capitulo 15 - Script com janelas

Capitulo 1 — Basico do Basico
Apresentacdo

Este material é dedicado para aqueles que ndao sabem nada de l6gica de programacao e Shell
Script, nos capitulos a seguir vocé sera capaz de criar scripts basicos a medianos e tera todas as
condicOes de se aprofundar no tema sozinho, procuro sempre dar muitos exemplos para que vocé
entenda de um jeito ou de outro e procure ler devagar para conseguir assimilar o material.

Nao se preocupe se os conceitos apresentados até o capitulo 3 ficarem vagos, a partir do
capitulo 4 trabalharemos na pratica e tudo ficara mais facil. Faca os exercicios antes de ver a
respostas, porque a teoria na programacao sem pratica deixa muito a desejar.

Esclarecendo que sei pouco, mas juntando este pouco com criatividade e persisténcia, eu
consigo fazer muita coisa.

O que é Shell Script

Script é um arquivo com varias instru¢coes para serem executadas pelo shell que é o
interpretador de comandos. Com ele podemos automatizar muitas tarefas no Linux criando grandes
facilidades.

Primeiros Comandos

Podemos usar qualquer comando nos nossos scripts, desde comandos criados por vocé
mesmo (colocando o script dentro de /bin), programas de terceiros e que tem seus comandos no
terminal e principalmente alguns comandos do shell que sao muito usados em scripts e pouco
conhecidos no terminal. Vamos vé-los agora:

Comando Descricao Sintaxe

echo Exibe o texto na tela echo “texto a ser mostrado”

sleep Da um tempo antes de continuar executando sleep segundos exemplo: Sleep 1
read Recebe o valor de uma variavel (veremos ainda) |read variavel exemplo: read dados
> Escreve num arquivo-texto (apagando o que estava Id) | echo “texto” > /home/luiz/arquivo
>> Escreve num arquivo-texto (iltima linha, ndo apaga) |echo “texto” >> /home/luiz/arquivo
& Roda o comando em 2° plano e continua o script |Comando&

exit Sai do script exit

touch Cria arquivos-texto touch nome_do_arquivo

Comenta tudo depois deste simbolo # Comentario

* Comentar quer dizer que a linha é um texto e nunca sera executada

Exemplo destes comandos no script

E claro que o script a seguir ndo tem muito sentido, é s para visualizarmos a aplicacdao dos
comandos apresentados anteriormente.

Usando o interpretador de
comandos bash
echo Mostrando a frase: Bem vindo, na tela/

echo
echo ——T O echo vazio salta uma linha na tela, para que nao fique tudo junto

0 programa dorme 2 segundos
sleep 2

Pedindo a senha ao usuario mentari
echo i

read SEMNHA

BN *gerador 3

#l/binsbash

Criando o arquivo de log
touch Sfetcslog

Atualizando o APT|Q comando apt-get roda em 2° plano e o script continua executando|
apt-get update&

Escrevendo um texto no argquivo log, e sobrepondo o que estava 1a anteriormente
(se n3o existisse o arquiwvo log, este comando também cria arguiwvos)

echo > fetc/log

Continuando a escrewver no arguiwvo log, a partir da wltima linha
echo R R == Sfetcs log

exit

Comandos mais conhecidos

Sado os comandos que estamos acostumados a usar no terminal e podemos usa-los também
no script, se vocé nao os conhece, va aprendendo de acordo com a necessidade, pesquise na internet
e consulte a tabela resumida abaixo sempre que preciso.

Diretérios
Comando Sintaxe Descricao
rm -rf rm -1f +diretério Deleta arquivos/pastas e tudo que estiver dentro (cuidado)
pwd pwd Mostra em qual diretorio estamos
chmod chmod 777 arquivo_ou_pasta Muda as permissodes, 777 = permissao total
chown chown user:grupo arq_ou_diret. | Muda o proprietario de arquivos e pastas
cd cd diretério Entra em diretérios
Usuarios
Comando Sintaxe Descricao

useradd useradd luiz -g alunos (no grupo) | Adiciona um usuario

userdel userdel usuario Deleta usuario e seus arquivos
groupdel | groupdel grupo Deleta um grupo
groups groups nome_usuario Mostra os grupos do usudrio

addgroup | 2ddgroup usuario grupo ou addgroup nomedogrupo | Crig um grupo ou adiciona um usudrio ao grupo

sudo sudo comando Executa comandos como root

whoami whoami Identifica com qual usuério vocé esta logado

Rede

Comando Sintaxe Descricao

ifconfig ifconfig Mostra as interfaces de rede

hostname | hostname Mostra ou muda o nome de seu computador na rede

ping Ping ip_desejado Dispara pacotes para outro pc, para testar conexoes etc
Sistema

Comando Sintaxe Descricao

killall Killall nome_do_programa Mata um processo

whatis Whatis +nome do programa Descreve o que faz o comando

diff diff arquivol arquivo2 Compara 2 arquivos

ps ps -elf Mostra os programas que estdo rodando

cat cat arquivo_texto Mostra o contetido de um arquivo de texto

grep Comando | grep palavra Filtra a saida do comando, mostra a linha da palavra pedida

In In -s arquivo_original atalho Cria atalho

cp cp arquivo destino Copia um arquivo ou direto6rio (-R para diretérios)

apt-get apt-get nome_programa Instala aplicativos

find Find +nome Procura por arquivos e diretérios

Compactacao

Tar.gz (A melhor em tempo vs compactacao)

Comando Funcao Descricao
tar -zcf novo.tar.gz pasta_ou_arquivo Compactar z=zip c=compact f=file
tar -zxf pasta_ou_arquivo Descompactar x=extrair z=zip f=file

[=F)

r (Apenas junta)

Comando

Funcao

Descricao

tar -cf arquivo_novo.tar arquivo

Apenas juntar os arquivos

-c comprimir -f file

tar -xf arquivo.tar Extrair -x extrair -f file
Rar

Comando Funcao Descricao
rar a novo.rar arquivo Compacta a = Adiciona
unrar arquivo.rar Descompacta

Tar.xz (Compacta mais)

Comando Funcao Descricao
tar -Jcf arquivo_novo.tar.xz arquivo Compactar -J = xz -c cria -f files
tar -Jxf arquivo.tar.xz Descompactar -X extrai -P preserva

permissoes

Capitulo 2 — Variaveis

Sdo muitos os valores que lidamos na programacdo e eles variam muito, por isto é que
existem as variaveis, elas podem assumir qualquer valor numéricos ou alfanuméricos a qualquer
momento.

Portanto, variavel é um nome com um valor dentro dela que fica armazenado na memdria
para ser usado quando preciso. (seu nome nunca comec¢a com numero).

Exemplificando:

Posso criar um script que necessite colher o nome de alunos, mas a cada rodada o nome sera
diferente, entdo eu posso criar a variavel ALUNO que armazenara este valor dentro dela.

Exemplos de como colher os dados para a variavel:
Nao se preocupe em decorar estes comandos, procure entender o raciocinio.

Vocé mesmo da o valor dentro do script

IALUNO=$"Jonatan”

Aqui ao invés de chamar de variavel, podemos chama-la
de constante, ja que o valor Jonatan nao muda, a ndo ser
que vocé crie outra linha modificando este valor

Recebendo o valor digitado pelo usuario O Linux é case sensitive, ou seja,
echo “Digite o nome do aluno” se escreveu determinada variavel
read ALUNO em maiuscula, vocé nao pode

" e L. mudar para minuscula no meio do
Onde “read” é o comando para que o usudrio

digite o valor da variavel em questao

Script, porque ele reconhece como
outra palavra.

Pegando o valor de um arquivo-texto

AL UNO=$(cat /etc/matricula)

O valor da variavel sera o resultado do comando dentro
dos parénteses, neste caso mostra o contetido do arquivo matricula.

echo "Digite o comando do programa”
read PLAI

PACOTE=$"protec$PLAI"
|

PING1=$(ping -w 3 192.168.0.130)
echo SPING1 date > /home/log

RODANDO=%(ps -elf $PROG)

echo "Texto
echo "Aperte enter para prosseguir"
read segue

As variagGes sdo muitas, pesquise e teste na medida que precisar.

Capitulo 3 - Operadores logicos de comparacao

No6s vamos ver estes operadores dentro de um determinado contexto, pois é o que
necessitamos por enquanto, qualquer funcdo que seja um pouco diferente do descrito aqui
abordaremos depois do capitulo 7.

Os operadores logicos de comparacao mostram ao shell uma condicdao a ser testada, o
resultado do teste pode ser verdadeiro ou falso, este resultado é usado por varios comandos (vamos
entender estes comandos na medida do possivel), um deles e um dos mais importantes é o IF, que
veremos em breve.

O que podemos entender como verdadeiro e falso?

O contetido destes comparadores podem ser numéricos ou Alfanuméricos (vai fazer
comparacao que necessita considerar o numero matematicamente, entdo € numérico o resto é
alfanumérico), por exemplo, se eu vou lidar com ntimeros de cadastros de funcionérios vou
considera-los Alfanuméricos porque além de ndo ter conta, eu s6 vou ler como se fosse um texto, ja
o numeérico pode ser quantidade, comparacao (1 menor que 2), calculos etc. Nunca poderemos
confundir estas duas categorias.

Comparadores Numéricos

-1t Numero é menor que (Less Than)

-gt Numero ¢é maior que (Greater Than)

-le Numero é menor ou igual (Less Equal)

-ge | Numero é maior ou igual (Greater Equal)

-eq | Numero é igual (EQual)

-ne | Numero é diferente (Not Equal)

Exemplificando:

Supondo que a variavel A tem o valor de 30 e B tem o valor de 20, entdo poderiamos ter as
seguintes situacoes:

Ele nao executa o comando, porque a condi¢do nao é satisfeita, pois, A nao é menor que B.
se [$A -It $B]; entdo faga (se A é menor que B entdo faca o comando)
comando

Neste caso, ele executaria o comando, porque a condicao é satisfeita, ja que A é diferente de B
se [$A -ne $B]; entdo faca
comando

Comparadores Alfanuméricos

= Texto é igual

1= Texto é diferente

-n Texto ndo nulo

-z Texto é nulo

Suponhamos agora que A contém a palavra “noite” e B contém a palavra “dia”, entao:

Aqui ele nao executa o comando, porque A nao é igual a B.
se [$A = $B]; entdo faca
comando

Aqui ele executa o comando, ja que A é diferente de B.
se [$A !=$B]; entdo faca
comando

Com o0 “-n” ele executara o comando caso a variavel tenha algum valor, ja com o “-z”, s6
executara se a variavel estiver vazia. Embora esteja na tabela de alfanuméricos eles também
funcionam se a varidavel conter apenas nimeros. Vamos ver como escrevé-los no proximo capitulo.

Capitulo 4 — Condicao IF e escrevendo o primeiro script
Condicao IF

No inglés “if” significa “se”, (SE a condicao for satisfeita eu executo o comando), condicado
que sera testada usando o conceito anterior. Se o teste de comparagdo acusou verdadeiro ele executa
o comando que esta dentro do if, o teste acusando falso ele pula este if e segue com o script.

Pense nos operadores de comparacao como se fossem chaves e o if sendo a porta, se a chave
for “verdadeira” ela abre a porta e executa o que tem la dentro, se a chave for falsa o shell nao
consegue abrir a porta e consequentemente ndo executa. Neste capitulo aprenderemos como
escreveé-lo na linguagem do shell e consequentemente o primeiro script.

Estrutura do if
if [condicao];then

comando
fi

Exemplo na linguagem do shell:

| - Espaco obrigatério
A palavra julia est4 entre aspas porque é um texto (numéricos ficam sem aspas), a mesma coisa vale

para a variavel.
#!/bin/bash

if [I"$USUARIO"|:|"jUIia"I]chen if ["SUSUARIO" = "julia"];then No Shell
mkdir SUSUARIO mkdir SUSUARIO

fi fi

Comando auxiliar Else

Uma fungdo complementar e muito util no comando if é o else (sendo), caso a condicao do if
ndo seja verdadeira, ele automaticamente executa o que esta no else, seu uso é opcional.

Sentido do comando Sintaxe no shell
se [condigdo é verdadeira]; entao execute o comando |if [condicdo];then
mkdir SUSUARIO comando
senao execute este outro comando else
mkdir §USUARIO?2 comando
fi

Abaixo um exemplo escrito no editor de texto:

Se a varidavel ESTADO é diferente de “desligado”, entdao execute o comando killall... senao ...

.D P Abrir w I:l1=r Salwar a . Desfazer L b

Em *gerador M
#1lsbinsbash

#F#IF simples

if ["SESTADO™
killall wlc
else
sleep 10
exit

Agora que sabemos escrever a condicdo if, vou mostrar como se escreve os operadores
légicos de comparagdo “-n” e “-z”, prometidos anteriormente, eles sdo escritos antes da variavel a
ser comparada como nula ou ndo nula.

B *teste X

if [-z "$PORTA"]:;then [Se avaridvel PORTA estiver vazia ele mostra o

echo "Variavel sem valor” fexto na tela: Variavel sem valor
fi
if [-n "$PORTA"]1;then Ela recebendo algum valor ele mostra:
echo "A variavel nao esta vazia" @AVvanavelnao estavazia
fi #!/bin/bash
Poderiamos dar o “pulo do gato” e colocar este script if [-z "$PORTA"];then
com apenas um if — se a varidvel ndo tem valor, mostre echo "Variavel sem valor®
. i A » ~ .« .z # Sendo quer dizer que ela tem algum valor
na tela: “variavel sem valor” senao mostre: “A variavel else
nao esta vazia” echo "A varivel niao esta vazia"
fi

Supondo que vocé necessite rodar um comando apenas se a variavel conseguiu colher os
dados do comando “ps” por exemplo (para verificar se determinado programa esta rodando), ndo
hesite em usar 0 -z e 0 -n.

Antes de fazermos o nosso primeiro script vamos “juntar as pecas”: vimos os comandos
basicos, o conceito de varidveis, os operadores de comparacdo e por ultimo o comando if. Se
juntarmos isto mais as pequenas dicas a seguir seremos capazes de fazer o primeiro script.

CILLLLLLLLLLLLLlebiiiibiiliil i Ll Nosso primeiro script

Vamos fazer nosso primeiro script/exercicio, temos ele pronto no capitulo de resolucao de
exercicios, mas é claro que vocé vai resolvé-lo antes de conferir, ndo precisa ficar igual, basta
funcionar.

Onde escrever os scripts

Uma funcdo interessante em alguns editores de texto no Linux, é que eles facilitam a
visualizacdo e escrita de scripts, colorindo os comandos e suas estruturas, recomendo o gedit ou
pluma. Para que esta fungdo seja ativada é necessario colocar no comego do script #!/bin/bash ou
#!/bin/sh etc, e salvar, esta linha especifica o interpretador de comandos, caso ndo tenha o shell
executa qualquer um. (caso nao fique colorido basta modificar a opgao que fica no rodapé mudando
de “texto sem formatacdo” para “sh”)

Passos a passo de como fazer o script, antes do exercicio:

- Abra o editor de texto escolhido

- Escreva na primeira linha #!/bin/bash

- Agora vamos salvar para que as linhas fiquem coloridas

- Tem pessoas que colocam a extensdo .sh no nome do arquivo (tanto faz)

- Para ndo termos problemas futuros, ja vamos dar permissdo de execucdo (chmod +x script)

- Agora ja podemos escrever o script

- Quando o script estiver pronto entre no diretério em questdo e dé o comando ./nome_do_script
para executa-lo

Lembretes:

- Preste muita atengao nos espagos, porque se der espago a mais ou a menos nao vai rodar.

- Lembre-se de sempre fechar o if - “fi”

- Os comandos sempre sdo executados de cima para baixo sequencialmente, ou seja, s6 executa a
proxima linha quando terminar a atual, a ndo ser que usemos o “&”

- Quando houver erros, o terminal mostra em qual linha 0 mesmo esta, nem sempre é aquela linha

- Voceé pode saltar quantas linhas quiser

Exercicio 1 — Primeiro Script

Funcdo do script — Temos 3 médicos, cada um atende num turno diferente, o usuério
informa qual turno deseja se consultar e o programa mostra o nome do médico do turno escolhido,
S0 isso!

Etapas do script:

1- Mostra um texto de boas vindas ao usuario

2- Pede que o usuadrio escolha qual turno que deseja se consultar

3- Mostra o texto nestes moldes: Médico TAL € o tnico a atender no turno TAL
4- “Dorme” por 2 segundos

5- Informa que a consulta estd marcada

6- O programa “dorme” por mais 4 segundos e sai

Resolucao

Capitulo 5 — Operadores Logicos de Conexao
Com estes operadores podemos conectar duas ou mais condi¢Ges criadas com os operadores
de comparagdo, criando assim mais de um evento a ser testado pelo shell, abaixo aprenderemos

sobre os conectores E e OU.

Vamos visualizar como ficam os conectores para ficar mais claro:

Conector das duas condicoes

l

if ["$POWER" |= E SPAINEL" =]1:then
ou Ar.
Condicao Condicio
Comparativa Comparativa

* No exemplo acima temos dois conectores, mas € s6 exemplo, ja que o correto ali seria apenas um
conector.

Operador logico (E)

Entenda conjuncao sendo a unido das condicdes
comparativas feitas pelos conectores.

rasgando o verbo: E tudo que esta dentro dos
colchetes do if []

Aqui a conjuncao é verdadeira se todas as condi¢cdes de comparagdo forem verdadeiras,
entdo mostro a tabela para entendermos a logica.

N° | Condicao1 | Conector | Condicdo 2 | Resultado do teste Explicacao

1° \Y e A% Verdadeiro Porque as duas condicoes sdao verdadeiras

2° F e \Y Falso E falso porque apenas uma condicdo atende

3° \% e F Falso E falso porque apenas uma condicio atende

4° F e F Falso Nenhuma condicao atende
Exemplificando:

Vamos considerar esta 16gica como se fosse um porteiro e ele libera o acesso de acordo com
a situacao descrita abaixo:

S6 entra na festa casais que o homem se chama César E a mulher Juliana:

1° | César e Juliana |Entrada permitida (as duas condic¢Ges sao verdadeiras)

2° | Paulo e Juliana | O nome Juliana bate mas o nome Paulo ndo atende, barrados !

3° | César e Mbonica |O nome César esta na lista mas o nome Monica nao, barrados !

4° | Julio e Carolina |Nenhum dos dois nomes estdo na lista, barrados !

Muitas vezes vamos esbarrar com a necessidade de usar os conectores, vamos supor que eu
preciso de um if rodando apenas em duas situacdes:

Eu fiz um script que diminuia a velocidade dos meus downloads para 100k quando a minha
irmd conectava o notebook, mas quando o pc da minha mae estava ligado simultaneamente, como
eu poderia diminuir a velocidade para 50k compensando duas maquinas ligadas? Entdo eu criei um
if para esta situagao.

Esta é a parte que identifica as duas maquinas ligadas:

if [“6SNOTE” = “ligado” E “$PCMAE” = “ligado”];then
Comando (wondershaper ethO 400 que € igual a — 50k)

fi

Eu usei varios comandos para chegar no valor ligado antes de ser comparado e para outras
velocidades, mas aqui vamos nos prender apenas ao sentido do comando.

Operador logico (OU)

Aqui a conjungdo é verdadeira se uma ou outra condicao for verdadeira (sendo as duas
verdadeiras também é valido):

N° | Condigdo 1| Conector | Condicao 2 | Resultado do teste Explicacao

1° \Y ou A% Verdadeiro Porque pelo menos uma condicgao é verdadeira

2° F ou v Verdadeiro Temos uma condigao verdadeira, e é suficiente

3° \Y ou F Verdadeiro Temos uma condicao verdadeira, e é suficiente

4° F ou F Falso Nenhuma condicdo verdadeira para validarmos
Exemplificando:

Vamos usar o mesmo exemplo da conexdo anterior, s6 que desta vez eu preciso que apenas
uma condicdo seja verdadeira para que ele execute o comando, trocaremos o e pelo ou.

S6 entra na festa casais que o homem se chama César OU a mulher Juliana:

1°| César | ou | Juliana |Entrada permitida, as duas condi¢des sdo verdadeiras

2° | Paulo | ou | Juliana |Entrada permitida, pelo menos uma condicdao verdadeira (juliana)
3°| César | ou | Monica |Entrada permitida, a condicao (César) valida a entrada

4° | Julio ou | Carolina |Nenhum dos dois nomes estdo na lista, barrados !

Pegando o exemplo anterior do script que diminui a velocidade da internet, podemos pensar
na seguinte situacdo: E se eu quisesse diminuir a velocidade da internet para 100k
independentemente da quantidade de pcs ligados, ou seja, se o pc da minha irma OU o pc da minha
made estiverem ligados, ou se os dois simultaneamente diminui para 100k e pronto.

if [“SNOTE” = “ligado” OU “$PCMAE” = “ligado”];then
Comando (wondershaper ethO 800 que € igual a — 100k)

fi

1 condicéo J 22 condicdo |
)] B] L
if ["$POMER" l= "desligado” -a "$PAINEL" = "funcionando"];then

_

Do exemplo acima podemos entender: Se a varidvel POWER ¢ diferente de desligado E a
'Variavel PAINEL é igual a funcionando entdo faga o comando.

Capitulo 6 — Usando os Conectores

Vamos abordar mais alguns exemplos dos conectores e partiremos para a pratica a seguir.

Podemos usar quantos conectores quisermos:

! !

if ["sP1" = "of" -a "$P2" = "of" -a "$P3" = "of"];then

if ["SP1" I= "of" -0 "$P2" 1= "of" -0 "$P3" I= "of"];then

Exemplo de um script completo, que usa o recurso dos conectores:

Note que os comandos if ndo estdo usando aspas nas variaveis e nem nos valores, justamente
por se tratarem de valores numéricos/matematicos.

B saudacao ¥

#1/bin/bash
Este Script da boa tarde bom dia e boa noite de acordo com o horario

Escreve as horas na wvariavel DATA
DATA=%$(date +%H)

Agora que identificamos a hora, o programa executara os audios nos horarios corretos

Se a variavel DATA é igual ou maior gue 13 e menor 18 entao execute o arguivo boatarde.mp3
if [$DATA -ge 13 -a %DATA -1t 18] ; then

mpgl123 fusr/share/boatarde.mp3 # Chama o programa ra rodar o boatarde.mp3
fi

se a hora & menor que 13 entao execute o arquivo bomdia.mp3
if [$DATA -1t 13] ; then

mpg123 fusr/share/bomdia.mp3
fi

se a hora é maior que 18 entao execute o arquivo boanoite.mp3
if [SDATA -ge 18 1 : then
mpg123 fusr/share/boanoite.mp3
fi
exit

Neste script fui obrigado a usar o conector -a para definir o horario da tarde, ja que “estar de
tarde” significa ser mais que 13 horas E menos que 18 horas.

Exercicio 2 - Escrevendo scripts mais elaborados

A funcdo do script é informar a classe do carro conforme pedido pelo usuério

Ferrari e Lamborghini Celta Palio e Uno
Classe A Classe B Classe C
Etapas do script: Aqui ndo vale opgdo numerica

o usudrio deve digitar o nome
do carro, para alcangarmos
o0 objetivo do exercicio

- Informar os carros disponiveis ao usuario
- Pede ao usuario que digite qual carro deseja ver a classe
- Mostra a classe do carro e sai

Conseguindo fazer o script acima teremos atingido os nossos objetivos até aqui, agora
faremos um script que exige um pouco mais de raciocinio, se vocé nao conseguir fazer nao se
preocupe, pode continuar com os proximos capitulos que o raciocinio logico mais apurado
vem com o tempo.

Exercicio 3 — Logica dos PC1 e PC2

Nos temos 2 pcs, vamos perguntar ao usuario quais pcs estdo ligados (um de cada vez),
depois do usuario ter digitado “ligado” ou “desligado” para cada pc, o programa mostra a soma na
tela (ndo é soma feita no shell, leia o0 quadro abaixo para saber).

Conforme os valores abaixo vamos mostrar na tela o valor total referente a soma dos
computadores ligados. Supondo que o PC1 e PC2 estejam ligados, entdo o valor mostrado é 15, se
for apenas o PC2 o valor por sua vez serd 10 e assim sucessivamente, o desafio sera estruturar os ifs
para que nao aparecam informagoes demais ou de menos.

PC1 5
PC2 10

Temos os incrementos abaixo que poderemos adicionar ao exercicio opcionalmente
oferecendo a vocé mais algumas atividades para agucar o raciocinio em Shell Script, faca um
backup do script feito acima e adicione as funcdes pedidas abaixo.

Incrementos:

Se digitar ligado ou desligado errado, avisar o usudrio e sair
Se o usuario digitar desligado para os dois, retornar o valor de zero

Resolucao

Capitulo 7 — Fazendo loops com o “for” e script remoto

J& parou para pensar como podemos deixar um script independente, que fique ali de
prontiddo vigiando as situacOes e executando comandos de acordo com o que acontece, sem
precisar de nenhum gatilho humano, o tempo que for, como se fosse uma sentinela.

Isto é possivel com o “for”, ele é um dos comandos que possibilita a insercdo de loops em
scripts, a sua tradugdo é “para”, ou seja, para determinada condicdo faca o comando enquanto ela

for verdeira.

Maior e menor

Ao usar o comando “for” temos que saber o sentido destes dois comparadores (“>” “<”),
eu uso a seguinte regra para nao confundi-los:

Pense em duas barras

Eu quero dizer para o shell que
A é menor que B entio eu
diminuo o lado da barra em que
esta 0 A.

P |
A

Ficando assim:

Lado que foi fechado
ou seja do menor

R

Agora eu quero dizer que B é
menor que A (ou A é maior que
B). Entdo é s6 inverter a logica.

\ Y

B

A

Ficando assim:

A > B

Eu posso trocar o B de lugar
com o A? Ficaria a mesma

coisa! . < R Nao

O comando que apresentarei
nao podemos inverter os lados.

Entendendo o comando e criando loops limitados

Sintaxe

Os parénteses estario sempre desta forma)

for ((loop=0;loop<3;loop++));do

‘Os cédigos que ficardo rodando no loop ficam aqui dentro

done LAqui fechamos o “for” com o “done” \

Continuando com a sintaxe

Aqui estou usando uma variavel chamada “loop”
Pode ser o nome de variavel que vocé quiser.

Fecha a

Abre a .~
Cond
Condicao Fresae

Ly
for ((loop=0:loop<3;loop++));do
1 1

/As 3 partes que serdo explicadas a seguir, sempre
serdo separadas por ponto e virgula sem espaco.

Diminui ou aumenta o valor
da variavel a cada rodada
variavel++ ou variavel--

Dando um valor
para a variavel loop

Loop=0; loop<3; loop++
ﬁ

Aqui é a chave do negocio, ele da uma condi¢ao enquanto
ela for verdadeira o loop vai rodando, neste caso
enquanto variavel loop for menor que 3 ele vai executando.

A traducao do comando “for”:

1 2
for ((loop=0:loop<3:loop++));do

| Para a variavel loop que vale zero
2 Rode os comandos enquanto ela for menor que 3
3E a cada rodada acrescente + 1.

Acontece isto:

Ele verifica a condicdo e roda uma vez, $loop passara a valer 1, ele verifica se loop estiver
menor que 3 ele roda novamente, depois ele verifica e vé que loop vale 2 e que a condicdo ainda é
verdeira e roda novamente, agora loop vale 3 e ndo é menor do que 3, entdo ele deixa de executar o
“for” e continua o script, ja que a condicdo passou a ser falsa.

Como enchemos o comando de placas, coloquei o

codigo ao lado sem nenhuma polui¢do. - - - At

for ((loop=0;loop<3;loop++));:do
E interessante vocé colocar o comando:
echo $loop (dentro do “for”) para ir
vendo na tela quantos loops dara

echo %loop

done

Criando loops infinitos

Trazendo a l6gica que vimos acima, para criarmos loops infinitos, basta fazer uma condicao
que jamais deixara de ser verdadeira. Exemplo:

for ((loop=2:loop>1:loop++)):do
Conforme mostrado acima, vocé deve concordar comigo que:

- Loop tem o valor de 2
- Para rodar o “for” loop deve ser maior que 1 (e a condicdo ja é verdadeira)
- E o valor de loop nunca vai diminuir, sempre vai aumentar ++

Ou seja, o loop nunca serd menor que 1 para que a condicao seja falsa, entdo ele rodara
“para sempre”.

Se criarmos um loop com comandos rapidos, o script dara milhares de voltas em poucos segundos,
é recomendado colocar um sleep dentro do “for” limitando assim o tempo das rodadas.

Tenho mais duas formas de escrever o “for” que funciona um pouco diferente do que
expliquei anteriormente, como eu nunca usei na pratica vou apenas apresentar.

for cor in azul vermelho amarelo verde Aqui ele rodard 4 vezes, uma para cada

do parametro, sendo que cada vez que ele rodar, a
echo $cor variavel “cor” tera o valor de um parametro, que

done sdo: azul, vermelho ...

for PAR in &% Usamos o mesmo conceito neste “for”, a diferenca é que o usudrio digita os

do parametros (quantos quiser). Ele digita o comando do script, espaco, depois 0s
echo $PAR parametros. ./script parametrol parametro2 parametro3 ...

done

Imagine que vocé esta saindo de casa faltando 20 minutos para terminar aquele download e
vocé precisa ficar presente estes 20 minutos para depois abrir outro programa de download, torrent
por exemplo ja que ele atrapalharia o download atual, depois disto seria necessario desligar o pc
ap6s 2 horas, converter aquele video pesado ou dar um comando demorado etc. Mas como fazer isto
sem estar presente?

Seja bem-vindo ao nosso exercicio 4 — script remoto
O script remoto ficara ao seu dispor para executar qualquer comando, usaremos o Dropbox,
assim pelo celular ou qualquer dispositivo com internet vocé podera comandar o script, mas fique a

vontade de ndo usar o Dropbox e colocar os arquivos em qualquer diretério do pc, ja que a nossa
intencdo € o aprendizado e testar nosso script.

Funcionamento

- O script rodara 1 vez a cada minuto
- A cada rodada ele 1€ o arquivo-texto
- No arquivo-texto escreveremos o comando desejado
- Ele executa o comando digitado e limpa o arquivo-texto

Avisos

- Zere ou crie o arquivo “comando” usando o — echo "" > $HOME/comando (fora do loop)
- Vocé devera usar um certo recurso para o script nao ficar agarrado no comando (cap. 1)

- Use — echo $loop dentro do “for”, sendo vai parecer que deu pau

- Na construgdo do script diminua o tempo de loop para fazer os testes

Se o script for desligar o computador ou qualquer outro comando que exija privilégios, rode
ele como root, caso contrario execute como usuario normal que é bem melhor ja que abrindo
um programa como root as configuragoes estardo diferentes do normal.

http://www.mediafire.com/download/7ceth5Sukcc4c5vg/video _exercicio_4.0gv

Incremento

- Se escrever — vivo? - ele responde — “sim vivo, esperando o comando”, a reposta estara num
arquivo de leitura (avisos).

Resolucao

Capitulo 8 — While e Until

Digamos que os dois comandos descritos aqui tem um pouco do “if” e um pouco do “for”,
um pouco do “for” porque eles também tem como caracteristica rodar em loop e um pouco do “if”
porque tem a mesma estrutura e necessitam de uma condi¢do para rodar.

While

While em inglés significa “enquanto”, ou seja, enquanto a condicdao for verdadeira faca o
comando, no “if” se a condicdo é verdadeira ele roda uma vez, aqui ele vai rodando enquanto ela
for verdadeira (fica “agarrado” dentro dela até mudar para falsa).

Podemos usar um valor numérico para determinar quantos loops teremos, podemos dar
opcdo do usudrio digitar se quer tentar novamente etc. O importante é usar uma variavel para
“pescar” o while ou until.

Sintaxe
while [Condicao J;do

comando
done

O loop do while pode usar para rodar:

Numeros

Usando o mesmo conceito do “for” podemos ver que o script abaixo dara cinco voltas: 0, 1,
2, 3 e 4. Eu ndo ensinei a lidar com matematica, mas basta seguir o conceito abaixo, ndo coloque
aspas na soma e respeite 0s espacos visiveis (a mesma coisa vale para a condi¢cdo comparativa).

#!/bin/bash

Mesmo sendo um valor numérico

VOLTA=$"0" |
n6s damos este valor usando aspas

while [$vOLTA -1t 5];do [Condicio: Enquanto VOLTA for menor que 5 faca o comando |

echo $voLTA (Comando dentro do loop |

- /Aqui eu somo +1 para contar mais um loop dado: variavel $VOLTA é
VOLTA=$[$VOLTA + 1
[] igual ao valor de $VOLTA +1

done [Fechando o while

Este script diz:

- Volta é igual a zero
- Enquanto $VOLTA for menor que 5 faca o comando
- Adicione +1 na variavel VOLTA

Um exemplo pratico foi o que usei no proteccontinuo, eu perguntava ao usudrio quantos
players ele desejava adicionar no programa e quando o script fosse criar os players ele pegava a
variavel que usei com o usuario, entdo se o usuario respondeu 3 o while dava 3 loops, repetindo o
comando dentro do while 3 vezes e consequentemente criando o proteccontinuo para 3 players.

Texto

Podermos pegar textos para dar voltas no while usando a saida de um comando por
exemplo, eu faco um programa de verificagdo e enquanto a saida deste comando for determinada
palavra o while vai rodando até que ela mude e saia do loop. As variacdes sao infinitas, mais para
frente aprenderemos a filtrar textos/saidas de uma forma que possamos resumi-los a uma linha, uma
palavra etc.

A seguir usaremos um loop que dara voltas e voltas até que o usudrio decida passar adiante.

#1/bin/bash

VOLTA=3"- 1" Garantindo que entrard no loop, poderiamos perguntar isto ao usuario também
while ["$VOLTA" = "sim”];do

echo "Digite sim se deseja tentar novamente ou con para continuar"

read VOLTA

O script podera fazer algo que s6 o usuario pode decidir quando prosseguir,
entdo ele responde continuar e o while automaticamente saira do loop.

done

Until

Until significa até — até que determinada condicdo seja verdadeira execute, ou seja, ele
executa se a condicao for falsa e s6 termina quando ela for verdadeira. Entdo eu posso usar uma
variavel de valor 5 e até que ela se torne 10 vai rodando e dentro do until usaremos a mesma sintaxe
de soma que usamos no while. O dado que determina o loop também pode ser texto, mas ndo acho
interessante, o importante usa-lo quando achar necessario executar o “até”.

Sintaxe

until [Condigao];do
comando
done

Ele é idéntico ao while, tendo apenas a sua légica invertida, tudo que abordamos com o
while anteriormente vale para o until, entdo ndo explicarei novamente, vou dar um exemplo:

#ls/bins/bash

/Até que $VOLTA seja maior que 5 entdo faca o
comando. Ele vai rodando até que a condicdao
until [$vOLTA -gt 5 1;do getorne verdadeira, ou seja, até $VOLTA ser
maior que 5.

VOLTA=%"0"

echo SVOLTA

VOLTA=%[SWVOLTA + 1 7] IAs suas voltas serdo: 0,1, 2, 3,4e5

done

Exercicio 5 — Pedindo senha ao usuario

O que o script faz:

- Da boas vindas

- Pede senha ao usuario
- A senha sendo correta ele executa o comando — echo “senha correta” e sai

- Caso contrario o usuario tenta novamente sem sair do script (loop)

- Sdo até 5 tentativas e depois das 5 o script mostra “tentativas esgotadas” e sai

/A senha pode ser 123

O desafio aqui é a logica e saber quais comandos colocar dentro do loop.

Este script tera utilidade quando aprendermos sobre fungdes, ja que ela é um atalho que nos
joga para determinada parte do script, entdo supondo que facamos um programa de cédigo fechado,
o usudrio s6 conseguiria executar determinada parte do script se digitasse a senha corretamente e o
atalho estaria dentro do while ou until.

Resolucao

Capitulo 9 — Operacoes matematicas e inicializacao de scripts

Ja vimos um pouco de matematica quando somamos o valor da variavel +1 para contarmos o
loop:

VOLTA=S[SVOLTA + 1]

VOLTA=§[SVOLTA - 1]

Quando o script precisar literalmente fazer contas igual uma calculadora, usamos a sintaxe
abaixo, deixando a conta sempre entre os dois parénteses e associando o resultado a uma variavel,
neste comando ndo faz diferenca escrever com ou sem espago.

#!/bin/bash
CONTA=$((10 * 2))

echo SCONTA

Acima a variavel CONTA é igual ao resultado da operagdo entre parénteses e no echo eu
mostro o resultado.

Uma vez usei este conceito para redundancia, se o comando retornasse 64 eu executaria o
comando 2, s6 que apenas uma verificacdo poderia ter falhas, entdo coloquei trés verificacdes somei
todas elas usando suas variaveis e na légica de comparacdo eu dizia que poderia executar o
comando se o valor fosse igual ou maior que 64, ou seja, se até duas verificacGes falhassem eu
conseguiria o valor 64 o que indicava que pelo menos uma estava funcionando. Abaixo uma
aplicacdo das operagdes matematicas usando variaveis.

#!/bin/bash

N1=§"3"
N2=§"2"

CONTA=$((SN1 * $N2))

E dificil dar exemplos praticos, eu usei pouquissimas vezes contas em script, a nao ser que o
seu programa seja mais voltado para matematica.

Devemos salientar que se o valor for considerado matematico devemos ter cuidado com as
aspas no if, while etc.

Aqui fazemos o comando considerando a E aqui como um texto, colocando aspas na
condi¢cdo como um valor matematico variavel e item a ser comparado
if [SCONTA -eq 1 1;then if ["sconNTA" = "1" 1:then

Podemos ter outras variagdes que podem dar certo, vocé sabendo estas 2, vamos complicar pra qué?

Inicializando scripts com o sistema e programando-os

Daqui para baixo ndo se preocupe em decorar nada, use para consultas futuras.

Inicializacao
Rc2.d

Com o diretorio rc2.d o script serd uma das ultimas coisas a serem executadas como root,
basta seguir o passo a passo abaixo:

coloque o script em — /etc/init.d
coloque seu atalho em — /etc/rc2.d/

Atalhos comecando com nome S99 sdo os tltimos executados, podendo ficar assim:
/etc/rc2.d/S99meus_cript

Rc.local

Basta colocar o endereco do script no arquivo-texto — etc/rc.local

Exemplo:
/etc/meu_script

Inicializando com usudrio especifico:
sudo -u usuario /etc/script

Também podemos programar o script para executar em determinados dias e horarios.
Cron
service cron restart

Editamos o arquivo /etc/crontab levando em consideracdo os campos abaixo.

Campo Funcado Preenchimento
1° Minuto 0-59
2° Hora 0-23
3° Dia do Més 1-31
4° Més 1-12
5° Dia da Semana 0 Domingo, 1 Segunda ...
6° usuario root luiz etc.
7° Programa para execucao Comando

*0 6° campo pode ser omitido, mais evite fazer isto, porque costuma dar pau

Ficando assim — 20 10 2 12 2 luiz /home/luiz/meu_script

Do comando gerado acima podemos entender — aos 20 minutos das 10 horas do dia 2 de dezembro
numa terca feira o usuario luiz executara o “meu_script” que esta em /home/luiz

Referéncia do Cron: http://www.hardware.com.br/dicas/cron.html

Capitulo 10 — Comando Case

E muito mais facil criarmos menus com um comando préprio, na programacio nés temos o
“case” que facilita em muito a construcdo destas estruturas, com ele podemos colher dados de uma
variavel que indicara qual opcao o case deve executar.

Estrutura do case

1)

Supondo que criamos um menu com 3 opgOes para o usuario escolher uma, o case executa o
comando de acordo com o valor recebido pela variavel.

Comando

2)

Comando;

3)

Comando

-
P

-
¥

&
)

esac Aqui fechamos o case escrevendo ele ao contrario

Exemplo na pratica

echo "Qual € o comando do seu Screensaver?”

echo

echo "1- mate-screensaver” Mostrando 0 menu para 0 USUario

echo "2- gnome-screensaver”

echo "3- XScreensaver"”

echo "4- Outro”

read distro

echo Colhendo o valor da variavel e abrindo o case

case %distro in

1)

SCREN=%"mate-screensaver" ! :

2)

SCREN=%"gnome-screensaver"; ;

3)

SCREN=%"xscreensaver"::

o i Repare que na opgao 4 temos dois comandos, o ponto e virgula s6
echo "Digite o comando [Pt @ 3 p¢ »0Pp

read SCREN:; consta no ultimo comando

B Aqui eu coloquei a opcdo “*”, ou seja, se o usuario digitar algo que
echo "Opcac invalida- fAquieu quei a opgao “*”, ou seja, usuario digitar algo qu
exit;; ndo consta nas opgdes ele cai aqui

esac

Nao existem limites na quantidade de linhas que colocaremos nas opgoes, eu ja cheguei a
colocar verdadeiros scripts dentro de cada uma.

E isto, ndo temos muito o que falar do case, com ele basta criarmos condicdes para que a
variavel receba algum valor antes de executa-lo e sempre repetir sua sintaxe:

- Abertura do comando — case variavel usada in

- Opcoes que ficam antes dos parénteses — nimero_ou_texto)

- Terminando os comandos da opg¢ao, colocar ponto e virgula 2 vezes no final do dltimo comando
- Fecha-lo escrevendo case ao contrario — esac

Exercicio 6 — Pequeno desafio de logica
A variavel recebe um numero digitado pelo usuario

Sdo 3 rodadas no total e em cada uma delas o script multiplica o niimero dado pelo usuario
com o numero indicado abaixo:

1°rodada — 10
2° rodada — 20
3°rodada - 30

Entdo se o usudrio digitou 3, serdo 3x10 3x20 e 3x30 mostrando na tela um resultado a cada
loop, o desafio aqui é fazer uma multiplicagdo diferente a cada rodada ja que ndo podemos prever o
numero que sera digitado pelo usuario.

Exemplo de como deve aparecer na tela:

Juiz@linuxmint ~ %

Existem varias formas de se fazer este pequeno script, aqui usaremos o while e case para
alcancarmos 0s nossos objetivos. Se vocé tiver dificuldades saiba que usaremos 90 % do tempo para
pensar e 10 % para escrever o script.

Resolucao

Capitulo 11 — Funcao e Parametro
Funcao

O papel da funcdo é segmentar varios codigos no scripts tornando-os acessiveis a qualquer
momento e em qualquer parte, usar a funcdo é como colocar varios scripts num sé script. Um
exemplo pratico disto é o protec onde eu tinha muitas opg¢oes a serem executadas de varias partes do
script (o case ndo resolveria).

No desenho ao 1ado | rumcer ™ 7 Fungdo 1

Codigos Fungdo que instala o Protec

podemos reparar que temoS 3 | runcio>
Cédigos

funcoes e elas sdo acessadas | runcos

dentro dos cédigos de ajuda e| ot TTUCT /7 e =~
g J Restante do script

teste.

Instala o ProtecContinuo

Funcao 3

Ndo seria viavel fazé-lo
com O case porque eu teria que
repetir os codigos em varias
partes do script e o que eram
quase 1000 linhas se tornariam
1500 ou mais.

Na parte de ajuda em determinado momento eu perguntarei ao usuario se ele deseja instalar
o Protec, ProtecContinuo ou testar, usando o valor da varidavel vou comparar no if ou case
executando assim a funcdo que desejamos. Entdo no desenho apresentado podemos visualizar com
as setas para onde o shell pode ir e da mesma forma poderiamos criar acessos de varios pontos para
varios pontos.

Sintaxe

A sintaxe da fungdo serd sempre a mesma, como mostrado abaixo, primeiro o nome dela (no
meu exemplo “instala”) depois dois parénteses sem espaco dentro e uma chave apontando para
esquerda. Nas linhas abaixo vocé coloca os cédigos a serem executados na funcdo e quando
terminar coloque outra chave apontando para direita fechando a fungao.

instala(){

Aqui dentro os codigos a serem executados na funcao

Depois de declarar a funcao ao shell vamos chama-la, para fazer isto basta escrever o nome
da func¢do na linha desejada, no exemplo abaixo o usudrio ja instalou o Protec e se desejar instala-lo
para outro player deve digitar a letra “i”, assim cai no if que tem uma linha chamando a fungao de
nome “instala” o que faz ele “pular” de onde esta indo para outra parte do script.

echo "Digite 'i' para instalar em outro player ou 's' para sair"
read prox
if ["$prox” = "i" 1;then
instala <:‘Chamaafung§0 instala
fi
Parametros

Os parametros sao valores armazenados em variaveis pré-determinadas, estes valores sao
fornecidos quando o usudrio digita o comando que chama o programa/script pelo terminal, depois
de digitar o “chamador” damos espaco e digitamos o primeiro parametro e assim sucessivamente
conforme mostrado abaixo.

uiz@linuxmint

Ou na pratica — abaixo eu tenho o script “back” que em seu cddigo da um cp (copiar) no
primeiro parametro e cola no segundo.

luiz@linuxmint

Sem saber usamos os parametros no terminal, o comando apt-get install firefox, apt-get é o
comando do programa, install e firefox sdo os parametros, internamente o apt compara o valor do
primeiro parametro para saber se instala, remove etc. E depois ele pega o segundo parametro que
sera o objeto a ser tratado.

E claro que o apt é muito mais do que isso e temos comandos gigantescos com varios
parametros que eu ndo fago ideia da explicacdo, porém se vocé pegou a nogao de parametros ja é o
suficiente.

Endereco com varios sites tutoriais de Shell Script

http://aurelio.net/shell/

Sintaxe

Nés temos os parametros $1 $2 $3 $4 $5 $6 $7 $8 $9, entdo colocamos ele no script ndo
para receber valor, mas ja usando os valores que serdo digitados no terminal.

#!/bin/bash

echo $1 $2 $3 $4 $5 $6 $7 $8 $9

O script anterior demonstra o funcionamento dos parametros, se o usuario digitar o comando
do script e ao lado colocar — Linux, entdo sera executado o comando echo mostrando a palavra
Linux, se ele digitar “Linux e livre” serdo 3 parametros e o shell executard o echo até o terceiro
parametros, e assim sucessivamente.

As aplicagdes sdo infinitas, eu poderia usar o valor de um parametro para determinar a
quantidade de loops, para colher um nome de usudrio, para receber valores a serem calculados etc.
O script abaixo por exemplo, dorme com o tempo determinado pelo usuéario e depois mata o
programa também com a indicacdo do usuario.

#!/bin/bash
sleep 1

killall sz

O usudrio daria um comando parecido com este — ./script 100 firefox

Exercicio 7 — Funcao e parametro no mesmo script

- O usudrio entra no programa utilizando o seu nome como parametro

- Aparecera a tela de boas vindas constando o nome deste usuario

- Ele faz um cadastro (poucos dados s6 para simular, cpf é obrigatorio)

- Ele é jogado para a segunda parte (de compra), nesta parte é pedido o cpf novamente e se o
mesmo estiver errado (de acordo com o que foi cadastrado), o script volta para cadastrar o cpf
novamente

Bons estudos e procure entender a légica de programacado mais do que decorar comandos

Resolucao

Capitulo 12 — Comandos sed, cut, pipeline, tr e grep

Os comandos apresentados aqui deixam o script mais “inteligente” ajudando-o a “ler”,
escrever, filtrar, colocar mais de um comando na mesma linha etc.

O texto abaixo sera usado de exemplo nas préximas ferramentas mostradas aqui

L1 - Contribuir com o software livre é contribuir consigo mesmo,
L2 - porque hoje vocé usa a tecnologia criada por alguém no passado
L3 - e amanha outros poderdo desfrutar da sua contribuig¢do iniciada hoje.

Sed

O comando sed tem varias funcionalidades relacionadas a filtragem, como exibir linhas com
determinada palavra, extrair um trecho do texto, trocar linhas de lugar etc. Como o material do
mesmo € vasto vamos aprender apenas a filtrar textos especificando por linha, o que nos ajudara nas
filtragens.

Para mostrarmos somente determinada linha damos o comando:

Mas isto ndo é o suficiente, devemos executar algum comando para que ele filtre sua saida,
seja o s, cat, ps etc. Abaixo eu usei o comando cat (exibe o contetido de arquivos-texto) no nosso
texto exemplo e filtrei com o sed.

cat /home/luiz/texto | sed -n "Zp°’

Com o comando acima a saida no texto de exemplo seria esta:

L2 - porque hoje vocé usa a tecnologia criada por alguém no passado
Para “eliminarmos” determinada linha:

Usamos a sintaxe abaixo indicando a linha a ser ocultada
cat /home/luiz/texto | sed 1d

Saindo assim o nosso texto exemplo:

L2 - porque hoje vocé usa a tecnologia criada por alguém no passado
L3 - e amanhd outros poderdo desfrutar da sua contribuig¢do iniciada hoje.

Ou posso eliminar mais de uma linha: Como sio 3 linhas poderiamos usar o

cat /home/luiz/texto | sed -e 1d -e 3d comando de incluir e chegariamos no
mesmo resultado, mas é s6 exemplo.

Saindo assim:

L2 - porque hoje vocé usa a tecnologia criada por alguém no passado

Como somos usuarios iniciantes no shell apresentei apenas o basico e na sua caminhada
vocé podera conhecer os varios recursos que este comando tem.

Caso queira se aprofundar no sed acesse o link:
http://thobias.org/doc/sosed.html

Cut

Com o cut limitamos a saida dos comandos em campos, este texto que escrevo podemos
considerar que seus campos sao determinados pelo caracter “espaco”, entdo se eu pedir ao cut que
me mostre o conteido do campo 3 ele me retornara a palavra “cut”, porque as palavras sdo os
campos e 0s espacos mostram ao shell onde é a delimitacdao dos mesmos, nada te impede de usar a
letra “a” por exemplo como delimitador, saird um resultado muito louco, com isto digo que é vocé
quem determinar o que sera o delimitador e consequentemente 0s campos.

No exemplo anterior considerei o texto ndo tendo nenhum enter, ou seja se temos um
arquivo com varias linhas que sdo exibidas separadamente, o cut mostrara o campo X de cada linha.

O texto abaixo por exemplo, podemos usar o delimitador “dois pontos”

mouse:azul:novo
carro:branco:usado
radio:preto:novo

Entdo usando o comando cut para mostrar o campo 2, seria exibido isto:

azul
branco
preto

Se quisermos mostrar somente a palavra “preto” é s6 usar o cut e sed

cat texto | “cut” pedindo o 2° campo | sed -n '3p' mostrou a linha 3
mouse:azul:novo azul preto
carro:branco:usado branco
radio:preto:novo preto

O importante é sempre procurar padroes que lhes sirvam de base para chegar no conteudo
que alimente corretamente o script. No comando ps podemos filtra-lo de uma forma que cheguemos
somente no pid, o problema é que o pid passando de certa numeracdao ganha mais um caracter
numérico diminuindo um caracter espaco, ou seja o seu comando que funcionava perfeitamente,
simplesmente ndo vai servir mais (tem maneiras de contornar isto, mas nao abordarei aqui).

Entdo preste atencdo em todas as variagdes possiveis para evitar erros no script que nem
sempre sdo faceis de enxergar.

Sintaxe

Comando | -f mais nimero do campo a ser Aqui mostro o caracter que determina o
mostrado campo “espaco”.

cut -f1 -d

Da mesma forma que o sed, o cut também precisa de usar o resultado de outro comando:
cat /home/luiz/texto | cut -f5 -d

Resultado do comando acima dado no texto exemplo (somente na primeira linha e sem o L1):

luiz@linuxmint ~ $

E isto que tinhamos sobre o cut e nunca esqueca que um dia vocé precisard de uma
informacao tao especifica para o seu script e o cut + sed serao a solugao.

Pipeline

Muitas vezes precisamos pegar a saida do comando A para usarmos no comando B e chegar
no resultado final com o comando C, D etc. Além disto podemos diminuir o tamanho do script
juntando varios comandos na mesma linha, é exatamente isto que o pipeline faz, ele é representado
pelo simbolo “|” que esta ao lado da letra “z” bastando digita-lo com o shift.

Exemplo simples: *

echo 1 » /prog/.LOOP1.txt | echo 1 > /prog/.LOOP2.txt | echo 1 > /prog/.LO0OP3.txt | echo 1 > /prog/.LOOP4.txt

No exemplo acima eu precisava zerar 0s arquivos-texto responsaveis pelo loop e nao fazia
muito sentido usar varias linhas para isto, entdo coloquei todos concatenados na mesma linha
usando o pipeline. (mais tarde eu descobri que ndo precisava usar arquivo-texto para o loop rsrs)
Exemplo mais avancado:
ting=%(ping -w 2 192.168.0.160 | cut -f1 -d | sed -n b}

Acima dou 3 pings, limito a saida para o campo 1 (determinado por espaco) e o resultado

disto eu ainda pego e mostro apenas a linha 4 usando o sed.

Para usar o pipeline basta ter criatividade, seja para chegar num resultado que seria mais
dificil de encontrar sem o pipe ou apenas para compactar o script, o importante é sempre testar,
porque nem tudo que parece funcionar vai funcionar.

Tr

Com este comando € possivel substituir caracteres de um texto por outros, é claro que
podemos incluir como texto um script ou um arquivo de configuracdo por exemplo.

Sintaxe

Comando Palavra ou caracter a ser substituido O que vai entrar no lugar
tr ['a,e’] ['4,3']

Executando o comando abaixo em nosso texto exemplo, ele substituira a letra “a” pelo
nimero “4” e a letra “e” pelo niimero 3.

cat /fhome/luiz/texto | tr ["2,e'] ['4,2"]

Ficando assim:

Contribuir com o softw4r3 livr3 é contribuir consigo m3smo,
porqu3 hoj3 vocé us4 4 t3cnologi4 cridd4 por 4lguém no p4ss4do
3 4m4nhd outros pod3rdo d3sfrutdr d4 su4 contribuigdo inici4d4 hoj3.

Uma funcdo muito util no comando tr é a de transformar caracteres minusculos em
maidsculos e vice-versa, assim se pedirmos ao usudrio que digite algo e que este valor seja
obrigatério em maidsculo ou mindsculo podemos transformar este valor com o tr garantindo assim
o funcionamento do script.

Transforma tudo em maiuscula Tudo minascula

cat texto | tr a-z A-Z cat texto | tr A-Z a-z

Elimina o que tem entre aspas do texto (aqui elimina espacos)

cat texto |tr-d " "

O codigo abaixo é um exemplo de como podemos pedir um valor ao usudrio e transforma-lo
do jeito que quisermos, aqui passo tudo que esta maidsculo para mindsculo. Se o usuario digitar
“CASA” entdo o valor da senha passara a ser “casa”, se ele digitar “CAsa” entdo teremos “casa” e
assim por diante.

read senha

senha=$(echo $senha | tr A-Z a-2)

Grep
Com o comando grep também filtramos saidas, mas aqui é por palavra e ndo por nimero de
linha, este comando mostra todas as linhas onde haja a incidéncia da palavra especificada, ele é

muito usado para filtrar saidas extensas no terminal.

Sintaxe

Comando a ser filtrado e Comando grep Palavra a ser filtrada
pipeline para concatenar

1s | grep vlic

No comando acima eu listo os diretorios e peco o grep para mostrar todos que tenham a palavra vlc.

Vamos supor que vou dar o comando “Is -la” no “/home” o resultado sera bem grande, mas
eu desejo localizar os diretdrios contendo o nome “gnome”, entao ...

Sem grep Com grep

luiz@linuxmint ~ § 1s -la
tola

] private

Mostrando apenas as linhas onde constam a
palavra gnome

) luiz luiz 2 3:54 Area de Trabalho
luiz luiz 40 /1112 audacity-data
17 19 12 '

1 luiz ll.:
3 luiz luiz

=

I
I
I
I

Se houver qualquer dificuldade com este comando basta treind-lo no terminal filtrando as
saidas dos comandos que vocé esta acostumado usar.
Exercicio 8 — Usando os comandos
Usando a saida do comando “Is -la” no /home
Faca um comando que exiba:
Somente 0 més de novembro, apenas uma vez e mais nada.
A resposta sera somente — Nov

Pode ser o més que desejar, este ndo vai ter resposta porque de um jeito ou de outro vocé
conseguira chegar no resultado esperado.

Capitulo 13 — Ultimos comandos

Contando as linhas com 0 WC
Além de linhas o wc conta bytes, caracteres, palavras etc. Vide manual (man wc), ele pode
ser muito Util ja que em determinadas situacdes precisaremos saber o niimero de linhas totais para

rodar um loop por exemplo.

Sintaxe

Comando que colhe os dados + pipeline Comando wc contando as linhas

cat texto | wc -1

Aqui o cat mostraria todo o texto como temos 0 wc ele pega a saida conta quantas linhas e
mostra somente a contagem na tela. Muito simples ja que vocé conhece o funcionamento de
comandos que usam a saida de outros comandos.

Time

Podemos cronometrar o tempo de execucdo dos comandos executados no shell, para isto
basta colocar o “time” antes do comando assim:

uiz@Lluizmint — $ time 1s
Area de Trabalho Downloads Modelos Publico
Documentos Imagens Musica Videos

real OmO.031s
user

1S Omo
SYS Ome .004s
uiz@luizmint ~ $ |

No momento eu nao faco ideia de uma aplicacdo pratica deste comando que ndo seja a
curiosidade, mas nunca se sabe quando criaremos um programa que necessite colher os dados do
tempo de execucao de determinado comando.

Sort
Com o sort podemos ordenar as saidas dos comandos alfabética e numericamente

Sem nenhuma opgao ele classificara as saidas alfabeticamente:

luiz # 1s |

Area de Trabalho
Documentos
Downloads
Imagens

Modelos
Musica
Publico
Videos

Usando a opcgdo -n temos a classificagdo numérica:

luiz # 1s -la |

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2

U

Eliminando a saida dos comandos

Muitas vezes precisamos que o script execute determinado comando e que ndo seja
mostrado nada na tela para o usudrio, para isto direcionamos a saida para um “buraco negro” no
Linux.
Direcionamos para o “> /dev/null”

Exemplo:

wondershaper eth® 260 48 = /dev/null
mpgl23 /prog/nextel.mp3 > /dev/null

Acima dois comandos de um script onde era melhor ndo confundir o usuario com a saida
dos comandos.

Figlet

Com o figlet podemos exibir as famosas escritas feitas no terminal, Dando assim uma
incrementada no seu visual:

luiz@luizmint ~ $ figlet Bem Vindo

Sintaxe:
figlet palavra

E provavel que o figlet ndo venha instalado por padrdo, por isto dependendo do contexto
vocé pode usar o proximo comando.

Which

Com este comando verificamos se determinado programa esta instalado, como mostrado
abaixo o programa mpg123 ndo estava instalado por isto o valor retornado foi vazio enquanto que o
firefox ja estava e ele mostrou onde o executavel se encontrava.

luiz@luizmint -~ $ which mpgl23
luiz@luizmint - $

Tuiz@luizmint - $ which firefox
Jusr/bin/firefox

Sintaxe
which programa

Abaixo eu criei uma variavel que recebe o valor do comando which, se ela estiver vazia eu
pergunto ao usuario se ele deseja instalar o mpg123.

WIT=%$(which mpgl123)

Id -u (verificando se é root)

Algumas vezes o script roda da maneira esperada apenas como root ou como usuario
normal, para fazer esta identificacdo usamos o comando “id -u”, quando executado ele pode
retornar o valor “0” (zero) o que significa que estamos logados com usuério detentor de privilégios
root caso contrario indica que o mesmo ndo tem privilégios.

A sintaxe é simplesmente “id -u”, abaixo temos as primeiras linhas do protec onde o mesmo
ndo pode ser executado como root sendo temos uma série de erros, entdo a primeira coisa que o
programa faz é a verificacdo e caso o usudario seja root é mostrado uma mensagem e exit.

#Verifica se nao & usuario root

ROT=%(id -u)

if ["sROT" = "8"];then
echo "0 programa ndoc funciona e odo root, por favor entre novamente
sleep 1
exit

fi

Exercicio 9 — Configurando o0 Samba

Vamos criar um script que automatiza a configuracdo do samba (programa que compartilha
arquivos entre linux-windows linux-linux), facilitando assim a vida do usuario.

Linhas do Samba

Com as linhas abaixo gravadas no /etc/samba/smb.conf ja sdo suficientes para compartilhar
arquivos na rede.

[global]
workgroup = admin # Nome da rede
name resolve order = Imhosts wins bcast host # Evita erros de mapeamento

[arquivos] # Nome que sera exibido para o diretério em questao

path = /home/luiz # Pasta compartilhada

read only = no # D4 permissdo de escrita (ndo é default)

public = yes # Permissdo para convidados (é necessario que o usudrio esteja adicionado no samba)

Acima os itens em azul serdo dados pelos usudrios (através de variaveis) e o restante serdo fixos

- Instala o samba se necessario

- Explica que o programa cria um compartilhamento publico.

- Menu — 1- Nova configuragdo 2- Adicionar novo diretorio 3- Adicionar novo usudrio

- Pergunta ao usuario — nome da rede, diretorio a ser compartilhado e o nome que aparecera

- Renomeia o smb.conf atual criando um backup

- Escreve o novo smb.conf usando as informacdes dadas pelo usudrio

- Pergunta e adiciona usudrios de outras maquinas (#adduser usuario e #smbpasswd -a usuario)
- E pergunta e adiciona o usuario local ao samba (#smbpasswd -a usuario)

- Reinicia o samba (sudo service nmbd restart e sudo service smbd restart)

- Avisa que em breve o compartilhamento ja estara ativo e sai

Visualize a imagem abaixo para ndo errar na hora de imprimir os dados no smb.conf:

echo "texto de configuracao do samba > smb.conf

echo "As variavels nao serao impressas as sim o seu conteddo" == smb.conf
echo "Bastando deixar tudo dentro de aspas, como no exemplo abaixo" >> smb.conf
echo "texto texto $VARIAVEL texto $VARIAVEL texto etc" => smb.conf

Resolucao

Capitulo 14 — Indentacao

Indentacdo é um recuo no texto, na programacdao usamos para deixar os coédigos mais
legiveis facilitando assim a compreensdao das vastas linhas de um script. No shell ela ndao é
obrigatoria, mas se vamos escrever centenas de linhas é recomendavel usa-la.

Como ndo domino o tema vou dar a minha contribuicdo da forma que uso, entdo sinta-se a
vontade em aprofundar no tema.

O conceito é simples se temos um codigo dentro de outro damos 3 espacos e assim por
diante.

#! ybin/bash

while ["SWILEl" =];do
} if ["sprox” = "1i"];ithen
! ; instala

! i else

P exit

.

done

Acima temos o if dentro do while, por isto ele estd 3 espacos a frente e dentro do if temos
uma chamada de fungdo “instala” e também esta 3 espacos a frente, a situacao do “else” é a mesma
do “instala” consequentemente estdo na mesma coluna e como o exit esta dentro do “else”
consequentemente ele recebe os espagos.

Repare os comandos que fecham o while e if eles estdo rentes aos comandos que os abrem
(olhe os pontilhados), assim mesmo se tivermos um nimero grande de ifs, whiles etc. no script ndo
dara tanta confusdo ja que fica mais facil de visualizar onde comeca e onde termina as estruturas e
quais comandos estdo dentro de quais comandos.

Olhe a diferenca dos codigos sem organizacao:
#! /bin/bash

while [SWILEL
if ["Sprox” = "1i"];then
instala

else

exit

fi

done

I
e
=1
o

Outra coisa que recomendo é usar comentarios para dividir secoes no script:

HHHHHEHH
i CHAMA AJUDA ### H

Codigos

DR R R R AR A e e s e AR
Codigos

De qualquer forma vocé entendendo seus codigos é o que importa.

Capitulo 15 — Script com janelas
Script com janelas
As janelas sdo uma espécie de interface grafica para os nossos scripts que interagem com o
clicar do mouse, usando elas melhoramos em muito sua aparéncia e facilitamos a interacdo com o
usuario. N6s poderemos recolher senhas, respostas, dar simples avisos etc. Vai depender do tipo que
usaremos com o comando.

Apenas o --tipo sera modificado na sintaxe abaixo, o resto é padrdao

dialog --tipo 'texto' altura largura

A seguir vamos conhecer alguns tipos de janelas

msgbox (caixa de mensagem)

Este tipo possibilita mostrar uma mensagem na tela bastando dar ok depois de lida para
prosseguir no script.

Sintaxe/Exemplo
dialog --msgbox 'Esta é uma area restrita' 7 40

Saindo assim no terminal:

Esta é uma area restrita

Infobox (caixa de informacao)

Aqui mostramos uma mensagem e logo em seguida o script continua executando sem pedir
confirmacgao.

Sintaxe/Exemplo
dialog --infobox 'instalando os pacotes' 10 40

instalando os pacotes

Textbox (caixa de texto)

Com este tipo podemos exibir um arquivo-texto no terminal como instrucoes, configuracées
etc. abaixo peco para o shell mostrar o arquivo de configuragdo do samba:

Sintaxe/Exemplo
dialog --textbox /etc/samba/smb.conf 40 60

Sample configuration file for the Samba suite for Debi

This is the main Samba configuration file. You should
smb.conf(5) manual page in order to understand the opt
here. Samba has a huge number of configurable options
are not shown in this example

Some options that are often worth tuning have been inc
commented-out examples in this file.
- When such options are commented with “;", the propo
differs from the default Samba behaviour
- When commented with "#", the proposed setting is th
behaviour of Samba but the option is considered imp

5% E'
< EXIT >

HHEHEHHFEHFTEEEEHEHEHR"ER

Onde o usuario clica em + para subir o texto e temos a porcentagem do que ja foi exibido.
Yesno (Sim ou nao)
Agora podemos fazer uma pergunta ao usudrio e esperar que o mesmo responda yes ou no

Sintaxe/Exemplo
dialog --yesno 'Deseja instalar agora ?' 5 30

Deseja instalar agora 7?7

< No >

Para usar a resposta no script devemos utilizar a variavel “$?” (leia abaixo)

Exatamente deste jeito, bastando mudar os comandos internos:

if [$? =0]; then
apt-get install firefox
else
echo "Voceé pode instalar o navegador mais tarde"
exit

Zero é corresponde a sim

fi

Foram apresentadas as janelas mais simples se vocé deseja usar outros tipos, abaixo temos
uma apresentacao breve para que vocé possa pesquisar sua utilizacao:

gauge Barra de porcentagem
checklist Mostra um menu para escolhas multiplas
menu Menu para a escolha de apenas 1 item
calendar Mostra um calendario para o usuario escolher uma data
fselect Digita ou seleciona um arquivo
passwordbox | Pede uma senha

Exercicio Resolvidos

Exercicio 1 — Primeiro script
#!/bin/bash

Este comego tem apenas a parte escrita na tela
echo "Bem vindo ao sistema de marcacdo online"
echo

echo

Se dou opcdo numérica é melhor, assim evitamos do usuario digitar errado ou com acentos
echo "Por favor digite a opcao do turno desejado”

echo

echo "1 - Manha"

echo "2 - Tarde"

echo "3 - Noite"

echo # Espaco para nao ficar embolado com a resposta

Colhendo os dados do turno
read TURNO

Estou colocando como alfanumérico porque ndo vou fazer calculos e ndo quero ter problemas
if ["$TURNO" ="1"];then

echo "Apenas o Doutor Wagner atende no turno da manha"
fi

if ["$TURNQO" ="2"];then
echo "Apenas a doutora Camila atende no turno da tarde"
fi

if ["$TURNO" ="3"];then
echo "Apenas o Doutor Cesar atende no turno noite"
fi

Fazendo o programa dormir por 2 segundos
sleep 2

echo

echo "Sua consulta foi marcada com sucesso!"

Dormindo para dar tempo de ler a mensagem e depois sai
sleep 4

Saindo
exit

Exercicio 2 — Script mais elaborado
#1/bin/bash

echo "Ol4, abaixo os carros disponiveis neste més"
echo

echo "Ferrari, Palio, Celta, Lamborghini e Uno"
echo

Recebendo o valor do carro desejado

echo "Qual carro deseja saber a classe? (digite em minutsculo)"”
read CARRO

echo

Se carro € igual a lamborghini ou a ferrari, entdo so pode ser classe A
Coloquei a variavel no texto, assim o que ele digitar vai aparecer no texto
if ["SCARRO" = "lamborghini" -o "$CARRQO" = "ferrari"];then
echo "$CARRO pertence a classe A"
fi

if ["$CARRO" = "celta"];then
echo "$CARRO pertence a classe B"
fi

if ["SCARRO" = "palio" -0 "$CARRO" = "uno"];then
echo "$CARRO pertence a classe C"
fi

exit

Exercicio 3 - Logica dos PC1 e PC2

#!/bin/bash

echo "Por favor, digite ligado ou desligado para informar o estado dos computadores abaixo"
echo

echo "PC1"

read PC1

echo

echo "PC2"
read PC2
echo

INCREMENTO, Se o usudrio digitou algo que ndo seja ligado e desligado, entdo cai neste if
if ["$PC1" !="ligado" -a "$PC1" != "desligado"];then

echo "Estado invalido para PC1, tente novamente"

sleep 3

exit
fi

if de erro para o PC2

if ["$PC2" !="ligado" -a "$PC2" != "desligado"];then
echo "Estado invalido para PC2, tente novamente"
sleep 3
exit

fi

Posso usar tanto "PC2 = desligado" quanto "PC2 != ligado" a segunda op¢do vai no resto do script
Se pc 1 estiver ligado e o 2 estiver desligado faca o comando
if ["$PC1" = "ligado" -a "$PC2" = "desligado"];then
echo "Valor da amostra é igual a 5"
fi

Acima, se eu ndo incluir o PC2 desligado vai virar uma bagunca e cair naquele if mesmo quando
PC2 estiver ligado, ou seja, mostrara mais de um resultado

Nao corre o risco do "!= ligado" ser outra palavra que nao seja desligado, ja que o primeiro
Incremento se encarregou de eliminar outras escritas
if ["$PC2" = "ligado" -a "$PC1" != "ligado"];then # Se PC2 estiver ligado ...
echo "Valor da amostra € igual a 10"
fi

if ["$PC1" = "ligado" -a "$PC2" = "ligado"];then # Se PC1 e 2 estiverem ligados cai aqui
echo "Valor da amostra € igual a 15"
fi

INCREMENTO, mostrando o resultado quando dois pcs estiverem DESLIGADOS
if ["$PC1" !="ligado" -a "$PC2" != "ligado"];then

echo "Valor da amostra é igual a zero"
fi

exit

Exercicio 4 - Remoto
#!/bin/bash

Criando ou zerando os arquivos-texto
echo "" > $HOME/comando
echo "" > $SHOME/aviso

Loop infinito
for ((loop=2;loop>1;loop++));do

Colocando a velocidade do loop em 1 minuto
sleep 60
echo $loop # Mostrando a rodada na tela

Lendo o arquivo-texto e passando o valor para a variavel
COMANDO=$(cat $SHOME/comando)

INCREMENTO, responde que esta rodando, caso perguntado

if ["$COMANDQ" = "vivo?"];then
echo "sim vivo, esperando o comando, loop $loop" >> $HOME/aviso
COMANDO=$"" # zerando a variavel para nao cair no proximo if
echo > $HOME/comando # Limpando o arquivo-texto

fi

Se a variavel COMANDO nao estiver vazia, entdo vou executar o comando dentro dela
if [-n "SCOMANDQ"];then

$COMANDO& # Coloquei o0 & para o script nao ficar agarrado aqui

echo > $HOME/comando # Limpando o arquivo com o comando

Escrevendo o comando executado no arquivo avisos

echo "Executei" $COMANDO "loop $loop" >> $SHOME/aviso
fi

done

Ele nunca vai sair do loop infinito entdo ndo justifica colocar o exit

Exercicio 5 - Senha
#!/bin/bash

echo

echo " Seja Bem-vindo"

echo

echo "Por favor digite a senha para logar no sistema"
echo

read SENHA

zerando a variavel de loop
X:$”0"

Enquanto x for menor que 4, faca (contei com a primeira tentativa acima)
while [$x -1t 4];do

Se a senha for igual a 123 entdo faca o comando
if ["$SENHA" ="123"];then

echo

echo "Senha correta, logado no sistema"

sleep 2

exit
fi

Se ele ndo cair no if, pede a senha novamente
echo

echo "Senha incorreta tente novamente"

read SENHA

colocando +1 para contarmos as rodadas

x=$[$x+1]
done

Fora do loop eu coloco estes comandos, entdo assim que as tentativas se esgotarem
Ele sai do loop e executa aqui

echo

echo "Numero de tentativas esgotado, tente mais tarde"”

sleep 2

exit

Exercicio 6 — Pequeno desafio de logica
#1/bin/bash

Aqui eu pego o valor da variavel para ser multiplicado
echo "Por favor digite o nimero a ser processado"

echo

read NUM

Determinando um valor para a variavel do while
VOLTA=$"1"

Criando o loop, assim vamos rodar o case 3 vezes
while [$VOLTA -1t 4];do # Enquanto $VOLTA for menor que 4 faca o comando (roda 3 vezes)

Estou usando a variavel de loop no case, assim a cada rodada uma opcao diferente sera executada
case $VOLTA in

Pego o valor dado pelo usuario e multiplico pelo valor pré-determinado no exercicio
1) CONTA=$(($NUM * 10))
echo "Rodada 1 - $SNUM multiplicado por 10 é igual a SCONTA";;

2) CONTA=$(($NUM * 20))
echo "Rodada 2 - $SNUM multiplicado por 20 é igual a SCONTA";;

A cada rodada a variavel CONTA recebera um valor diferente, entdo ndo precisamos criar
#uma variavel diferente para cada opcao do menu

3) CONTA=$(($NUM * 30))
echo "Rodada 3 - $SNUM multiplicado por 30 é igual a SCONTA";;

esac

Somando os nimeros de voltas do while, fora do case logicamente
VOLTA=$[$VOLTA + 1]

done

Exercicio 7 - Funcao e parametro no mesmo script

#1/bin/bash

eu ndo fiz os codigos nesta ordem a toa, algumas caiam numa "sinuca de bico"
echo

echo "Bem vindo $1"

Colhendo os dados do cadastro
echo

echo "Digite o nome da sua cidade"
read CIDADE

echo

echo "Digite seu CEP"

read CEP

echo

Funcao que cadastra o CPF
CADASTRO(){
echo "Digite seu CPF"
read CPF
echo
echo "Cadastro finalizado com sucesso"
LOGANDO # Agora chamamos a funcao de logar
}

LOGANDO(){

echo

echo "Digite seu CPF para logarmos"
read CPF2

echo

Aqui comparo os CPFs como texto
if ["$CPF" = "$CPF2"];then # Se CPF digitado anteriormente é igual ao agora, entdo logue
echo "logado com sucesso”
sleep 5
exit # Depois de dormir 5 segundos ele sai porque ja alcangamos 0s nossos objetivos
else # Sendo for igual durma e chame CADASTRO, para recebermos o cpf novamente
echo "CPF incorreto, porfavor tente novamente"
sleep 3 # Dando uma dormida para dar tempo do usuario ler a mensagem de erro
CADASTRO
fi
}

O shell vai ler as duas funcoes, depois passa por aqui chamando a funcdo CADASTRO
CADASTRO

A tinica forma do usuadrio sair do script é digitando o CPF corretamente, se fosse um script
para empresa € claro que colocariamos outras opcoes

Exercicio 9 — Configurando o Samba
#1/bin/bash

WIT=$(which smbd)
Se o samba ndo estiver instalado cai aqui
if [-z "$WIT"];then
echo "O samba ndo esta instalado, deseja instala-lo agora? s/n"
read INSTALA
if ["$INSTALA" ="s"];then
apt-get install samba
else
exit
fi
fi

echo

echo "Seja Bem-vindo, a seguir vamos configurar um compartilhamento publico"
echo "Escolha a opcdo desejada”

echo

echo "1- Para nova configuracao”

echo "2- Para adicionar um diretério ao compartilhamento ja configurado"

echo "3- Adicionar um novo usuario”

read MENU
case SMENU in

1)
echo
echo
echo "Digite o nome da sua rede de compartilhamento™
read REDE
echo
echo "Digite o endereco do diretorio a ser compartilhado"
read DIRETORIO
echo
echo "Qual o nome sera exibido na rede para este diretorio?"
read NOME_DIR

Renomeando o arquivo de configuracdo para escrevermos um novo
mv /etc/samba/smb.conf /etc/samba/BKsmb.conf

Escrevendo o novo smb.conf

echo "[global]" > /etc/samba/smb.conf # Zerando ou criando o arquivo

echo "workgroup = $REDE" >> /etc/samba/smb.conf

echo "name resolve order = Imhosts wins bcast hos" >> /etc/samba/smb.conf

nn

echo "" >> /etc/samba/smb.conf # Escrevendo uma linha de espaco

echo "[SNOME_DIR]" >> /etc/samba/smb.conf
echo "path = $DIRETORIO" >> /etc/samba/smb.conf
echo "read only = no" >> /etc/samba/smb.conf

echo "public = yes" >> /etc/samba/smb.conf

Loop que adiciona usuarios de outro PC
echo
echo "Algum usuadrio de outra maquina vai usar este compartilhamento? s/n"
read MAIS
while ["$MAIS" ="s"];do
echo

echo "Qual?"
read USU_LA

adduser $USU_LA
smbpasswd -a $USU_LA

echo
echo "mais algum usudrio para adicionar? s/n"
read MAIS

done

echo

echo "Agora informe o nome do seu usuéario para que eu possa adiciona-lo"
read USU

smbpasswd -a $USU

service nmbd restart > /dev/null
service smbd restart > /dev/null

echo
echo "Configuracao concluida, aguarde um momento"
echo "De Linux para Linux demora um pouco a iniciar"

exit;;

2)

Loop que adiciona mais diretorios

MAIS1=$"s" # Garantindo o primeiro loop

while ["$MAIS1" ="s"];do
echo
echo "Digite o endereco do novo diretorio a ser compartilhado"
read DIRETORIO
echo
echo "Qual o nome sera exibido na rede para este diret6rio?"
read NOME_DIR

nn

echo "" >> /etc/samba/smb.conf # Escrevendo uma linha de espaco
echo "[$NOME_DIR]" >> /etc/samba/smb.conf

echo "path = $DIRETORIO" >> /etc/samba/smb.conf

echo "read only = no" >> /etc/samba/smb.conf

echo "public = yes" >> /etc/samba/smb.conf

echo
echo "mais algum diretério? s/n"
read MAIS1

done

service nmbd restart > /dev/null
service smbd restart > /dev/null

echo
echo "Configuracao concluida, aguarde um momento"
exit;;

3)
Loop que adiciona usuarios de outro PC
MAIS2=$"s" # Garantindo o primeiro loop
while ["$MAIS2" ="s"];do
echo "Digite o nome de usuario”
read USU_LA

adduser $USU_LA
smbpasswd -a SUSU_LA

echo "mais algum usudrio para adicionar? s/n"
read MAIS2
done

service nmbd restart > /dev/null
service smbd restart > /dev/null

echo
echo "Configuragao concluida, aguarde um momento"
exit;;

esac

