Desenvolvimento Web com Python e

django

AGRADECIMENTOS

Agradeco primeiramente a Deus, pois sem Ele, eu ndo teria a
capacidade e forca para entender nem uma linha de cédigo sequer.

Agradeco a minha linda esposa, Luiza, pelo infindavel dnimo e
incentivo as minhas loucas iniciativas e a minha familia pelo amor e
suporte.

Agradeco ao grupo do Facebook Python Brasil - Programadores,
pelo apoio e suporte a comunidade Python!

SOBRE O AUTOR

Ola pessoal! Aqui quem vos fala é o Vinicius!

Bom, minha paixdo por computadores e tecnologia despertou
desde cedo, quando ainda era bem novo.

Assim como vocé, entusiasta de tecnologia, eu sempre gostei de
brinquedos "tecnoldgicos" (como eu me divertia jogando Mister Show e
Pense Bem com a minha familia).

Mas minha brincadeira ia além disso! Eu adorava ver como eles
funcionavam.

E como fazer isso sem abri-los?! Certo?

Bom... Isso revoltava minha mdie, que via aquele brinquedo que
tinha demorado tanto para escolher, em "pedacos".

Cabos, motores, capacitores e baterias espalhados sempre fizeram
parte da decoracdo do meu quarto.

Mas minha trilha na computacgdo estava apenas comecando.

Chegou a época de escolher minha graduacao e, como sempre fui
fascinado pelo funcionamento dos meus brinquedos eletrénicos, optei
por cursar Engenharia de Computacdo na Universidade de Brasilia.

Dentre outras coisas, 0 curso serviu para aumentar ainda mais
minha vontade de aprender e desvendar a computacao.

Quem nunca se perguntou como pode um processador conter mais
de 1 bilhao de transistores? Como 0's e 1's conseguem controlar toda essa
maquina extremamente intrigante que € um computador? Essas e outras
varias perguntas sempre fazem parte do dia a dia do universo de quem
tem sede de aprender um pouco mais sobre computacio e tecnologia.

Durante o curso, tive experiéncia na area de suporte e na area de
desenvolvimento, estagiando na propria Universidade e em 0Orgaos
publicos. Sem contar na oportunidade de aprender com grandes
professores e instrutores que tive por la.

Os anos se passaram, me formei e estava na hora de decidir o rumo
da minha vida profissional, e como bom brasiliense que sou, optei pela

vida de concurseiro, fazendo concursos de TI para Tribunais, orgaos
publicos e empresas publicas.

Dado meu esforco, ndo demorou muito e passei no concurso para
area de Tecnologia do Banco do Brasil.

Atualmente eu estou nessa nova empreitada na Python Academy
para produzir e disponibilizar conteudo da mais alta qualidade.

Espero que nosso conteudo faca vocé entender Python DE
VERDADE!

E isso pessoal!

VA DIRETO AO ASSUNTO

INTRODUGAO.......cceeieeeeueeeeeeeeeeeeeeseeesessesessaesssssesesssessessessessssassessessassens 8
O FRAMEWORKDJANGOeeeueeatee et e et et e et et e et eabe e abe e e smbe e e smae e e enneeennne e e e 9
FLUXO DE UMA REQUISIGAO NO DJANGO ..vvuunieieieieieiiiias e s e eeeereiits s e e e e e e eeensnn s e e e s e e eenaananns 10
INSTALAGAD ..etetttuseeeeeeeeettt s e e e e e e et e ek s e e e e et et e be s e e e e et et e be b s e e e e e e e e ebe b an e e e e e eeenennanns 12
HELLO WORLD, DJANGO! +..eitieeeite ettt ettt ettt 13
CONCLUSAO DO CAPITULO ...ttteteestiteaeseutteeessisreeesssabetaessabeeeessssseessansbeeaessnsseaesnssneeenans 22

CAMADA MODELcuuceuuiiuniiiniiinniinniieniieniisiienisrasisesssssssssrsssssssssassssssssnnes 23
ONDE ESTAMOS... et sutetesuteeesateeeamte e e ambe e e aabe e e aab e e e aab e e e amb e e e sab e e e emb e e e amb e e e asb e e e enneeennneeenneas 23
CAMADA IMIODEL 1.ttt ettt ettt et e ettt e et e e e st e e e e bbb e e e e e nsb e e e e e nnbbe e e e anbeeeeaans 25
DB BROWSER FOR SQLITE .ttt ettt ettt ettt nnne e 33
APIDE ACESSO ADADOS ...eiuiiitieee ettt ettt e et e e et e et e e et e e e e e et e e e e e een e eenn s 35
CONCLUSAO DO CAPITULO ...ttteteesitietaeeeuteeeessssreeeesssbesasssnseeeesassseessassseeaessnssnesssnsssneenans 38

CAMADA VIETA ...oouuiiiniiiniiiniiiniiiuiieiieaisiastssiessssasssestsssssssssssssssssnssssssssnses 39
ONDE ESTAMOS.... .ttt sutetesuteeeamteeeaateeeaabe e e aabe e e aab e e e aab e e e aabe e e eab e e e ambe e e emb e e e emb e e e enne e e asneeenneas 40
CAMADA VIEW ...eieeiiitiee e sttt e e ettt a e e sttt e e s sttt e e e et e e e e snbe e e s s sae e e e e nnbe e e e e nnbeeaeesnsneeeeanns 41
FUNGOES VS CLASS BASED VIEWS ...ttt ee s e e e e e e e e e e e ennnnnnas 44
FUNGOES (FUNCTION BASED VIEWS) 1..uvveiuveeveeesteesteesteesteeesssesseessessseeesaesssessesssnesnseens 47
CLASSES (CBV - CLASS BASED VIEWS)vt.vsieuieseeureeete st ste b sie s sseeneeseesse st ssesnesnesnens 53
02 P 65
IVIIDDLEWARES ...t ittee e e ettt aeeetaeeeaaassteaaeasntetaeeamsneeeeaasnbeeaeeansaeeeeasseeeaeansenaeennsneeeeanns 72

CAMADA TEMPLATEoiiiiiiiiineettinneerecneenaeeneesaaiesesnassssesnassasnes 80

ONDE ESTAMOS....eveetuuteeeeeaaseeesasasnteraesssesesssassseseaassesaessnssseesanssseeesanssnesessnssseessnseeesanns 81
DEFINIGAO DE TEMPLATE 1uiet ettt et et s e ettt e et e e e e e e e et e e e et e e e e et e e e e eba e e e e ab e e e eaaan s 82
CONFIGURAGAD «..eieieetiuiae s e e e e eeess e s e e s e e aeee st s e e n e e e e en e s s e e e e e eeenssana s e e eeeeeennnnnnaneeeens 84
DJANGO TEMPLATE LANGUAGEvvviiiieieisisiie e e st e e sttt e s st e e st e e s st e e e a e s e 85
TAGS E FILTROS CUSTOMIZADOS . ..ceeeiuttteeaassnteresssnssensesasssnsaessnsesessanssnesesassseneessnsenessans 108
BUILT=IN FILTERS ttete e ettt e e e sttt ettt e st ettt e st e e et e e s et e e e e nba e e e s nnnnneeeenas 117
(@0]][0 SRS 127
CONCLUSAO DO CAPITULO t.tee et eiuttteeeeaeae e e ettieieeeaaeeesaamtsteeeeeaaeeesaannssseeeeeeaeeesannnnnnees 127
L €0) 7 N P 128

REFERENCIA ..o e eeeeeeeeeeeeeeeeeeeeassssessessssssssssssnssssasssssssssssssnsesesssssssssssnnnns 130

Capitulo|

INTRODUCAO

Django é um framework de alto nivel, escrito em Python que encoraja o
desenvolvimento limpo de aplicacdes web.

Desenvolvido por experientes desenvolvedores, Django toma
conta da parte pesada do desenvolvimento web, como tratamento de
requisicbes, mapeamento objeto-relacional, preparacdo de respostas
HTTP, para que, dessa forma, vocé gaste seu esforco com aquilo
que realmente interessa: suas regras de negocio!

Foi desenvolvido com uma preocupacdo extra em seguranca,
evitando os mais comuns ataques, como Cross site scripting (XSS), Cross
Site Request Forgery (CSRF), SQL injection, entre outros.

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/SQL_Injection

E bastante escaldavel: Django foi desenvolvido para tirar vanta-
gem da maior quantidade de hardware possivel (desde que vocé queira).
Django usa uma arquitetura “zero-compartilnamento”, o que significa
que vocé pode adicionar mais recursos em qualquer nivel: servidores de
banco de dados, cache e/ou servidores de aplicacdo.

Para termos uma boa nocédo do Django como um todo, esse ebook
utiliza uma abordagem bottom-up (de baixo para cima): primeiro
veremos 0s conceitos do Django, depois abordaremos a Camada de
Modelos, depois veremos a Camada de Views e, por fim, a Camada
de Templates.

O Framework Django

Como disse anteriormente, o Django é um framework para construcdo de
aplicacbes web em Python.

E, como todo framework web, ele é um framework MVC (Model
View Controller), certo?

Bem... Nao exatamente!

De acordo com sua documentacao, os desenvolvedores o declaram
como um framework MTV - isto é: Model-Template-View.

Mas por que a diferenca?

Para os desenvolvedores, as Views do Django representam qual
informacdo vocé vé, ndo como vocé vé. Ha uma sutil diferenca.

No Django, uma View é uma forma de processar os dados de uma
URL especifica, pois ela descreve qual informacdo é apresentada,
através do processamento descrito pelo desenvolvedor em seu codigo.

Além disso, é imprescindivel separar conteudo de apresentacado —
que é onde os templates residem.

Como disse, uma View descreve qual informacao é apresentada,
mas uma View normalmalmente delega para um template, que descreve
como a informacao é apresentada.

Assim, onde o Controller se encaixa nessa arquitetura?

No caso do Django, é o proprio framework que faz o trabalho
pesado de processar e rotear uma requisicdo para a View apropriada de
acordo com a configuracao de URL descrita pelo desenvolvedor.

Fluxo de uma requisicao no Django

Para ajudar a entender um pouco melhor, vamos analisar o fluxo
de uma requisicdo saindo do browser do usudrio, passando para o
servidor onde o Django esta sendo executado e retornando ao browser do
usudrio.

Veja a seguinte ilustracao:

ARQUITETURA DO

django

REQUISICAO HTTP

Template

Roteamento

de URLs

urls.py

Views e
Middlewares

views.py

A

‘—
—

Templates

Farms

View

Modelos

models.py

Banco de Dados

Model

Fluxo da Requisigéo

O Django é dividido em trés camadas:

I Fluxo da Resposta

e A Camada de Modelos.
e A Camada de Views.
e A Camada de Templates.

Vamos agora, dar nossos primeiros passos com o0 Django,
comecando pela sua instalacao!

Instalacao

Primeiro, precisamos nos certificar que o Python e o pip (gerenciador
de pacotes do Python) estdo instalados corretamente.

V4 no seu terminal ou prompt de comando e digite o
comando python --version. Deve ser aberto o terminal interativo do
Python (se algo como bash: command not found aparecer, é por que
sua instalacdo ndo esta correta).

Agora, digite pip --version. A saida desse comando deve ser a
versdo instalada do pip. Se ele ndo estiver disponivel, faca o download do
instalador nesse link e execute o codigo.

Vamos executar esse projeto em um ambiente virtual utilizando o
virtualenv para que as dependéncias ndo atrapalhem as que ja estdo
instaladas no seu computador.

Para saber mais sobre o virtualenv, leia esse post aqui sobre
desenvolvimento em ambientes virtuais.

ApOs criarmos nosso ambiente virtual, instalamos o Django com:

https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://pythonacademy.com.br/blog/python-e-virtualenv-como-programar-em-ambientes-virtuais

1 pip install django

Para saber se a instalacdo esta correta, podemos abrir o terminal
interativo do Python (digitando python no seu terminal ou prompt de
comandos) e executar:

1 >>> import django
2 >>> print(django.get_version())

A saida deve ser a versao do Django instalada. No meu caso, a saida
foi2.0.7.

Hello world, Django!

Com tudo instalado corretamente, vamos agora fazer um projeto para
que vocé veja o Django em acao!

Nosso projeto é fazer um sistema de gerenciamento de
Funcionarios. Ou seja, vamos fazer uma aplicagdo onde sera possivel
adicionar, listar, atualizar e deletar Funcionarios.

Vamos comecar criando a estrutura de diretdrios e arquivos
principais para o funcionamento do Django. Para isso, o pessoal do

Django fez um comando muito bacana para nés: o django-admin.py.

Se sua instalacdo estiver correta, esse comando ja foi adicionado
ao seu PATH!

Tente digitar django-admin --version no seu terminal (se ndo

estiver disponivel, tente django-admin.py --version).

Digitando apenas django-admin, é esperado que aparece a lista de
comandos disponiveis, similar a:

1 Available subcommands:
2

3 [django]

4 check

5 compilemessages
6 createcachetable
7 dbshell

8 diffsettings

9 dumpdata

10 flush

11 inspectdb

12 loaddata

13 makemessages

14 makemigrations
15 migrate

16 runserver

17 sendtestemail

18 shell

19 showmigrations
20 sqlflush

21 sqlmigrate

22 sqlsequencereset
23 squashmigrations
24 startapp

25 startproject

26 test

27 testserver

Por ora, estamos interessados no comando startproject que cria
um novo projeto com a estrutura de diretdrios certinha para
comecarmos a desenvolver!

Executamos esse comando da seguinte forma:

=

django-admin.py startproject helloworld

Criando a seguinte estrutura de diretorios:

1 /helloworld

2 - __init__.py
3 - settings.py
4 - urls.py

5 - Wwsgi.py

6 - manage.py

Explicando cada arquivo:

o helloworld/settings.py: Arquivo muito importante com as
configuracdes do nosso projeto, como configuracdes do banco de
dados, aplicativos instalados, configuracdo de arquivos estaticos e
muito mais.

o helloworld/urls.py: Arquivo de configuracdo de rotas (ou
URLConf). E nele que configuramos quem responde a qual URL.

o helloworld/wsgi.py: Aqui configuramos a interface entre o
servidor de aplicacdo e nossa aplicacdo Django.

o manage.py: Arquivo gerado automaticamente pelo Django que
expbe comandos importantes para manutencdo da nossa
aplicacao.

Para testar, va para a pasta raiz do projeto e execute o comando
python manage.py runserver.

Depois, acesse seu browser no endereco http://localhost:8000.

A seguinte tela deve ser mostrada:

[Djange: the Web framer X W %

e c ‘@ lacalhost8000 Q ﬁ‘

django View release notes for Django 2.0

The install worked successfully! Congratulations!

You are seeing this page because DEBUG=True is in
your settings file and you have not configured any
URLs.

Q) Django Documentation [, Tutorial: A Polling App /oo Django Community
Topics, references, & how-to's Get started with Django Connect, get help, or contribute

Se ela aparecer, nossa configuracdo esta correta e o Django esta
pronto para comegarmos a desenvolver!

Agora, vamos criar um app chamado website para separarmos os
arquivos de configuracdo da nossa aplicagdo, que vao ficar na
pasta /helloworld, dos arquivos relacionados ao website.

De acordo com a documentacdo, um app no Django é:

Uma aplicagdo Web que faz alguma coisa, por exemplo - um blog,
um banco de dados de registros publicos ou um aplicativo de
pesquisa. Ja um projeto é uma colegdo de configuragoes e apps para
um website em particular.

Um projeto pode ter varios apps e um app pode estar presente em
diversos projetos.

A fim de criar um novo app, o Django prové outro comando,

chamado django-admin.py startapp.

Ele nos ajuda a criar os arquivos e diretdrios necessarios para tal
objetivo.

Na raiz do projeto, execute:

1 django-admin.py startapp website

Agora, vamos criar algumas pastas para organizar a estrutura da

nossa aplicacdo. Primeiro, crie a pasta templates dentro de website.

Dentro dela, crie uma pasta website e dentro dela, uma pasta chamada

_layouts.

Crie também a pasta static dentro de website, para guardar os
arquivos estaticos (arquivos CSS, Javascript, imagens, fontes, etc). Dentro
dela crie uma pasta website, por questdes de namespace. Dentro dela,

crie: uma pasta css, uma pasta img e uma pasta js.

Assim, nossa estrutura de diretérios deve estar similar a:

1 /helloworld

2 - __init__.py
3 - settings.py
4 - urls.py

5 - wsgi.py

6 /website

7 - templates/

8 - website/
9 - _layouts/
10 - static/

11 - website/
12 - css/
13 - img/
14 - js/
15 - migrations/
16 - __init__.py
17 - admin.py

18 - apps.py

19 - migrations.py
20 - models.py

21 - tests.py

22 - views.py

23 - manage.py

Observacdo: NOs criamos uma pasta com o nome do app (website, no
caso) dentro das pastas static e templates para que o Django crie o
namespace do app. Dessa forma, o Django entende onde buscar os
recursos quando vocé precisar!

Dessa forma, devemos estar com a estrutura da seguinte forma:

helloworld

Para que o Django gerencie esse app, € necessario adiciona-lo
a lista de apps instalados. Fazemos isso atualizando a configuracao
INSTALLED_APPS no arquivo de configuracdo helloworld/settings.py

Ela é uma lista e diz ao Django o conjunto de apps que devem ser
gerenciados no nosso projeto.

E necessario adicionar os apps da nossa aplicagio a essa lista para
que o Django as enxergue. Para isso, procure por:

1 INSTALLED_APPS = [

2 'django.contrib.admin',

3 'django.contrib.auth',

4 "django.contrib.contenttypes’,
5 'django.contrib.sessions’',

6 "django.contrib.messages’',

7 "django.contrib.staticfiles’,
8

i

E adicione website e helloworld, ficando assim:

1 INSTALLED_APPS = [

2 'django.contrib.admin',

3 'django.contrib.auth’,

4 "django.contrib.contenttypes’,
5 "django.contrib.sessions’',

6 "django.contrib.messages’,

7 'django.contrib.staticfiles’,
8 "helloworld',

9 'website'

1

Agora, vamos fazer algumas alteragdes na estrutura do projeto
para organizar e centralizar algumas configuracoes.

Primeiro, vamos passar o arquivo de modelos models.py de
/website para /helloworld, pois 0s arquivos comuns ao projeto vao
ficar centralizados no app helloworld (geralmente temos apenas um

arquivo models.py para o projeto todo).

Como ndo temos mais o arquivo de modelos na pasta /website,
podemos, entdo, excluir a pasta /migrations e omigrations.py, pois

estes serdo gerados e gerenciados pelo app helloworld.

Por fim, devemos estar com a estrutura de diretorios da seguinte
forma:

1 /helloworld

2 - __init__.py
3 - settings.py
4 - urls.py

5 - Wsgi.py

6 - models.py

7 /website

8 - __init__.py
9 - admin.py

10 - apps.py

11 - tests.py

12 - views.py

13 - manage.py

Conclusao do Capitulo

Nesse capitulo, vimos um pouco sobre o Django, suas principais
caracteristicas, sua estrutura de diretdrios e como comecar a
desenvolver utilizando-o!

Vimos as facilidades que o comando django-admin trazem e como
utiliza-lo para criar nosso projeto.

Também o utilizamos para criar apps, que sdo estruturas
modulares do nosso projeto, usados para organizar e separar funcoes
especificas da nossa aplicacgao.

No proximo capitulo, vamos falar sobre a Camada Model do
Django, que € onde residem as entidades do nosso sistema e toda a logica
de acesso a dados!

Capitulo Il

CAMADA MODEL

A Camada de Modelos tem uma funcdo essencial na arquitetura das
aplicacdes desenvolvidas com o Django. E nela que descrevemos os
campos e comportamentos das entidades que irdo compor nosso
sistema. Também é nela que reside a 16gica de acesso aos dados da nossa
aplicacdo. Vamos ver como é simples manipular os dados do nosso
sistema através da poderosa API de Acesso a Dados do Django.

Onde estamos...

No primeiro capitulo, tratamos de conceitos introdutorios do
framework, uma visdo geral da sua arquitetura, sua instalacdo e a
criacdo do famoso Hello World Django-based.

Agora, vamos tratar da primeira camada do Dango, conforme
abaixo:

Modelos

models.py

—
—
—
N

Banco de Dados

Vamos mergulhar um pouco mais e conhecer a camada Model da
arquitetura MTV do Django (Model Template View).

Nela, vamos descrever, em forma de classes, as entidades do
nosso sistema, para que o resto (Template e View) facam sentido.

Camada Model

Vamos comecar pelo basico: pela definicdo de modelo!

Um modelo é a descricdo do dado que sera gerenciado pela sua
aplicacao.

Ele contém os campos e comportamentos desses dados. No fim,
cada modelo vai equivaler a uma tabela no banco de dados.

No Django, um modelo tem basicamente duas caracteristicas:

e F uma classe que herda de django.db.models.Model
e Cada atributo representa um campo da tabela

Com isso, Django gera automaticamente uma API de Acesso a
Dados. Essa API facilita e muito nossa vida quando formos gerenciar
(adicionar, excluir e atualizar) nossos dados.

Para entendermos melhor, vamos modelar nosso “Hello World”!

Vamos supor que sua empresa estd desenvolvendo um sistema de
gerenciamento dos funciondrios e lhe foi dada a tarefa de modelar e

desenvolver o acesso aos dados da entidade Funcionario.

Pensando calmamente em sua estacdo de trabalho enquanto seu
chefe lhe cobra diversas metas e dizendo que o deadline do projeto foi
adiantado em duas semanas vocé pensa nos seguintes atributos para tal

classe:
° Nome
e Sobrenome
e« CPF

o Tempo de servico
« Remuneracao

OKk!

Agora, é necessario passar isso para codigo Python para que o
Django possa entender.

No Django, os modelos sdo descritos no arquivo models. py.

Ele ja foi criado no Capitulo anterior e estd presente na pasta
helloworld/models.py.

Nele, nés iremos descrever cada atributo (nome, sobrenome, CPF
e etc) como um campo (ou Field) da nossa classe de Modelo.

Vamos chamar essa classe de Funcionario.

Seguindo as duas caracteristicas que apresentamos (herdar da
classe Model e mapear os atributos da entidade com os campos),
podemos descrever nosso modelo da seguinte forma:

Ooo~NOOUTL A WN B

WWWWWWWNNNNNNNNNNRPRPRPREPRPRERPRPRRERERE
AU A WNREFPOWOWXNOUIDRWNEPSSOWONOUEA WNEOS

from django.db import models

class Funcionario(models.Model):

nome = models.CharField(
max_length=255,
null=False,
blank=False

)

sobrenome = models.CharField(
max_length=255,
null=False,
blank=False

)

cpf = models.CharField(
max_length=14,
null=False,
blank=False

)

tempo_de_servico = models.IntegerField(
default=0,
null=False,
blank=False

D

remuneracao = models.DecimalField(
max_digits=8,
decimal_places=2,
null=False,
blank=False
)

objetos = models.Manager()

Explicando esse modelo:

Cada campo tem um tipo.

O tipo CharField representa uma string.

O tipo PositiveIntegerField representa um numero inteiro

positivo.

e O tipo DecimalField representa um numero decimal com
precisdo fixa (geralmente utilizamos para representar valores
monetarios).

e Cada tipo tem um conjunto de propriedades, como:
max_length para delimitar o comprimento maximo da
string; decimal_places para configurar o numero de casas
decimais; entre outras (a documentacdo de cada campo e
propriedade pode ser acessada aqui).

« O campo objetos = models.Manager() é utilizado para fazer
operacoOes de busca e sera explicado ali embaixo!

o Observacao: ndo precisamos configurar o identificador id - ele é
herdado do objeto models.Model (do qual nosso modelo herdou)!

Agora que criamos nosso modelo, é necessario executar a criacao
das tabelas no banco de dados.

Para isso, o Django possui dois comandos que ajudam muito:

o makemigrations e o migrate.

O comando makemigrations

O comando makemigrations analisa se foram feitas mudancgas nos
modelos e, em caso positivo, cria novas migracoes (Migrations) para
alterar a estrutura do seu banco de dados, refletindo as alteracdes feitas.

https://docs.djangoproject.com/en/2.0/ref/models/fields/

Vamos entender o que eu acabei de dizer: toda vez que vocé faz
uma alteracdo em seu modelo, é necessario que ela seja aplicada a
estrutura presente no banco de dados.

A esse processo é dado o nome de Migracao! De acordo com a
documentac¢do do Django:

Migracgado é a forma do Django de propagar as alteracdes feitas
em seu modelo (adi¢do de um novo campo, dele¢cdo de um modelo,
etc...) ao seu esquema do banco de dados. Elas foram desenvolvidas
para serem (a maioria das vezes) automaticas, mas cabe a vocé
saber a hora de fazé-las, de executd-las e de resolver os problemas
comuns que vocé possa vir a ser submetidos.

Portanto, toda vez que vocé alterar o seu modelo, ndo se esqueca
de executar python manage.py makemigrations!

Ao executar esse comando no nosso projeto, devemos ter a
seguinte saida:

1 $ python manage.py makemigrations

2

3 Migrations for 'helloworld':

4 helloworld\migrations\@@@1_initial.py
5 - Create model Funcionario

Observacdo: Ao executar pela primeira vez, talvez seja necessdrio
executar o comando referenciando o app os modelos estdo definidos,
com: python manage.py makemigrations helloworld. Depois disso,

apenas python manage.py makemigrations deve bastar!

Agora, podemos ver que foi criada um diretorio chamado
migrations dentro de helloworld.

Nele, vocé pode ver um arquivo chamado 0001_initial.py

Ele contém a Migration que cria o model Funcionario no banco
de dados (veja na saida do comando makemigrations: Create model

Funcionario)

O comando migrate

Quando executamos o makemigrations, o Django cria o banco de dados
e as migrations, mas nao as executa, isto é: ndo aplica as alteracdes no
banco de dados.

Para que o Django as aplique, sdo necessarias trés coisas,
basicamente:

e 1. Que a configuracdo da interface com o banco de dados esteja
descrita no settings.py

e 2. Que os modelos e migrations estejam definidos para esse
projeto.

o 3. Execucdo do comando migrate

Se vocé criou o projeto com django-admin.py createproject
helloworld, a configuracdo padrdo foi aplicada. Procure pela

configuracdo DATABASES no settings.py.

Ela deve ser a seguinte:

1 DATABASES = {

2 "default': {

3 "ENGINE': 'django.db.backends.sqlite3',

4 "NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
5 1}

6}

Por padrio, o Django utiliza um banco de dados leve e completo
chamado SQLite. Ja ja vamos falar mais sobre ele.

Sobre os modelos e migrations, eles ja foram feitos com a definicdo
do Funciondrio no arquivo models.py e com a execuc¢do do comando

makemigrations.
Agora so falta executar o comando migrate, propriamente dito!

Para isso, vamos para a raiz do projeto e executamos: python

manage.py migrate. A saida deve ser:

$ python manage.py migrate

Operations to perform:

Apply all migrations: admin, auth, contenttypes, helloworld, s
essions
Running migrations:

Applying contenttypes.@001_initial... OK

Applying auth.0001_initial... OK

Applying admin.@001_initial... OK
10 Applying admin.@002_logentry_remove_auto_add. ..
11 Applying contenttypes.0002_remove_content_ty...
12 Applying auth.0002_alter_permission_name_max. . .
13 Applying auth.0003_alter_user_email_max_leng...
14 Applying auth.0004_alter_user_username_opts...

Ooco~NOUT A~ WNBE

https://www.sqlite.org/index.html

14 Applying auth.0005_alter_user_last_login_nul...
15 Applying auth.Q006_require_contenttypes_0002. ..
16 Applying auth.@007_alter_validators_add_erro...
17 Applying auth.0008_alter_user_username_max_1...
18 Applying auth.0009_alter_user_last_name_max_. ..
19 Applying helloworld.0001_initial... OK

20 Applying sessions.@001_initial... OK

Calma la... Haviamos definido apenas uma Migration e foram
aplicadas 15!!! Por qué???

Se lembra que a configuracdo INSTALLED_APPS continha varios
apps (e ndo apenas os nossos helloworlde website)?

Pois entdo, cada app desses contém seus proprios modelos e
migrations. Sacou?!

Com a execuc¢do do comando migrate, o Django ira criar diversas
tabelas no banco. Uma delas é a referente ao nosso modelo Funcionario,
similar a:

1 CREATE TABLE helloworld_funcionario (
2 "1d" serial NOT NULL PRIMARY KEY,
3 "nome"™ varchar(255) NOT NULL,

4 "sobrenome™ varchar(255) NOT NULL,
5
6

);

- Isso esta muito abstrato!

- Como eu posso ver o banco, as tabelas e os dados na pratica?

DB Browser for SQLite

Apresento-lhes uma ferramenta MUITO pratica que nos auxilia verificar
se nosso codigo esta fazendo aquilo que queriamos: o DB Browser for
SQLite!

Com ele, podemos ver a estrutura do banco de dados, alterar dados
em tempo real, fazer queries, verificar se os dados foram efetivados no
banco e muito mais!

Clique aqui para fazer o download e instalacdo do software.
Ao terminar a instalagao, abra o DB Browser for SQLite.

Temos a seguinte tela:

http://sqlitebrowser.org/

Arquive Editar Exibir Ajuda

l_-é Movo banco de dados l;# Abrir banco de dados 3 Escrever modificacies Z Reverter modificacies

| Editar célula do banco de dados & X

Estrutura do banco de dados | Navegar dados I Editar pragmas I Executar SQL |

g Criar tabela & Criar indice [Modificar tabela " Deletar tabela Modo: |Texto DiErias EiEiras Definir como NULL

Mome Tipo Esquema

Tipo de dado atualmente na célula: NULL
0 byte

Aplicar

UTF-8

Aqui, podemos clicar em “Abrir banco de dados” e procurar pelo
banco de dados do nosso projeto db.sqlite3 (ele estd na raiz do
projeto).

Ao importa-lo, teremos uma visdo geral, mostrando Tabelas,
indices, Views e Triggers.

Para ver os dados de cada tabela, va para a aba “Navegar dados”,
escolha nossa tabela helloworld_funcionarioe...

Voila! O que temos? NADA @

Calma jovem... Ainda ndo adicionamos nada! Ja ja vamos criar

as Views e Templates e popular esse BD! ®

APl de Acesso a Dados

Com nossa classe Funciondrio modelada, vamos agora ver a API de
acesso a dados provida pelo Django para facilitar muito a nossa vida!

Vamos testar a adi¢cdo de um novo funciondrio utilizando o shell do
Django. Para isso, digite o comando:

1 python manage.py shell

O shell do Django é muito ttil para testar trechos de codigo sem
ter que executar o servidor inteiro!

Para adicionar um novo funcionario, basta criar uma instancia do
seu modelo e chamar o método save() (ndo desenvolvemos esse método,
mas lembra que nosso modelo herdou de Models? Pois é, é de la que ele

veio).
Podemos fazer isso com o cédigo abaixo (no shell do Django):
1 from helloworld.models import Funcionario
2
3 funcionario = Funcionario(
4 nome="'Marcos"',
5 sobrenome="da Silva',
6 cpf="015.458.895-50",
7 tempo_de_servico=5,
8 remuneracao=10500.00
2)

10
11 funcionario.save()

E.... Pronto!
O Funciondrio Marcos da Silva serd salvo no seu banco!

NADA de codigo SQL e queries enormes!!! Tudo simples! Tudo
limpo! Tudo Python!

A API de busca de dados é ainda mais completa! Nela, vocé
constroi sua query a nivel de objeto!

Mas como assim?!

Por exemplo, para buscar todos os Funcionarios, abra o shell do
Django e digite:

1 funcionarios = Funcionario.objetos.all()

Se lembra do tal Manager que falamos la em cima? Entdo,

um Manager € a interface na qual as operacdes de busca sdo definidas
para o seu modelo.

Ou seja, através do campo objetos podemos fazer queries
incriveis sem uma linha de SQL!

Exemplo de um query um pouco mais complexa:

Busque todos os funciondrios que tenham mais de 3 anos de
servico, que ganhem menos de R$ 5.000,00 de remuneracdo e
que ndao tenham Marcos no nome.

Podemos atingir esse objetivo com:

1 funcionarios = Funcionario.objetos
2 .exclude(name="Marcos™)

3 .filter(tempo_de_servico__gt=3)
4 .filter(remuneracao__1t=5000.00)
5 allO

O método exclude() retira linhas da pesquisa e filter() filtra a
busca!

No exemplo, para filtrar por maior que concatenamos a string
__gt (gt = greater than = maiores que) ao filtro e __1t (It = less than =
menores que) para resultados menores que o valor passado.

O método .all() ao final da query serve para retornar todas as
linhas do banco que cumpram os filtros da nossa busca (também temos
o first() que retorna apenas o primeiro registro, o last(), que
retorna o ultimo, entre outros).

Agora, vamos ver como € simples excluir um Funcionario:

Agora, o deletamos!
funcionario.delete()

1 # Primeiro, encontramos o Funciondrio que desejamos deletar
2 funcionario = Funcionario

3 .objetos

4 filter(id=1)

5 firstQO

6

7

8

Legal, né?!

A atualizacdo também é extremamente simples, bastando buscar
a instancia desejada, alterar o campo e salva-lo novamente!

Por exemplo: o funcionario de id = 13 se casou e alterou seu nome
de Marcos da Silva para Marcos da Silva Albuquerque.

Podemos fazer essa alteracdo da seguinte forma:

Primeiro, buscamos o funcionario desejado
funcionario = Funcionario

.objetos

.filter(id=13)

first(O)

Alteramos seu sobrenome
funcionario.sobrenome = funcionario.sobrenome + " Albuquerque"

Salvamos as alteracbes
funcionario.save()

PP OoO~NOOUVTA, WN -

P o

Conclusao do Capitulo

Com isso, concluimos a construcdo do modelo da nossa aplicagao!

Criamos o banco de dados, vimos como visualizar os dados com
o DB Browser for SQLite e como a API de acesso a dados do Django é
simples e poderosa!

No proximo capitulo, vamos aprender sobre a Camada View e
como podemos adicionar logica de negdcio a nossa aplicacao!

Capitulo Il

CAMADA VIEW

Nesse capitulo, vamos abordar a Camada View do Django.

E nela que descreveremos a ldgica de negdcios da nossa aplicacio,
ou seja: € nela que vamos descrever os métodos que irdo processar as
requisicoes, formular respostas e envia-las de volta ao usuario.

Vamos aprender o conceito das Views do Django, aprender a
diferenca entre Function Based Views e Class Based Views, como utilizar
Forms, aprender o que é um Middleware e como desenvolver nossos
proprios e muito mais.

Entdo vamos nessa, que esse capitulo esta completo!

Onde estamos...

Primeiramente, vamos nos situar:

[View

Roteamento Views e
de URLs Middlewares ¢ Templates
urls.py views.py ’

Forms
A

Camada View

Essa camada tem a responsabilidade de processar as requisicoes vindas
dos usudrios, formar uma resposta e envia-la de volta ao usudrio. E aqui
que residem nossas logicas de negocio!

Ou seja, essa camada deve: recepcionar, processar e responder!

Para isso, comecamos pelo roteamento de URLs!

A partir da URL que o usudrio quer acessar (/funcionarios, por
exemplo), o Django ird rotear a requisicdo para quem ird trata-la.

Mas primeiro, o Django precisa ser informado para onde mandar
a requisicao.

Fazemos isso no chamado URLconf e damos o nome a esse
arquivo, por convencdao, de urls.py!

Geralmente, temos um arquivo de rotas por app do Django.
Portanto, crie um arquivo urls.py dentro da pasta /helloworld e outro

na pasta /website.

Como o app helloworld é o nucleo da nossa aplicacdo, ele faz o
papel de centralizador de rotas, isto é:

o Primeiro, a requisicdo cai no arquivo /helloworld/urls.py e é
roteada para o app correspondente.

o Emseguida, o URLConfdo app (/website/urls.py, nonosso caso)
vai rotear a requisicao para a view que ira processar a requisicao.

Dessa forma, o arquivo helloworld/urls.py deve conter:

from django.urls.conf import include
from django.contrib import admin
from django.urls import path

urlpatterns = [
Inclui as URLs do app ‘website’
path('", include('website.urls', namespace="website')),

Interface administrativa
path('admin/', admin.site.urls),

SVweoe~NouprwNE

(=Y
=
L

Assim, o Django ira tentar fazer o match (casamento) de URLs
primeiro no arquivo de URLs do app Website (website/urls.py) depois
no URLConf da plataforma administrativa.

Pode parecer complicado, mas ali embaixo, quando tratarmos mais
sobre Views, vai fazer mais sentido!

A configuracdo do URLConf é bem simples!

Basta definirmos qual fung¢do ou View ira processar requisicoes
de tal URL. Por exemplo, queremos que:

Quando um usudrio acesse a URL raiz /; o Django chame a

fungdo 1ndex() para processar tal requisicdo.

Vejamos como poderiamos configurar esse roteamento no nosso

arquivo urls.py:

1 # Importamos a fungdo index() definida no arquivo views.py
2 from . import views
3
4 app_name = 'website'
5
6 # urlpatterns contém a lista de roteamentos de URLs
7 urlpatterns = [
8 # GET /
9 path('', views.index, name='index'),
10]
O atributo app_name = 'website' define o namespace do app

website (lembre-se do décimo nono Zen do Python: namespaces sdo uma
boa ideia! - clique aqui para saber mais sobre o Zen do Python).

O método path() tem a seguinte assinatura:
path(rota, view, kwargs=None, nome=Nome).

e rota: string contendo a rota (URL).

e view: a funcgdo (ou classe) que ira tratar essa rota.

e kwargs: utilizado para passar dados adicionais a funcdo ou
método que ird tratar a requisicao.

e nome: nome da rota. O Django utiliza o app_name mais o nome da
rota para nomear a URL. Por exemplo, no nosso caso, podemos
chamar a rota raiz '/' com 'website:index' (app_site =
website e a rota raiz = index). Veja mais sobre padrdes de formato
de URL.

https://pythonacademy.com.br/zen-of-python
https://docs.djangoproject.com/pt-br/2.0/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/pt-br/2.0/topics/http/urls/#naming-url-patterns

Funcoes vs Class Based Views

Com as URLs corretamente configuradas, o Django ird rotear a sua
requisicdo para onde vocé definiu. No caso acima, sua requisicao ira cair

na funcdo views. funcionarios_por_ano().

Podemos tratar as requisi¢oes de duas formas: através de funcgoes
(Function Based Views) ou através de Class Based Views (ou apenas
CBVs).

Utilizando funcoes, vocé basicamente vai definir uma funcao que:

e Recebe como pardmetro uma requisicao (request).
e Realiza algum processamento.
e Retorna alguma informacao.

Ja as Class Based Views sdo classes que herdam da classe do Django
django.view.generic.base.View e que agrupam diversas
funcionalidades e facilitam a vida do desenvolvedor.

NoOs podemos herdar e estender as funcionalidades das Class
Based Views para atender a logica da nossa aplicacao.

Por exemplo, suponha vocé quer criar uma pagina com a listagem
de todos os funcionarios.

Utilizando funcdes, vocé poderia chegar ao objetivo da seguinte
forma:

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15

def lista_funcionarios(request):

Primeiro, buscamos os funcionarios
funcionarios = Funcionario.objetos.all()

Incluimos no contexto
contexto = {
"funcionarios': funcionarios

¥

Retornamos o template para listar os funciondrios
return render(

request,

"templates/funcionarios.html",

contexto

D

Aqui, algumas colocagdes:

Toda fungdo que vai processar requisi¢cdes no Django recebe como
parametro um objeto request contendo os dados da requisicao.
Contexto € o conjunto de dados que estardo disponiveis para
construcao da pagina - ou template.

A funcéo django.shortcuts.render() é um atalho (shortcut) do
proprio Django que facilita a renderizacdo de templates: ela recebe
a propria requisicdo, o diretério do template, o contexto da
requisicdo e retorna o template renderizado.

Ja utilizando Class Based Views, podemos utilizar a ListView

presente em django.views.generic para listar todos os funcionarios,

da seguinte forma:

1 from django.views.generic import ListView

2
3 class ListaFuncionarios(ListView):
4 template_name = "templates/funcionarios.html"
5 model = Funcionario
6 context_object_name = "funcionarios"
Perceba que vocé ndo precisou descrever a logica para buscar a lista
de funcionarios?

E exatamente isso que as Views do Django proporcionam: elas
descrevem o comportamento padrdo para as funcionalidades mais
simples (listagem, exclusdo, busca simples, atualizacdo).

O caso comum para uma listagem de objetos é buscar todo o
conjunto de dados daquela entidade e mostrar no template, certo?! E

exatamente isso que a ListView faz!

Com isso, um objeto funcionarios estard disponivel no seu
template para iteracao.

Dessa forma, podemos entdo criar uma tabela no
nosso template com os dados de todos os funcionarios:

<table>
<tbody>
{% for funcionario in funcionarios %}
<tr>
<td>{{ funcionario.nome }}</td>
<td>{{ funcionario.sobrenome }3}</td>
<td>{{ funcionario.remuneracao }}</td>
<td>{{ funcionario.tempo_de_servico }}</td>

coNOUT P WN -

9 </tr>

10 {% endfor %}
11 </tbody>

12 </table>

Vamos falar mais sobre templates no proximo artigo!

O Django tem uma diversidade enorme de Views, uma para cada
finalidade, por exemplo:

« CreateView: Para criar de objetos (E o Create do CRUD)

« DetailView: Traz os detalhes de um objeto (E o Retrieve do CRUD)
« UpdateView: Para atualizacdo de um objeto (E o Update do CRUD)
« DeleteView: Para deletar objetos (E o Delete do CRUD)

E varias outras muito uteis!

Agora vamos tratar detalhes do tratamento de requisicdes através
de Funcdes. Em seguida, trataremos mais sobre as Class Based Views.

Funcées (Function Based Views)

Utilizar fungdes é a maneira mais explicita para tratar requisi¢cdes no
Django (veremos que as Class Based Views podem ser um pouco mais
complexas pois muita coisa acontece implicitamente).

Utilizando funcdes, geralmente tratamos primeiro o método HTTP
da requisi¢ao: foi um GET? Foi um POST? Um OPTION?

A partir dessa informacdo, processamos a requisicdo da maneira

desejada.

Vamos seguir o exemplo abaixo:

def cria_funcionario(request, pk):

Verificamos se o método POST
if request.method == 'POST':
form = FormularioDeCriacao(request.POST)

if form.is_valid():
form.save()
return HttpResponseRedirect(reverse('lista_funcionarios'))

Qualquer outro método: GET, OPTION, DELETE, etc...
else:
return render(request, "templates/form.html", {'form': form})

O fluxo € o seguinte:

Primeiro, conforme mencionei, verificamos o método HTTP da
requisicdo no campo method do objeto request na linha 3.
Depois instanciamos um form com os dados da requisicdo (no
caso POST) com FormularioDeCriacao(request.POST) na linha
4 (vamos falar mais sobre Form ja ja).

Verificamos os campos do formulario com form.is_valid() na
linha 6.

Se tudo estiver OK, utilizamos o helper reverse() para traduzir a
rota 'lista_funcionarios' para funciondrios/. Utilizamos
isso para retornar um redirect para a view de listagem na linha 8.
Se for qualquer outro método, apenas renderizamos a pagina

novamente com o método render() na linha 12.

Deu para perceber que o objeto request é essencial nas nossas
Views, né?

Separei aqui alguns atributos desse objeto que provavelmente
serdo os mais utilizados por vocé:

o request.scheme: String representando o esquema (se veio por
uma conexdo HTTP ou HTTPS).

o request.path: String com o caminho da pagina requisitada -
exemplo: /cursos/curso-de-python/detalhes.

e request.method: Conforme citamos, contém o método HTTP da
requisicdo (GET, POST, UPDATE, OPTION, etc).

o request.content_type: Representa o tipo MIME da requisicdo
-text/plain para texto plano, image/png para arquivos .PNG, por
exemplo - saiba mais clicando aqui.

e request.GET: Um dict contendo os parametros GET da requisicao.

o request.POST: Um dict contendo os parametros do corpo de uma
requisicdo POST.

o request.FILES: Caso seja uma pagina de upload, contém os
arquivos que foram enviados. S6 contém dados se for uma
requisicdo do tipo POST e o <form> da pagina HTML tenha o
parametro enctype="multipart/form-data".

e request.COOKIES: Dict contendo todos os COOKIES no formato de
string.

Observacao: Para saber mais sobre os campos do objeto request, dé

uma olhada na classe django.http.request.HttpRequest!

https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Basico_sobre_HTTP/MIME_types

Debugando uma requisicao no PyCharm

Algumas vezes, € interessante vocé ver o conjunto de dados que
estdo vindo do brower do usudario para o servidor onde o Django esta
sendo executado.

Outras vezes, precisamos verificar se estd tudo correto, se tudo
esta vindo como esperado ou se existem erros na requisicao.

Uma forma de vermos isso é debugando o cddigo, isto é: pausando
a execucdo do codigo no momento que em que a requisicdo chega no
servidor e vendo os atributos da requisicao, verificando se esta tudo OK
(ou nao).

Se vocé utiliza o PyCharm, ou alguma outra IDE com debugger,
pode fazer os passos que eu vou descrever aqui (creio que em outra IDE,
0 processo seja similar).

Por exemplo, vamos adicionar um breakpoint no método de uma
View. Para isso, clique duas vezes ao lado esquerdo da linha onde quer
adicionar o breakpoint. O resultado deve ser esse (linha 75, veja o circulo
vermelho na barra a esquerda, proximo ao contador das linhas):

pythonacademy dashboard g

-

ts.filter(

=context[

] = CommentForm()

ts. filter(

Com isso, quando vocé disparar uma requisicdo no seu browser
que venha a cair nessa linha de codigo, o debugger entrara em acdo,
mostrando as varidveis naquela linha de cddigo.

Nesse exemplo, quando o debugger chegou nessa linha, obtive a
seguinte saida:

A partir dessa visdo, podemos verificar todos os atributos do

objeto request que chegou no servidor!

Vdo por mim, isso ajuda MUITO a detectar erros!

Dito isso, agora vamos tratar detalhes do tratamento de
requisicoes através de Class Based Views.

Classes (CBV - Class Based Views)

Conforme expliquei anteriormente, as Class Based Views servem para
automatizar e facilitar nossa vida, encapsulando funcionalidades
comuns que todo desenvolvedor sempre acaba implementando. Por
exemplo, geralmente:

e Queremos que quando um usudrio va para pagina inicial, seja
mostrado apenas uma pagina simples, com as op¢oes possiveis.

e Queremos que nossa pagina de listagem contenha a lista de todos
os funciondrios cadastrados no banco de dados.

e Queremos uma pagina com um formuldario contendo todos os
campos pré-preenchidos para atualizacao de dado funcionario.

e Queremos uma pagina de exclusao de funciondrios.

e Queremos um formulario em branco para inclusao de um novo
funcionario.

Certo?!
Pois é, as CBVs - Class Based Views - facilitam isso para nos!
Temos basicamente duas formas para utilizar uma CBV.

Primeiro, podemos utilizd-las diretamente no nosso URLConf

(urls.py), assim:

from django.urls import path
from django.views.generic import TemplateView

urlpatterns = [
path('", TemplateView.as_view(template_name="index.html™)),

AU WN P

]

E a segunda maneira, a mais utilizada e mais poderosa, é herdar
da View desejada e sobrescrever os atributos e métodos na subclasse.

Abaixo, veremos as Views mais utilizadas, e como podemos utiliza-
las em nosso projeto.

TemplateView

Por exemplo, para o primeiro caso, podemos utilizar a TemplateView
(acesse a documentacdo) para renderizar uma pagina, da seguinte
forma:

1 class IndexTemplateView(TemplateView):
2 template_name = "index.html"

E a configuracdo de rotas fica assim:

from django.urls import path
from helloworld.views import IndexTemplateView

urlpatterns = [
path('"', IndexTemplateView.as_view(), name="index'),

AU WN P

i

https://docs.djangoproject.com/en/2.0/ref/class-based-views/base/#templateview

ListView

Ja para o segundo caso, de listagem de funcionarios, podemos utilizar
alistView (acesse a documentacao).

Nela, nos configuramos o Model que deve ser buscado
(Funcionario no nosso caso), e ela automaticamente faz a busca por
todos os registros presentes no banco de dados da entidade informada.

Por exemplo, podemos descrever a View da seguinte forma:

1 from django.views.generic.list import ListView
2 from helloworld.models import Funcionario

3

4 class FuncionariolListView(ListView):

5 template_name = "website/lista.html"

6 model = Funcionario

7 context_object_name = "funcionarios"

Utilizamos o atributo contexto_object_name para nomear a
variavel que estara disponivel no contexto do template (se ndo, o nome

padrao dado pelo Django sera object).

E configura-la assim:

from django.urls import path
from helloworld.views import FuncionariolistView

urlpatterns = [
path(
'funcionarios/"',

U WN -

https://docs.djangoproject.com/en/2.0/ref/class-based-views/generic-display/#listview

FuncionariolListView.as_view(),
name="1lista_funcionarios'),

O 00

Isso resultara em uma pagina lista.html contendo um objeto
chamado funcionarios contendo todos os Funciondrios disponivel para
iteracao.

Dica: E uma boa prdtica colocar o nome da View como o Model + CBV
base. Por exemplo: uma view que lista todos os Cursos, receberia o nome

de CursolListView (Model = Curso e CBV = ListView).

UpdateView

Para a atualizacao de usuarios podemos utilizar a UpdateView (veja a
documentacdo). Com ela, configuramos qual o Model (atributo model),
quais campos (atributo field) e qual o nome do template (atributo
template_name), e com isso temos um formulario para atualizacdo do
modelo definido.

No nosso caso:

from django.views.generic.edit import UpdateView
from helloworld.models import Funcionario

class FuncionarioUpdateView(UpdateView):

Ooco~NOUT A~ WNBRE

template_name = 'atualiza.html'
model = Funcionario
fields = [

"nome"',

'sobrenome’',

https://docs.djangoproject.com/en/2.0/ref/class-based-views/generic-editing/#updateview
https://docs.djangoproject.com/en/2.0/ref/class-based-views/generic-editing/#updateview

10 "cpf',

11 "tempo_de_servico',
12 'remuneracao’
13]

Dica: Ao invés de listar todos os campos em fields em formato de

lista de strings, podemos utilizar fields = '__all__". Dessa forma, o
Django ira buscar todos os campos para voceé!

Mas de onde o Django vaipegar o id do objeto a ser buscado?

O Django precisa ser informado do id ou slug para poder buscar
0 objeto correto a ser atualizado. Podemos fazer isso de duas formas.

Primeiro, na configuracao de rotas (urls.py):

1 from django.urls import path

2 from helloworld.views import FuncionarioUpdateView
3

4 urlpatterns = [

5 # Utilizando o {id} para buscar o objeto

6 path(

7 "funcionario/<id>",

8 FuncionarioUpdateView.as_view(),

9 name="atualiza_funcionario'),

10

11 # Utilizando o {slug} para buscar o objeto
12 path(

13 "funcionario/<id>",

14 FuncionarioUpdateView.as_view(),

15 name="atualiza_funcionario'),

16]

Mas o que é slug?

Slug é uma forma de gerar URLs mais legiveis a partir de dados ja
existentes.

Exemplo: podemos criar um campo slug utilizando o campo nome
do funcionario. Dessa forma, as URLs ficariam assim:

e /funcionario/vinicius-ramos
E ndo assim (utilizando o id na URL):
e /funcionario/175

No campo slug, todos os caracteres sdo transformados em minus-
culos e os espacos sao transformados em hifens, o que da mais sentido a
URL.

A segunda forma de buscar o objeto é utilizando (ou sobrescre-
vendo) o método get_object() da classe pai UpdateView.

A documentacdo desse método traz (traduzido):

Retorna o objeto que a View irda mostrar. Requer self.queryset e

um argumento pk ou slug no URLConf. Subclasses podem
sobrescrever esse método e retornar qualquer objeto.

Ou seja, o Django nos da total liberdade de utilizarmos
a convencao (quando passamos 0s parametros na configuracao da rota

URLConf) ou a configuracdo (quando sobrescrevemos

método get_object()).

Basicamente, 0 método get_object() deve pegar o id ou slug da
URL e realizar a busca no banco de dados até encontrar o objeto com

aquele 1d.

Uma forma de sobrescrevermos esse método na View de listagem
de funciondrios (FuncionariolListView) pode ser implementada da

seguinte maneira:

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

from django.views.generic.edit import UpdateView
from helloworld.models import Funcionario

class FuncionarioUpdateView(UpdateView):

template_name = "atualiza.html"
model = Funcionario

fields = "__all__'
context_object_name = 'funcionario'

def get_object(self, queryset=None):
funcionario = None

0s campos {pk} e {slug} estdo presentes em self.kwargs
id = self.kwargs.get(self.pk_url_kwarg)
slug = self.kwargs.get(self.slug_url_kwarg)

if id is not None:
Busca o funcionario apartir do id
funcionario = Funcionario
.objects
.filter(id=id)
firstO

elif slug is not None:
Pega o campo slug do Model
campo_slug = self.get_slug_field()

27

28 # Busca o funcionario apartir do slug
29 funcionario = Funcionario

30 .objects

31 filter(**{campo_slug: slug})

32 firstQO

33

34 # Retorna o objeto encontrado

35 return funciondrio

Dessa forma, os dados do funcionario estardo disponiveis na

variavel funcionario no template atualiza.html!

DeleteView

Para deletar funcionarios, utilizamos a DeleteView (documentacao).

Sua configuracdo é similar a UpdateView: nds devemos informar
ao Django qual o objeto queremos excluir via URLConf ou através do
meétodo get_object().

Precisamos configurar:

o O template que sera renderizado.

o O model associado a essa view.

« O nome do objeto que estara disponivel no template.

« A URL de retorno, caso haja sucesso na dele¢ao do Funcionario.

Com isso, a view pode ser codificada da seguinte forma:

1 class FuncionarioDeleteView(DeleteView):
2 template_name = "website/exclui.html”

https://docs.djangoproject.com/en/2.0/ref/class-based-views/generic-editing/#deleteview

model = Funcionario

context_object_name = 'funcionario'

success_url = reverse_lazy(
"website:lista_funcionarios”

D

NoO vl bW

O método reverse_lazy() serve para fazer a conversao de rotas
(similar ao reverse()) mas em um momento em que o URLConf ainda néo
foi carregado (que € o caso aqui)

Assim como na UpdateView, fazemos a configuracdo do id a ser buscado
no URLConf, da seguinte forma:

1 urlpatterns = [

2 path(

3 'funcionario/excluir/<pk>",

4 FuncionarioDeleteView.as_view(),
5 name="deleta_funcionario'),

6

i

Assim, precisamos apenas fazer um template de confirmacdo da
exclusdo do funcionario (o link sera feito através de um botao “Excluir”

que vamos adicionar a pagina lista.html no préximo capitulo).

Podemos fazer o template da seguinte forma:

<form method="post">
{% csrf_token %}

Vocé tem certeza que quer excluir
o funciondrio {{ funcionario.nome }}?

AU~ WN P

7
8 <button type="button">

9
10 Cancelar
11

12 </button>
13 <button>Excluir</button>
14 </form>

Algumas colocacdes:

o« A tag do Django {% csrf_token %} é obrigatorio em todos
0s forms pois estd relacionado a protecdo que o Django prové
ao CSRF - Cross Site Request Forgery (tipo de ataque malicioso
- saiba mais aqui).

o Nao se preocupe com a sintaxe do template veremos mais sobre
ele no proximo post!

CreateView

Nessa View, precisamos apenas dizer para o Django o model, o nome
do template, a classe do formuldrio (vamos tratar mais sobre Forms ali
embaixo) e a URL de retorno, caso haja sucesso na inclusdo do
Funcionario.

Podemos fazer isso assim:

1 from django.views.generic import CreateView
2

3 class FuncionarioCreateView(CreateView):

4 template_name = "website/cria.html"

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

model = Funcionario

form_class = InsereFuncionarioForm

success_url = reverse_lazy(
"website:lista_funcionarios"

D

(Voo TN Ie) U,

O método reverse_lazy() traduz a View em URL. No nosso caso,
queremos que quando haja a inclusdo do Funcionario, sejamos
redirecionados para a pagina de listagem, para podermos conferir que o
Funcionadrio foi realmente adicionado.

E a configuracdo da rota no arquivo urls.py:

from django.urls import path
from helloworld.views import FuncionarioCreateView

urlpatterns = [
path(
'funcionario/cadastrar/",
FuncionarioCreateView.as_view()
name="'cadastra_funcionario'),

Ooco~NOYUTPE WN B

Com isso, estard disponivel no template configurado
(website/cria.html, no nosso caso), um objeto form contendo os
campos do formulario para criacdo do novo funcionario.

Podemos mostrar o formulario de duas formas.

A primeira, mostra o formuldrio inteiro cru, isto €, sem
formatacao e estilo, conforme o Django nos entrega.

Podemos mostra-lo no nosso template da seguinte forma:

<form method="post">
{% csrf_token %}

<button type="submit">Cadastrar</button>

1

2

3

4 {{ form }}
5

6

7 </form>

Observacdo: apesar de ser um Form sua renderiza¢do ndo contém
as tags <forms></form> - cabendo a nos inclui-los no template.

Ja a segunda, é mais trabalhosa, pois temos que renderizar campo
a campo no template. Porém, nos da um nivel maior de customizacao.

Podemos renderizar cada campo do form dessa forma:

{{ form.nome }}

1 <form method="post">

2 {% csrf_token %}

3

4 <label for="{{ form.nome.id_for_label }}">
5 Nome

6 </label>

7

8

9

<label for="{{ form.sobrenome.id_for_label }}">
10 Sobrenome

11 </label>

12 {{ form.sobrenome }}

13
14 <label for="{{ form.cpf.id_for_label }}">
15 CPF

16 </label>

17 {{ form.cpf }}

18

19 <label for="{{ form.tempo_de_servico.id_for_label }}">
20 Tempo de Servico

21 </label>

22 {{ form.tempo_de_servico }}

23

24 <label for="{{ form.remuneracao.id_for_label }}">
25 Remuneracdo

26 </label>

27 {{ form.remuneracao }}

28
29 <button type="submit">Cadastrar</button>
30 </form>

Nesse template:

e {{ form.campo.id_for_label }} traz o id da tag <input> para
adicionar a tag <label></label>.

o Utilizamos o {{ form.campo }} para renderizar apenas um
campo do formuldrio, e ndo ele inteiro.

Agora vamos aprender mais sobre a utilizacdo do Form do Django!

Forms

O tratamento de formuldarios é uma tarefa que pode ser hem complexa.

Considere um formuldrio com diversos campos e diversas regras
de validacdo: seu tratamento ndo € mais um processo simples.

Os Forms do Django sdo formas de descrever, em codigo Python,
os formularios das paginas HTML, simplificando e automatizando seu
processo de criacdo e validacdo.

O Django trata trés partes distintas dos formularios:

o Preparacao dos dados tornando-os prontos para renderizagao
o Criacao de formularios HTML para os dados
o Recepcao e processamento dos formularios enviados ao servidor

Basicamente, queremos uma forma de renderizar em
nosso template o seguinte cédigo HTML:

1 <form action="/insere-funcionario/" method="post">

2 <label for="nome">Your name: </label>

3 <input id="nome" type="text" name="nome" value="">
4 <input type="submit" value="Enviar">

5 </form>

E que, ao ser submetido ao servidor, tenha seus campos de entrada
validados e, em caso de validacdo positiva — sem erros, seja inserido no
banco de dados.

No centro desse sistema de formularios do Django esta a

classe Form.

Nela, nos deescrevemos os campos que estardo disponiveis no
formulario HTML.

Para o formulario acima, podemos descrevé-lo da seguinte forma.

from django import forms

1

2

3 class InsereFuncionarioForm(forms.Form):
4 nome = forms.CharField(

5 label="Nome do Funciondrio',

6 max_length=100

7)

Nesse formulario:

» Utilizamos a classe forms.CharField para descrever um campo
de texto.

o O parametro label descreve um rotulo para esse campo.

e max_length decreve o tamanho maximo que esse input pode
receber (100 caracteres, no caso).

Veja os diversos tipos de campos disponiveis acessando aqui.

A classe forms.Form possui um método muito importante,

chamado is_valid().

Quando um formuldario é submetido ao servidor, esse é um dos
métodos que ira realizar a validacdo dos campos do formulario.

Se tudo estiver OK, ele colocara os dados do formulario no
atributo cleaned_data (que pode ser acessado por vocé posteriormente
para pegar alguma informacdo - como o nome que foi inserido pelo

usudrio no campo <input name='nome'>).

https://docs.djangoproject.com/pt-br/2.0/ref/forms/fields/

Como o processo de validagdo do Django é bem complexo, optei por
descrever aqui o essencial para comeg¢armos a utiliza-lo. Para saber mais
sobre o funcionamento dos Forms, acesse a documentac¢do aqui.

Vamos ver agora um exemplo mais complexo com um formulario
de insercdo de um Funciondrio com todos os campos. Para isso, crie o

arquivo forms.py no app website.

Em seguida, e consultando a documentacao dos possiveis campos
do formulario, podemos descrever um Form de inser¢ao assim:

from django import forms
class InsereFuncionarioForm(forms.Form)
required=True,

max_length=255

1
2
3
4
5 nome = forms.CharField(
6
7
8 D)

9

10 sobrenome = forms.CharField(

11 required=True,

12 max_length=255

13)

14

15 cpf = forms.CharField(
16 required=True,

17 max_length=14

18)

19

20 tempo_de_servico = forms.IntegerField(
21 required=True

22)

23

24 remuneracao = forms.DecimalField()

https://docs.djangoproject.com/en/2.0/ref/forms/validation/
https://docs.djangoproject.com/pt-br/2.0/ref/forms/fields/

Affff, mas o Model e o Form sdo quase iguais... Terei que reescrever

0s campos toda vez?

Claro que ndo, jovem! Por isso o Django nos presenteou com o
incrivel ModelForm @

Com o ModelForm nos configuramos de qual Model o Django deve
pegar os campos. A partir do atributo fields, nos dizemos quais campos
nos queremos e, através do campo exclude, os campos que ndo
queremos.

Para fazer essa configuracdo, utilizamos os metadados da classe
interna Meta. Metadado (no caso do Model e do Form) é tudo aquilo que
ndo sera transformado em campo, como model, fields, ordering etc
(veja mais sobre Meta options).

Assim, nosso ModelForm, pode ser descrito da seguinte forma:

1 from django import forms

2

3 class InsereFuncionarioForm(forms.ModelForm):
4 class Meta:

5 # Modelo base

) model = Funcionario

7

8 # Campos que estardo no form
9 fields = [

10 "nome’,

11 "sobrenome’,

12 "cpf',

13 'remuneracao’

14]

https://docs.djangoproject.com/en/2.0/topics/db/models/#meta-options

15

16 # Campos que ndo estardo no form
17 exclude = [

18 "tempo_de_servico'

19]

Podemos utilizar apenas o campo fields, apenas o exclude ou os
dois juntos e mesmo ao utiliza-los, ainda podemos adicionar outros
campos, independente dos campos do Model.

O resultado sera um formulario com todos os campos presentes
no fields, menos os campos do exclude mais 0s outros campos que
adicionarmos.

Ficou confuso? Entdo vamos ver um exemplo que utiliza todos os
artributos e ainda adiciona novos campos ao formulario:

from django import forms
class InsereFuncionarioForm(forms.ModelForm)

label="Chefe?',

1
2
3
4
5 chefe = forms.BooleanField(
6
7 required=True,

8

D
9
10 biografia = forms.CharField(
11 label="Biografia',
12 required=False,
13 widget=forms.TextArea
14)
15

16 class Meta:
17 # Modelo base

18 model = Funcionario

19

20 # Campos que estardo no form
21 fields = [

22 "nome ",

23 "sobrenome’,

24 "cpf',

25 'remuneracao’

26]

27

28 # Campos que ndo estardo no form
29 exclude = [

30 "tempo_de_servico'

31]

Isso vai gerar um formulario com:

o Todos os campos contidos em fields

o Serdo retirados os campos contidos em exclude

e O campo forms.BooleanField, como um checkbox (<input
type="checkbox' name='chefe' ...>)

» Biografia como uma area de texto (<textarea name="biografia’

.. .></textarea>)

Assim como € possivel definir atributos nos modelos, os campos
do formulario também sdo customizaveis.

Veja que o campo biografia é do tipo CharField, portanto

\J

deveria ser renderizado como um campo <input type="text' ...>".

Contudo, eu modifiquei o campo configurando o atributo widget

com forms.TextArea.

Assim, ele ndo mais sera um simples input, mas serd renderizado

como um <textarea></textarea> no nosso template!

NoOs veremos mais sobre formuldrios no proéximo capitulo,
quando formos renderiza-los nos nossos templates.

Agora vamos tratar de um componente muito importante no
processamente de requisicoes e formulacdo das respostas da nossa
aplicacdo: os Middlewares.

Middlewares

Middlewares sao trechos de codigos que podem ser executados antes ou
depois do processamento de requisi¢oes/respostas pelo Django.

E uma forma que os desenvolvedores, nos, temos para alterar
como o Django processa algum dado de entrada ou de saida.

Se vocé olhar no arquivo settings.py, nos temos a lista
MIDDLEWARE com diversos middlewares pré-configurados:

1 MIDDLEWARE = [

2 'django.middleware.security.SecurityMiddleware"',

3 'django.contrib.sessions.middleware.SessionMiddleware’,

4 'django.middleware.common.CommonMiddleware',

5 'django.middleware.csrf.CsrfViewMiddleware',

6 'django.contrib.auth.middleware.AuthenticationMiddleware',
7 'django.contrib.messages.middleware.MessageMiddleware',

8 "django.middleware.clickjacking.XFrameOptionsMiddleware',
9

]

Por exemplo, temos o middleware AuthenticationMiddleware.

Ele é responsavel por adicionar a varidvel user a todas as
requisicoes. Assim, vocé pode, por exemplo, mostrar o usuario logado no
seu template:

1

2
3 Ola, {{ user.email }}

4

5 </1i>

Vocé pode pesquisar e perceber que em lugar nenhum em nosso

codigo nds adicionamos a variavel user ao Contexto das requisicoes.

Néao é muito comum, mas pode ser que vocé tenha que adicionar
algum comportamento antes de comecar a tratar a Requisicao ou depois
de formar a Resposta.

Portante, veremos agora como podemos criar 0 nosso proprio
middleware.

Um middleware é um meétodo callable (que tem uma implementa-
cdo do método __call__()) que recebe uma requisicao e retorna uma
resposta e, assim como uma View, pode ser escrito como funcao ou
como Classe.

Um exemplo de middleware escrito como funcao é:

1 def middleware_simples(get_response):

2

3 # (odigo de inicializacdo do Middleware

4

5 def middleware(request):

6 # (0digo a ser executado antes da View e
7 # antes de outros middlewares serem executados
8

9 response = get_response(request)

10

11 # (odigo a ser executado apds a execugdo
12 # da View que ird processar a requisicdo
13

14 return response

15

16 return middleware

E como Classe:

% class MiddlewareSimples:

3 def __init__(self, get_response):

4 self.get_response = get_response

Z # (Codigo de inicializacdo do Middleware
Z def __call__(self, request):

9 # (odigo a ser executado antes da View e
10 # antes de outros middlewares serem executados
1; response = self.get_response(request)

1i # (odigo a ser executado apds a execu¢do
15 # da View que ird processar a requisicdo
16

return response

Como cada Middleware é executado de maneira encadeada, do
topo da lista MIDDLEWARE para o fim, a saida de um é a entrada do
proximo.

O método get_response() pode ser a propria View, caso ela seja

a ultima configurada no MIDDLEWARE do settings.py, ou 0 proximo
middleware da cadeia.

Utilizando a constru¢ao do middleware via Classe, nos temos trés
métodos importantes:

O método process_view

Assinatura: process_view(request, func, args, kwargs)

Esse método é chamado logo antes do Django executar
a View que vai processar a requisicdo e possui os seguintes parametros:

e request é o objeto HttpRequest.

o func é a propria view que o Django esta para chamar ao final da
cadeia de middlewares.

e args € alista de parametros posicionais que serdo passados a view.

e kwargs é o dict contendo os argumentos nomeados (keyword
arguments) que serdo passados a view.

Esse método deve retornar None ou um objeto HttpResponse:

o Caso retorne None, o Django entendera que deve continuar a
cadeia de Middlewares.

o Caso retorne HttpResponse, o Django entendera que a resposta
esta pronta para ser enviada de volta e ndo vai se preocupar em
chamar o resto da cadeia de Middlewares, nem a view que iria
processar a requisicao.

O método process_exception

Assinatura: process_exception(request, exception)

Esse método é chamado quando uma View langa uma excecdo e
deve retornar ou None ou HttpResponse.

Caso retorne um objeto HttpResponse, o Django ira aplicar
0 middleware de resposta e o middleware de template, retornando a
requisicdo ao browser.

e request é o objeto HttpRequest
e exception é a excecdo propriamente dita langada pela view.

O método process_template_response

Assinatura: process_template_response(request, response)

Esse método é chamado logo apds a View ter terminado sua
execucdo caso a resposta tenha uma chamada ao método render()
indicando que a reposta possui um template.

Possui 0s seguintes parametros:

e request é um objeto HttpRequest.
e response € o objeto TemplateResponse retornado pela view ou
por outro middleware.

Agora vamos criar um middleware um pouco mais complexo para
exemplificar o que foi dito aqui!

Vamos supor que queremos um middleware que filtre requisicoes
e s processe aquelas que venham de uma determinada lista de IP’s.

Esse middleware é muito util quando temos, por exemplo, um
conjunto de servidores com IP fixo que vao se conectar entre si. Vocé
poderia, por exemplo, ter uma configuracdo no seu settings.py
chamada ALLOWED_SERVERS contendo a lista de IP autorizados a se
conectar ao seu servico.

Para isso, precisamos abrir o cabecalho das requisicdes que
chegam no nosso servidor e verificar se o IP de origem esta autorizado.

Como precisamos dessa logica antes da requisi¢cao chegar na View,
vamos adiciond-la ao método process_view, da seguinte forma:

class FiltraIPMiddleware:

def __init__(self, get_response=None):
self.get_response = get_response

def __call__(self, request):

1
2
3
4
5
6
7 response = self.get_response(request)
8

9

return response

10
11 def process_view(request, func, args, kwargs):

12 # Lista de IPs autorizados

13 ips_autorizados = ['127.0.0.1"]

14

15 # IP do usudrio

16 ip = request.META.get('REMOTE_ADDR")

17

18 # Verifica se o IP do estd na lista de IPs autorizados
19 if ip not in ips_autorizados:

20 # Se usudrio ndo autorizado > HTTP 493 (Ndo Autorizado)
21 return HttpResponseForbidden(

22 "IP ndo autorizado"

23)

24

25 # Se for autorizado, ndo fazemos nada

26 return None

Depois disso, precisamos registrar nosso middleware no arquivo
de configuragdes settings.py (na configuracdo MIDDLEWARE):

1 MIDDLEWARE = [

2 "django.middleware.security.SecurityMiddleware"',

3 "django.contrib.sessions.middleware.SessionMiddleware’,

4 'django.middleware. common.CommonMiddleware',

5 "django.middleware.csrf.CsrfViewMiddleware',

6 "django.contrib.auth.middleware.AuthenticationMiddleware',
7 "django.contrib.messages.middleware.MessageMiddleware',

8 "django.middleware.clickjacking.XFrameOptionsMiddleware',
9

10 # Nosso Middleware

11 "helloworld.middlewares.FiltralPMiddleware’,

12]

Agora, podemos testar seu funcionamento alterando a

lista ips_autorizados:

o Coloque ips_autorizados = ['127.0.0.1'] e tente acessar
alguma URL da nossa aplicacdo: devemos conseguir acessar
normalmente nossa aplicagdo, pois como estamos executando o
servidor localmente, nosso IP sera 127.0.0.1 e, portanto,
passaremos no teste.

o Coloque ips_autorizados = [] e tente acessar alguma URL da
nossa aplicacdo: deve aparecer a mensagem “IP ndo autorizado”,
pois nosso IP (127.0.0.1) ndo esta autorizado a acessar o servidor.

Conclusao do Capitulo

Nesse capitulo vimos varios conceitos sobre os tipos de Views (funcdes e
classes), os principais tipos de CBV (Class Based Views), como mapear
suas URL para suas views através do URLConf, como entender o fluxo da
sua requisicdo utilizando o debug da sua IDE, como utilizar os
poderosos Forms do Django e como utilizar middlewares para adicionar
camadas extras de processamento as requisi¢des e respostas que chegam
e saem da nossa aplicacao.

No proximo capitulo, vamos melhorar a interface com o usudrio
através da Camada de Templates do Django!

Capitulo IV

CAMADA TEMPLATE

Chegamos ao nosso ultimo capitulo do noss ebook!

Nesse capitulo vamos aprender a configurar, customizar e esten-
der templates, como utilizar os filtros e tags do Django, como criar tags e
filtros customizados e um pouquinho de Bootstrap, para deixar as
paginas bonitonas!

A Camada Template é quem da cara a nossa aplicagao, isto é, faz
a interface com o usudrio. E nela que se encontra o cédigo Python,
responsavel por renderizar nossas paginas web, e os arquivos HTML,
CSS e Javascript que dardo vida a nossa aplicacao!

Onde estamos...

Primeiro, vamos relembrar onde estamos no fluxo requisicdo/resposta
do nosso servidor Django:

Agora, estamos na camada que faz a interface do nosso codigo
Python/Django com o usudrio, interagindo, trocando informacdes,
captando dados de input e gerando dados de output.

SPOILER ALERT: Nesse post vamos concentrar nossos esforcos em
entender a camada de templates para construcdo de paginas. Nesse
momento, ndo vamos focar na implementagdo da logica por tras da Engine

Ve

de templates, pois acredito que é algo que dificilmente vocé se verd
fazendo, ok?!

Vamos comecar pelo comec¢o: o que é um Template?

Definicao de Template

Basicamente, um template é um arquivo de texto que pode ser
transformado em outro arquivo (um arquivo HTML, um CSS, um CSV,
etc).

Um template no Django contém:

o Variaveis que podem ser substituidas por valores, a partir do
processamento por uma Engine de Templates (nucleo ou “motor”
de templates). Usamos os marcadores {{ varidvel }}.

o Tags que controlam a logica do template. Usamos com {% tag %}.

« Filtros que adicionam funcionalidades ao template. Usamos com
{{ variavellfiltro }}.

Por exemplo, abaixo esta representado um template minimo que
demonstra alguns conceitos basicos:

{# base.html contém o template que usaremos como esqueleto #}
{% extends "base.html" %}

{% block conteudo %}
<h1>{{ section.title }}</hl>

{% for f in funcionarios %}
<h2>

{{ funcionario.nomelupper }}

12 </h2>
13 {% endfor %}
14 {% endblock %}

e
D woe~NouswNE

Alguns pontos importantes:

o Linha 1: Escrevemos comentario com a tag {# comentdrio #}.
Eles serdo processados pelo Engine e ndo estardo na pagina
resultante.

o Linha 2: Utilizamos {% extends "base.html" %} para estender
de um template, ou seja, utiliza-lo como base, passando o caminho
para ele.

o Linha 4: Podemos facilitar a organizacdo do template, criando
blocos com {% block nome_do_bloco %}{% endblock %}.

o Linha 5: Podemos interpolar varidveis vindas do servidor com
nosso template com {{ secao.titulo }} - dessa forma, estamos
acessando o atributo titulo do objeto secao (que deve estar
no Contexto da resposta).

. Linha 7: E possivel iterar sobre objetos de uma lista através
da tag {% for objeto in lista %}{% endfor %}.

o Linha 10: Podemos utilizar filtros para aplicar alguma funcéo a
algum conteudo. Nesse exemplo, estamos aplicando o filtro upper,
que transforma todos os caracteres da string em maisculos, no
conteudo de funcionario.nome. Também é possivel encadear

filtros, por exemplo: {{ funcionario.nomeluppericut:" " }}

Para facilitar a manipulacao de templates, os desenvolvedores do
Django criaram uma linguagem que contém todos esses elementos.

Chamaram-na de DTL - Django Template Language! Veremos mais
dela nesse capitulo!

Para comecarmos a utilizar os templates do Django, é necessario
primeiro configurar sua utilizacao.

E é isso que veremos agora!

Configuracao

Se vocé ja deu uma espiada no nosso arquivo de configuragoes,
0 settings.py, vocé ja deve ter visto a seguinte configuracao:

1 TEMPLATES = [

2 {

3 "BACKEND': 'django.template.backends.django.DjangoTemplates',
4 'DIRS': [1,

5 "APP_DIRS': True,

6 "OPTIONS': {3},

7 s

8]

Mas vocé ja se perguntou o que essa configuracao quer dizer?

Nela:

BACKEND é o caminho para uma classe que implementa a API de
templates do Django.

DIRS define uma lista de diretorios onde o Django deve procurar
pelos templates. A ordem da lista define a ordem de busca.
APP_DIRS define se o Django deve procurar por templates dentro
dos diretorios dos apps instalados em INSTALLED_APPS.

OPTIONS contém configuracdes especificas do BACKEND escolhido,
ou seja, dependendo do backend de templates que vocé escolher,
vocé podera configura-lo utilizando parametros em OPTIONS.

Por ora, vamos utilizar as configurac¢oes padrao “de fabrica” pois

elas ja nos atendem!

Agora, vamos ver sobre a tal Django Template Language!

Django Template Language

A DTL é a linguagem padrdo de templates do Django. Ela é simples,
porém poderosa.

Dando uma olhada na sua documentacao, podemos ver a filosofia

da DTL (traduzido):

Se vocé tem alguma experiéncia em programacdo, ou se vocé
esta acostumado com linguagens que misturam codigo de

https://docs.djangoproject.com/en/2.0/ref/templates/language/

programacdo diretamente no HTML, vocé deve ter em mente que o
sistema de templates do Django ndo é simplesmente cddigo Python
embutido no HTML. Isto é: o sistema de templates foi desenhado
para ser a apresentagdo, e ndo para conter logica!

Se vocé vem de outra linguagem de programacdo deve ter tido
contato com o seguinte tipo de construcdo: codigo de programacao
adicionado diretamente no cédigo HTML (como PHP).

Isto € o terror dos designers (e ndo so deles)!

Ponha-se no lugar de um designer que ndo sabe nada sobre
programacao. Agora imagina vocé tendo que dar manutencdo nos estilos
de uma pagina LOTADA de coédigo de programacao?!

Complicado, hein?!

Agora, nada melhor para aprender sobre a DTL do que botando a
mao na massa e melhorando as paginas da nossa aplicacdo, né?!

Observacdo: nesse post eu vou utilizar o Bootstrap 4 para dar um “tapa
no visual”.

Template-base

Nosso template que servira de esqueleto deve conter o codigo HTML que
ira se repetir em todas as paginas.

Devemos colocar nele os trechos de cddigo mais comuns das
paginas HTML.

https://getbootstrap.com/

Por exemplo, toda pagina HTML:

e Deve ter as tags: <html></html>, <head></head> e
<body></body>.

o Deve ter os links para os arquivos estaticos: <link></link> e
<script></script>.

o Quaisquer outros trechos de cddigo que se repitam em nossas
paginas.

Vocé pode fazer o download dos arquivos necessarios para o nosso
projeto aqui (Bootstrap) e aqui (jQuery), que é uma dependéncia
do Bootstrap, ou utilizar os arquivos que eu ja baixei e estdo na

pasta website/static/.

Faca isso para todos as bibliotecas externas que queira utilizar (ou
utilize um CDN - Content Delivery Network).

Ok! Agora, com os arquivos devidamente colocados na

pasta /static/, podemos comecar com nosso template:

<IDOCTYPE html>
<html>
{% load static %}
<head>
<title>
{% block title %}Gerenciador de Funcionarios{% endblock %}
</title>

Ooco~NOUTHA WN B

<!-- Estilos -->

10 <link rel="shortcut icon" type="image/png"

11 href="{% static 'website/img/favicon.png' %}">

12 <link rel="stylesheet"

13 href="{% static 'website/css/bootstrap.min.css’' %}">

https://getbootstrap.com/docs/4.1/getting-started/download/
https://jquery.com/download/
https://pt.wikipedia.org/wiki/Rede_de_fornecimento_de_conte%C3%BAdo

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

<link rel="stylesheet"
href="{% static 'website/css/master.css' %}">

{% block styles %}{% endblock %}
</head>

<body>
<nav class="navbar navbar-expand-1g navbar-light">

<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#conteudo-navbar" aria-controls="conteudo-navbar"
aria-expanded="false" aria-label="Ativar navegacdo">

</button>
<div class="collapse navbar-collapse" id="conteudo-navbar">
<ul class="navbar-nav mr-auto">
<li class="nav-item active">

Pagina Inicial

</1i>
<li class="nav-item">

Funcionarios

</1li>

</div>
</nav>
{% block conteudo %}{% endblock %}

<script src="{% static 'website/js/jquery.min.js' %}"></script>
<script src="{% static 'website/js/bootstrap.min.js' %}"></script>

{% block scripts %3}{% endblock %}
<script src="{% static 'website/js/scripts.js' %}"></script>

</body>
</html>

E vamos as explicacgdes:

<!DOCTYPE html> serve para informar ao browser do usudrio que
se trata de uma pagina HTMLS5.

Para que o Django possa carregar dinamicamente 0s arquivos
estaticos do site, utilizamos a tag static. Ela vai fazer a busca do
arquivo que vocé quer e fazer a conversdo dos links corretamente.
Para utilizad-la, é necessario primeiro carrega-la. Fazemos isso
com {% load <modulo> %}. ApOs seu carregamento, utilizamos
a tag {%static 'caminho/para/arquivo' %}, passando como
parametro a localizagdo relativa a pasta /static/.

Podemos definir quaisquer blocos no nosso template com
a tag {% blocknome_do_bloco %}{% endblock %}. Fazemos isso
para organizar melhor as paginas que irdo estender
desse template. Podemos passar um valor padrado dentro do bloco
(igual esta sendo utilizado na linha 6) - dessa forma caso ndo seja
definido nenhum valor no template filho - é aplicado o valor
padrao.

Colocamos nesse template os arquivos necessarios para o
funcionamento do Bootstrap, isto é: o jQuery, o CSS e Javascript do
Bootstrap.

O link para outras paginas da nossa aplicacao é feito utilizando-se
atag {% url'nome_da_view' parml parmZ2... %}.Dessa forma,
deixamos que o Django cuide da conversdo para URLs validas!

O conjunto de tags <nav></nav> definem a barra superior de
navegacao com os links para as paginas da aplicacao. Esse também
é um trecho de codigo presente em todas as paginas, por isso,
adicionamos ao template. (Documentacdo da Navbar - Bootstrap)

https://getbootstrap.com/docs/4.0/components/navbar/

E pronto! Temos um template base!

Agora, vamos customizar a tela principal da nossa aplicagao:
a index.html!

Pagina Inicial
Template: website/index.html

Nossa tela inicial tem o objetivo de apenas mostrar as opc¢oes
disponiveis ao usuario, que sao:

o Link para a pagina de cadastro de novos Funcionarios.
e Link para a pagina de listagem de Funcionarios.

Primeiramente, precisamos dizer ao Django que queremos utilizar
o template que definimos acima como base.

Para isso, utilizamos a seguinte tag do Django, que serve para que
um template estenda de outro:

1 {% extends “caminho/para/template” %}

Com isso, podemos fazer:

<!-- Estendemos do template base -->
{% extends "website/_layouts/base.html" %}

<!/-- Bloco que define o <title></title> da nossa pdgina -->
{% block title %}Pagina Inicial{% endblock %}

U1 WN

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

<!-- Bloco de conteudo da nossa pdgina -->
{% block conteudo %}
<div class="container">
<div class="row">
<div class="col-1g-6 col-md-6 col-sm-6 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">Cadastrar Funcionario</h5>
<p class="card-text">
Cadastre aqui um novo <code>Funciondrio</code>.
</p>
<a href="{% url 'website:cadastra_funcionario' %}
class="btn btn-primary">
Novo Funciondrio

</div>
</div>
</div>
<div class="col-1g-6 col-md-6 col-sm-6 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">Lista de Funciondarios</h5>
<p class="card-text">
Veja aqui a lista de <code>Funciondarios</code> cadastrados.
</p>
<a href="{% url 'website:lista_funcionarios' %}"
class="btn btn-primary">
Va para Lista

</div>
</div>
</div>
</div>
</div>
{% endblock %}

Nesse template:

A classe container do Bootstrap (linha 9) serve para definir a
area util da nossa pagina (para que nossa pagina fique
centralizada e ndo fique ocupando todo o comprimento da tela).

https://getbootstrap.com/docs/4.1/layout/overview/#containers

o Asclasses row e col-* fazem parte do sistema Grid do Bootstrap e
nos ajuda a tornar nossa pagina responsiva (que se adapta aos
diversos tipos e tamanhos de tela: celular, tablet, desktop etc...).

o Asclasses card* fazem parte do component Card do Bootstrap.

o Asclassesbtnebtn-primary (documentacdo) sdo usados para dar
o visual de botdo a algum elemento.

Com isso, nossa Pagina Inicial - ou nossa Homepage - fica assim:

<« Gl@localhost:?.mﬂ r 2 x @ O

@ Péagina Inicial Funcionarios

Cadastrar Funcionario Lista de Funcionarios

Cadastre aqui um novo Funcionario, Veja aqui a lista de Funcionérios cadastrados.

Va para Lista

Top, hein?! d

https://getbootstrap.com/docs/4.1/layout/grid/
https://getbootstrap.com/docs/4.0/components/card/
https://getbootstrap.com/docs/4.0/components/buttons/

Agora vamos para a pagina de cadastro de Funciondrios:
acria.html

Template de Cadastro de Funcionarios

Template: website/cria.html

Nesse template, mostramos o formulario para cadastro de novos
funcionarios.

Se lembra que definimos o formulario InsereFuncionarioForm
no capitulo passado?

Vamos utilizd-lo nesse template, adicionando-o na View
FuncionarioCreateView. Dessa forma, ela ira expor um objeto formno
nosso template para que possamos utiliza-lo.

Mas antes de seguir, vamos instalar uma biblioteca que vai nos
auxiliar e muito a renderizar os campos de input do nosso formu-
lario: a Widget Tweaks!

Com ela, nés temos maior liberdade para customizar os campos
de input do nosso formulario (adicionando classes CSS e/ou atributos, por
exemplo).

Para isso, primeiro nos a instalamos com:

1 pip install django-widget-tweaks

https://github.com/jazzband/django-widget-tweaks

Depois a adicionamos a lista de apps instalados, no arquivo

helloworld/settings.py:

1 INSTALLED_APPS = [
2 cen
3 'widget_tweaks',
4
5

]

E, no template onde formos utiliza-lo, carregamos ela com
{% load widget_tweaks %}!

E pronto, agora podemos utilizar a tag que ira renderizar os

campos do formulario, a render_field:

1 {% render_field nome_do_campo parametros %}

Para alterar como o input serd renderizado, utilizamos os
parametros da tag. Dessa forma, podemos alterar o codigo HTML
resultante. Portanto, nosso template pode ser escrito assim:

{% extends "website/_layouts/base.html" %}

{% load widget_tweaks %}

{% block conteudo %}
<div class="container">
<div class="row">
10 <div
11 class="col-1g-12 col-md-12 col-sm-12 col-xs-12">
12 <div class="card">

1
2
3
4
5 {% block title %}Cadastro de Funcionarios{% endblock %}
6
7
8
9

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

<div class="card-body">

<h5 class="card-title">Cadastro de Funciondario</h5>
<p class="card-text">
Complete o formuldrio abaixo para cadastrar
um novo <code>Funciondrio</code>.
</p>
<form method="post">
<!/-- Ndo se esqueca dessa tag -->
{% csrf_token %}

<!-- Nome -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Nome
</div>
{% render_field form.nome class+="form-control" %}
</div>

<!/-- Sobrenome -->
<div class="input-group mb-3">

<div class="input-group-prepend">

Sobrenome
</div>

{% render_field form.sobrenome class+="form-control" %}
</div>

<!/-- CPF -->
<div class="input-group mb-3">

<div class="input-group-prepend">

CPF
</div>

{% render_field form.cpf class+="form-control" %}
</div>

<!-- Tempo de Servico -->
<div class="input-group mb-3">
<div class="input-group-prepend">

Tempo de Servico

</div>

{% render_field form.tempo_de_servico class+="form-control” %}

</div>

56

57 <!-- Remuneracédo -->

58 <div class="input-group mb-3">

59 <div class="input-group-prepend">

60 Remuneracdo
6l </div>

62 {% render_field form.remuneracao class+="form-control" %}
63 </div>

o4

65 <button class="btn btn-primary">Enviar</button>

66 </form>

67 </div>

68 </div>

69 </div>

70 </div>

71 </div>

72 {% endblock %}

Aqui:

o Utilizamos, novamente as classes container, row, col-
* e card* do Bootstrap.

o Conforme mencionei no capitulo passado, devemos adicionar
atag {% csrf_token %} para evitar ataques de Cross Site Request
Forgery.

e As classes Input Group do Bootstrap input-group, input-group-
prepend e input-group-text servem para customizar o estilo dos
elementos <input />.

o Para aplicar a classe form-control do Bootstrap, utilizamos

{% render_field form.campo class+='form-control' %}

Observacdo: E possivel adicionar a classe CSS form-control

diretamente no nosso Form InsereFuncionarioForm, da seguinte forma:

https://getbootstrap.com/docs/4.1/components/input-group/

1 class InsereFuncionarioForm(forms.ModelForm):
2 nome = forms.CharField(

3 max_length=255,

4 widget=forms.TextInput(

5 attrs={

() "class': "form-control"

7 3

8)

9)

Mas eu nao aconselho, pois deixa nosso codigo extremamente
acoplado. Veja que para mudar a classe CSS (atributo da interface)
teremos que mudar codigo do backend. Por isso, aconselho a utilizag¢do de
bibliotecas como o Widget Tweaks, pois alteramos apenas no template!

Com isso, nosso formulario deve ficar assim:

O Cadastro de Funciondrios X

&« C | O localhost:8000/funcionaric/cadastrar r 7 & @ O

@ Pégina Inicial Funciondrios

Cadastro de Funcionario

Complete o formulario abaixo para cadastrar um novo Funcionério,

Nome

Sobrenome

CPF

Tempo de Servigo 0

Remuneragao

Agora, vamos desenvolver o template de listagem de Funcionarios.

Template de Listagem de Funcionarios

Template: website/lista.html

Nessa pagina, nos queremos mostrar o conjunto de Funcionarios
cadastrado no banco de dados e as acdes que o usuario pode tomar:
atualizar os dados do Funcionario ou exclui-lo.

Se lembra da view FuncionariolListView? Ela é responsavel por
buscar a lista de Funcionarios e expor um objeto chamado

funcionarios para iteracdo no template.

Podemos construir nosso template da seguinte forma:

1 {% extends "website/_layouts/base.html" %}

2

3 {% block title %}Lista de Funciondrios{% endblock %}

4

5 {% block conteudo %}

6 <div class="container">

7 <div class="row">

8 <div class="col-1g-12 col-md-12 col-sm-12 col-xs-12">
<div class="card">

9 <div class="card-body">

1? <h5 class="card-title">Lista de Funciondrio</h5>

12 % if funcionariosllength > 0 %}

13 <p class="card-text">

14 Aqui estd a lista de <code>Funciondrios</code>

15 cadastrados.

16 </p>

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

<table class="table">
<thead class="thead-dark">
<tr>
<th>ID</th>
<th>Nome</th>
<th>Sobrenome</th>
<th>Tempo de Servicgo</th>
<th>Remuneracdo</th>
<th>Acbes</th>
</tr>
</thead>

<tbody>
{% for f in funcionarios %}
<tr>
<td>{{ f.id }}</td>
<td>{{ f.nome }}</td>
<td>{{ f.sobrenome }}</td>
<td>{{ f.tempo_de_servico }}</td>
<td>{{ f.remuneracao }}</td>
<td>
<a href="{% url 'website:atualiza_funcionario' pk=f.id %}
class="btn btn-info">
Atualizar

<a href="{% url 'website:deleta_funcionario' pk=f.id %}"
class="btn btn-outline-danger">
Excluir

</td>
</tr>
{% endfor %}
</tbody>
</table>
{% else %}
<div class="text-center mt-5 mb-5 jumbotron">
<h5>Nenhum <code>Funciondrio</code> cadastrado ainda.</h5>
</div>
{% endif %}
<hr />
<div class="text-right">

w

57 <a class="btn btn-primary"

58 href="{% url 'website:cadastra_funcionario' %}">
59 Cadastrar Funcionario
60
</div>

g% </div>

</div>
63 /div>
64 </div>
65 </divs

66 {% endblock %}

Nesse template:

o Utilizamos as seguintes classes do Bootstrap para estilizar as
tabelas: table para estilizar a tabela e thead-dark para escurecer
o cabecalho.

o Nalinha 13, utilizamos o filtro length para verificar se a lista de
funciondrios esta vazia. Se ela contiver dados, a tablea é mostrada.
Se ela estiver vazia, sera renderizado o componente Jumbotron do
Bootstrap com o texto “Nenhum Funciondario cadastrado ainda”.

o Utilizamos a tag {% for funcionario in funcionarios %} na
linha 30 para iterar sobre a lista funcionarios.

o Nas linhas 39 e 46 fazemos o link para as paginas de atualizacdo e
exclusdo do usuadrio.

O resultado, sem Funcionarios cadastrados, deve ser esse:

https://getbootstrap.com/docs/4.0/content/tables/
https://getbootstrap.com/docs/4.0/content/tables/
https://v4-alpha.getbootstrap.com/components/jumbotron/
https://v4-alpha.getbootstrap.com/components/jumbotron/

& Lista de Funciondrios

& > @ @ locamostsoon/muncionarios *@ % = @O

@ pagina Inicial Fu

Lista de Funcionario

Nenhum runcionirio cadastrado ainda.

E com um Funciondrio cadastrado:

Usta de Funciondrios X

€ C | @ localhost5000,

@ Pégina Inicial Funcicndrios

Lista de Funcionario

Aqui esta a lista de Funclondrios cadastrados.

D Nome Sobrenome Tempo de Ser Remuneracio Agbes

3 Vinicius Ramaos 1 10000.00

Quando o usudrio clicar em “Excluir”, ele sera levado para a
pagina exclui.html e quando clicar em “Atualizar”, ele sera levado
para a pagina atualiza.html.

Vamos agora construir a pagina de Atualizacdo de Funcionarios!

Template de Atualizacao de Funcionarios

Template: website/atualiza.html

Nessa pagina, queremos que o usuario possa ver os dados atuais
do Funcionario e possa atualiza-los, conforme sua vontade. Para isso

utilizamos a View FuncionarioUpdateView que implementamos no
capitulo passado.

Ela expde um formuldrio com os campos do modelo preenchidos
com os dados atuais para que o usudrio possa alterar.

Vamos utilizar novamente a biblioteca Widget Tweaks para
facilitar a renderizacdo dos campos de input.

Abaixo, como podemos fazer nosso template:

{% extends "website/_layouts/base.html" %}
{% load widget_tweaks %}
{% block title %}Atualizacéo de Funcionario{% endblock %}

{% block conteudo %}
<div class="container">

O oo ~NOUTLPH WN B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

<div class="row">
<div class="col-1g-12 col-md-12 col-sm-12 col-xs-12">
<div class="card">
<div class="card-body">
<h5 class="card-title">
Atualizacdo de Dados do Funciondrio
</h5>
<form method="post">
<!-- Ndo se esqueca dessa tag -->

{% csrf_token %}

<!-- Nome -->
<div class="1input-group mb-3">
<div class="input-group-prepend">
Nome
</div>
{% render_field form.nome class+="form-control™ %}
</div>

<!-- Sobrenome -->
<div class="input-group mb-3">
<div class="input-group-prepend">
Sobrenome
</div>

{% render_field form.sobrenome class+="form-control" %}

</div>

<!-- CPF -->
<div class="input-group mb-3">
<div class="input-group-prepend">
CPF
</div>
{% render_field form.cpf class+="form-control" %}
</div>

<!/-- Tempo de Servico -->
<div class="input-group mb-3">
<div class="1input-group-prepend">
Tempo de Servico
</div>

53 {% render_field form.tempo_de_servico class+="form-contro

54 1" %}

55 </div>

56

7 <!-- Remuneracdo -->
58

<div class="input-group mb-3">

59 <div class="input-group-prepend">

2? Remuneracdo
62 </div>

63 {% render_field form.remuneracao class+="form-control” %}
64 </div>

65 <button class="btn btn-primary">Enviar</button>

66 </form>

67 </div>

68 </d'i.V>

69 </d'i.V>

70 </div>

71 </d'i.V>

72 1% endblock %}

Nesse template, nao temos nada de novo.

Perceba que seu codigo €é similar ao template de adicdo de
Funciondarios, com os campos sendo renderizados com a tag
render_field.

Como nossa View herda de UpdateView, o objeto form ja vem

populado com os dados do modelo em questdo (aquele cujo id foi
enviado ao se clicar no botdo de edigdo).

Sua interface deve ficar similar a:

Q Atualizagio de Funcions: X W %

€ © C | ® localhost8000/funcionario/1 * B a o

@ Péagina Inicial Funcionéarios

Atualizar Dados de Funcionario

Nome Vinicius
Sobrenome = Ramos
CPF 11122233344
Tempo de Servigo 1

Remuneragdo = 5000,00

E por ultimo, temos o template de exclusdo de Funcionarios.

Template de Exclusao de Funcionarios

Template: website/exclui.html

A funcdo dessa pagina é mostrar uma pdagina de confirmacao para
0 usudrio antes da exclusdo de um Funciondrio. Essa pagina vai
concretizar a sua excluséo.

A view que fizemos, a FuncionarioDeleteView, facilita bastante
nossa vida. Com ela, basta dispararmos uma requisi¢do POST para a URL
configurada, que o Funciondrio sera deletado!

Dessa forma, nosso objetivo se resume a:

1 </-- Estendemos do template base -->

2 {% extends "website/_layouts/base.html" %}

3

4 </-- Bloco que define o <title></title> da nossa pdgina -->
5 {% block title %}Pagina Inicial{% endblock %}

6

7 <!-- Bloco de conteudo da nossa pdgina -->

8 {% block conteudo %}

9 <«div class="container mt-5">

10 <div class="card">

11 <div class="card-body">

12 <h5 class="card-title">Exclusdo de Funcionario</h5>
13 <p class="card-text">

14 Vocé tem certeza que quer excluir o funciondario
15 {{ funcionario.nome }}?

16 </p>

17 <form method="post">

18 {% csrf_token %}

19 <hr />

20 <div class="text-right">

21 <a href="{% url 'website:lista_funcionarios"' %}"
22 class="btn btn-outline-danger">

23 Cancelar

24

25 <button class="btn btn-danger">Excluir</button>
26 </div>

27 </form>

28 </div>

29 </div>

30 </div>

31 {% endblock %}

Aqui, nada de novo.

Apenas mostramos o formuldrio onde o usudrio pode decidir
excluir ou ndo o Funcionario, que deve ficar assim:

O Pagina Inicial x % Y
€ & C | @ locathost8000/funcionario/exclui/1 t D oa U :

@ Pégina Inicial Funcionarios

Exclusdo de Funcionario

Vocé tem certeza que quer excluir o funcionario Vinicius?

e nCEIBr

Pronto!

Com isso, temos todas as paginas do nosso projeto! =

Agora vamos ver como construir tags e filtros customizados!

Tags e Filtros customizados

Sabemos, até agora, que o Django possui uma grande variedade de filtros
e tags pré-configurados.

Contudo, € possivel que, em alguma situacdo especifica, o Django
ndo te ofereca o filtro ou tag necessarios.

Por isso, ele previu a possibilidade de vocé construir seus
proprios filtros e tags!

Portanto, vamos construir uma tag que ira nos dizer o tempo
atual formatado e um filtro que ira retornar a primeira letra da string
passada.

Para isso, vamos comecar com a configuracao necessaria!

Configuracao

Os filtros e tags customizados residem em uma pasta especifica da nossa
estrutura: a /templatetags.

Portanto, crie na raiz do app website essa pasta
(website/templatetags) e adicione:

o Um script __init__.py em branco (para que o Django enxergue
como um pacote Python).
o O script tempo_atual.py em branco referente a nossa tag

e O scriptprimeira_letra.py em branco referente ao nosso filtro.

Nossa estrutura, portanto, deve ficar:

- website/

- templatetags/
- __init__.py
- tempo_atual.py
- primeira_letra.py

NOoO U WN

Para que o Django enxergue nossas tags e filtros é necessario que
o app onde eles estdo instalados esteja configurada na lista

INSTALLED_APPS do settings.py (no nosso caso, website ja esta 14,
portanto, nada a fazer aqui).

Também é necessario carrega-los com o {% load filtro/tag %}.
Vamos escolher um para comecar: vamos comecar com o filtro.

Vamos chamad-lo de primeira_letra e, quando estiver pronto,
iremos utiliza-lo da seguinte maneira:

1 <p>{{ valor|primeira letra }y</p>

Filtro primeira_letra

Filtros customizados sdo basicamente func¢des que recebem um ou dois
argumentos. Sao eles:

e Ovalor do input.

e O valor do argumento - que pode ter um valor padrdo ou nao
receber nenhum valor.

No nosso filtro {{ valorl|primeira_letra }}:

e valor seraovalue.
o Nosso filtro nao ira receber argumentos, portanto nao foi passado
nada para ele.

Para ser um filtro valido, é necessario que o cddigo dele contenha
uma varidvel chamada register que seja uma instadncia de

template.Library (onde todos os tags e filtros sdo registrados).
Isso define um filtro!

Outra questdo importante sdo as Excecdes. Como a engine de
templates do Django ndo prové tratamento de exce¢do ao executar o
codigo do filtro, qualquer excecdo serd exposta como uma excecdo do
proprio servidor.

Por isso, nosso filtro deve evitar lancar excecdes e, ao invés disso,
deve retornar um valor padrao.

Vamos ver um exemplo de filtro do Django.

Abra o arquivo django/template/defaultfilter.py. La temos a
definicdo de diversos filtros que podemos utilizar em nossos templates
(eu separei alguns e vou explicar ali embaixo).

L4 temos o exemplo do filtro Lower:

1 @register.filter(is_safe=True)

2 @stringfilter

3 def lower(value):

4 """Convert a string into all lowercase.
5 return value.lower()

wwwn

Nele:

e @register.filter(is_safe=True) é um decorator utilizado
para registrar sua funcdo como um filtro para o Django. S assim
o framework vai enxergar seu codigo (saiba mais sobre decorators
Nno nosso post - Domine Decorators em Python).

o @stringfilter éum decorator utilizado para dizer ao Django que
seu filtro espera uma string como argumento.

Com isso, vamos agora codificar e registrar nosso filtro!

Uma forma de pegarmos a primeira letra de uma string é
transforma-la em lista e pegar o elemento de indice [@], da seguinte
forma:

from django import template
from django.template.defaultfilters import stringfilter

register = template.Library()

@register.filter

@stringfilter

def primeira_letra(Cvalue):
return list(value)[0]

Ooco~NOUTEA WN B

Nesse codigo:

https://pythonacademy.com.br/blog/domine-decorators-em-python

O codigo register = template.Library() é necessario para
pegarmos uma instancia da biblioteca de filtros do Django. Com
ela, podemos registrar nosso filtro com @register.filter.
@register.filter e @stringfilter sdo os decorators que citei
aqui em cima.

E agora vamos testar, fazendo o carregamento e utilizacdo em

algutm template. Para isso, vamos alterar a tabela do template

website/lista.html para incluir nosso filtro da seguinte forma:

Ooco~NOUT A~ WN B

25

<!-- Primeiro, carregamos nosso filtro, logo apos o extends -->
{% load primeira_letra %}

<table class="table">

<thead class="thead-dark">
<tr>
<th></-- Retiramos o "ID" aqui --></th>
<th>Nome</th>
<th>Sobrenome</th>
<th>Tempo de Servico</th>
<th>Remuneracdo</th>
<th class="text-center">Acbes</th>
</tr>
</thead>
<tbody>
{% for f in funcionarios %}
<tr>
<!-- Aplicamos nosso filtro no atributo funcionario.nome -->
<td>{{ f.nomelprimeira_letra }}</td>
<td>{{ f.nome }}</td>
<td>{{ f.sobrenome }}</td>
<td>{{ f.tempo_de_servico }}</td>
<td>{{ f.remuneracao }}</td>
<td class="text-center">
<a class="btn btn-primary"

26
27
28
29
30
31
32
33
34
35
36
37
38
39

href="{% url 'website:atualiza_funcionario' pk=f.id %}">
Atualizar

<a class="btn btn-danger™
href="{% url 'website:deleta_funcionario' pk=f.id %}">
Excluir

</td>
</tr>
{% endfor %}
</tbody>
</table>

O que resulta em:

ocalhost:8000/funcionarios
@ Pégina Inicial Funcionérios

Lista de Funcionario

Aqui est4 a lista de Funciondrios cadastrados.
Nome Sobrenome Tempo de Servigo Remuneragao Agdes
v Vinicius RAMOS 1 1000.00

E com isso, terminamos nosso primeiro filtro!

Agora vamos fazer nossa tag customizada: a tempo_atual!

Tag tempo_atual

De acordo com a documentacdo do Django, “tags sdo mais complexas que
filtros pois podem fazer qualquer coisa“.

Desenvolver uma tag pode ser algo bem trabalhoso, dependendo
do que vocé deseja fazer. Mas também pode ser simples.

Como nossa tag vai apenas mostrar o tempo atual, sua implemen-
tacdo ndo deve ser complexa.

Para isso, utilizaremos um “atalho” do Django: a simple_tag!

A simple_tag é uma ferramenta para construcdo de tags simples
(assim como o proprio nome ja diz).

Com ela, a criacdo de tags fica similar a criagao de filtros, que
vimos na se¢do passada.

Assim como na criacdo da tag, precisamos incluir uma instancia
de template.Library (para ter acesso a biblioteca de filtros e tags do
Django), utilizar o decorator @register (para registrar nossa tag) e
definir a implementacdo da nossa funcao.

Para pegar o tempo atual, podemos utilizar o método now() da

biblioteca datetime. Como queremos formatar a data, também

utilizamos o método strftime(), passando como parametro a string

formatada (%H é a hora, %M sdo os minutos e %S sdo os segundos).

Podemos, entdo, definir nossa tag da seguinte forma:

import datetime
from django import template

register = template.Library()
@register.simple_tag

def tempo_atual():
return datetime.datetime.now().strftime('%H:%M:%S")

cONOUTL D WN P

E para utiliza-la, a carregamos com {% load tempo_atual %} e

a utilizamos em nosso template com {% tempo_atual %}.

No nosso caso, vamos utilizar nossa tag no template-base: o
website/_layouts/base.html.

Vamos adicionar um novo item a barra de navegacao (do lado
direito), da seguinte forma:

<body>
<!-- Navbar -->
<nav class="navbar navbar-expand-1g navbar-light bg-light">

<ul class="navbar-nav mr-auto">
<li class="nav-item active">

Pagina Inicial
0
1 </11i>

1

2

3

4 -

5 <div class="collapse navbar-collapse" id="navbarSupportedContent">
6

7

8

9

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

<1li class="nav-item">

Funciondarios

</1li>

<!-- Adicione a lista abaixo -->
<ul class="navbar-nav float-right">
<li class="nav-item">
<!/-- Agqui estd nosso filtro -->

Hora: {% tempo_atual %}

</11i>

</div>
</nav>

O resultado deve ser:

/ G pagina nicial x W

& C | @ localhost80!

@ Pagina Inicial Funcionarios Hora: 23:38:5

Cadastrar Funcionario Lista de Funcionarios

Cadastre aqui um novo Funciondrio Veja aqui a lista de Funcionrios cadastrados

Novo Funciondrio Vé para Lista

Com isso, temos nosso filtro e tag customizados!

Agora vamos dar uma olhada nos filtros que estdo presentes no
proprio Django: os Built-in Filters!

Built-in Filters

E possivel fazer muita coisa com os filtros que ja veem instalados no
proprio Django!

Muitas vezes, ¢é melhor vocé fazer algumas operacoes
no template do que fazé-las no backend. Sempre verifique a viabilidade
de um ou de outro para facilitar sua vida!

Como a lista de built-in filters do Django é bem extensa (veja a lista
completa aqui), vou listar aqui os que eu considero mais uteis!

Sem mais delongas, ai vai o primeiro: o capfirst!!!

Filtro capfirst
O que faz: Torna o primeiro caracter do valor para maiusculo.
Exemplo:

Entrada: valor = 'esse é um texto'.

Utilizagdo:

1 {{ valorlcapfirst }}

https://docs.djangoproject.com/en/2.0/ref/templates/builtins/#built-in-filter-reference
https://docs.djangoproject.com/en/2.0/ref/templates/builtins/#built-in-filter-reference

Saida:

Esse é um texto

Filtro cut

O que faz: Remove todas as ocorréncias do parametro no valor passado.

Exemplo:
Entrada: valor = '"Esse E Um Texto De Testes'

Utilizagdo:

1 {{ valorlcut:"™ " }}

Saida:

EsseEUmTextoDeTestes

Filtro date

O que faz: Utilizado para formatar datas. Possui uma grande variedade
de configuracdes (veja aqui).

Exemplo:
Entrada: Objeto datetime.

Utilizagdo:

https://docs.djangoproject.com/en/2.0/ref/templates/builtins/#date

1 {{ dataldate:'d/m/Y" }}

Saida:

01/07/2018

Filtro default
O que faz: Caso o valor seja False, utiliza o valor default.
Exemplo:

Entrada: valor = False

Utilizagdo:

1 {{ valorldefault: 'Nenhum valor' }}

Saida:

Nenhum valor

Filtro default_if_none

O que faz: Similar ao filtro default, caso o valor seja None, utiliza o valor

configurado em default_if_none.

Exemplo:

Entrada: valor = None

Utilizagdo:

1 {{ valorldefault: 'Nenhum valor' }}

Saida:

Nenhum valor

Filtro divisibleby
O que faz: Retorna True se o valor for divisivel pelo argumento.

Exemplo:
Entrada: valor = 14 edivisibleby:'2’

Utilizagdo:

1 {{ valorldivisibleby:'2" }}

Saida:

True

Filtro filesizeformat

O que faz: Transforma tamanhos de arquivos em valores legiveis.

Exemplo:

Entrada: valor = 123456789

Utilizagdo:

1 {{ valorlfilesizeformat }}

Saida:

117.7 MB

Filtro first

O que faz: Retorna o primeiro item em uma lista
Exemplo:

Entrada: valor = ["Marcos", "Jodo", "Luiz"]

Utilizagdo:

1 {{ valorlfirst }}

Saida:

Marcos

Filtro last
O que faz: Retorna o ultimo item em uma lista

Exemplo:

Entrada: valor = ["Marcos", "Jodo", "Luiz"]

Utilizagdo:

1 {{ valorllast }}

Saida:

Luiz

Filtro floatformat

O que faz: Arredonda numeros com ponto flutuante com o numero de
casas decimais passado por argumento.

Exemplo:
Entrada: valor = 14.25145

Utilizagdo:

1 {{ valorlfloatformat:"2" }}

Saida:

14.25

Filtro join

O que faz: Junta uma lista utilizando a string passada como argumento
como separador.

Exemplo:

Entrada: valor = ["Marcos", "Jodo", "Luiz"]

Utilizagdo:

1 {{ valorljoin:" - " }}

Saida:

Marcos - Jodo — Luiz

Filtro Length

O que faz: Retorna o comprimento de uma lista ou string. E muito
utilizado para saber se existem valores na lista (se length > 0, lista ndo

esta vazia).

Exemplo:
Entrada: valor = ['Marcos', 'Jodo']

Utilizagdo:

1 {% if valorllength > 0 %}

2 <p>Lista contém valores</p>
3 {% else %}

4 <p>Lista vazia</p>

5 {% endif %}

Saida:

<p>Lista contém valores</p>

Filtro Lower

O que faz: Transforma todos os caracteres de uma string em minusculas.

Exemplo:
Entrada: valor = PaRalLelLePiPeDo

Utilizagdo:

1 {{ valorllower }}

Saida:

paralelepipedo

Filtro pluralize

O que faz: Retorna um sufixo plural caso o numero seja maior que 1.
Exemplo:

Entrada: valor = 12

Utilizagdo:

1 Sua empresa tem {{ valor }} Funcionario{{ valorlpluralize:"s" }}

Saida:

Sua empresa tem 12 Funciondarios

Filtro random
O que faz: Retorna um item aleatorio de uma lista.

Exemplo:
Entrada: valor = [1, 2, 3, 4, 5, 6, 7, 9]

Utilizagdo:

1 {{ valorlrandom }}

Sua saida serda um valor da lista escolhido randomicamente.

Filtro title

O que faz: Transforma em maisculo o primeiro caracter de todas as
palavras do texto.

Exemplo:
Entrada: valor = 'primeiro post do blog'

Utilizagdo:

1 {{ valorltitle }}

Saida:

Primeiro Post Do Blog

Filtro upper

O que faz: Transforma em maisculo todos caracteres da string.
Exemplo:

Entrada: valor = texto de testes

Utilizagdo:

1 {{ valorlupper }}

Saida:

TEXTO DE TESTES

Filtro wordcount

O que faz: Retorna o numero de palavras da string.
Exemplo:

Entrada: valor = Django é o melhor framework web

Utilizagdo:

1 {{ valorlwordcount }}

Saida:

V4 =
Caodigo
O codigo completo desenvolvido nesse projeto esta disponivel no
Github da Python Academy. Clique aqui para acessa-lo e baixa-lo!

Para rodar o projeto, execute em seu terminal:

e pip 1install -r requirements.txt para instalar as depen-
déncias.

e python manage.py makemigrations para criar as Migracoes.

e python manage.py migrate para efetivar as Migracoes no banco
de dados.

e python manage.py runserver para executar o servidor de testes
do Django.

o Acessar o seu navegador na pagina http://localhost:8000 (por
padrao).

E pronto... Servidor rodando! @

Conclusao do Capitulo

Nesse capitulo vimos como configurar, customizar e estender templates,
como utilizar os filtros e tags do Django, como criar tags e filtros
customizados e um pouquinho de Bootstrap, para deixar as
paginas bonitonas!

https://github.com/pythonacademybr/HelloWorldDjango

Capitulo V

E AGORA?

Finalmente chegamos ao fim do nosso ebook! Mas, como vocé sabe, o
Django estd em constante evolucdo. Por isso, é bom vocé se manter
atualizado nas novidades lendo, pesquisando e acompanhando o mundo
do Django.

Para lhe ajudar, vou colocar aqui algumas referéncias para vocé
se manter atualizado e também para aprender cada vez mais sobre o
Django:

e Site oficial do Django: https://www.djangoproject.com/
e Documentacdo: https://docs.djangoproject.com/pt-br/2.0/
e Github do Django: https://github.com/django/django

https://www.djangoproject.com/
https://docs.djangoproject.com/pt-br/2.0/
https://github.com/django/django

o Twitter do Django: https://twitter.com/djangoproject

e Django RSS: https://www.djangoproject.com/rss/weblog/

e Lista de e-mails do Django:
https://groups.google.com/forum/#!forum/django-users

e Grupo do Facebook:
https://www.facebook.com/groups/django.brasil/

E, é claro que nao podia falta, o Blog da Python Academy:

https://pythonacademy.com.br/blog/

L4, nds temos conteudos completos sobre Python, Django, Kivy e muito
mais! Conheca e se inscreva na nossa lista de Pythonistas viciados por
conteudo de qualidade!

https://twitter.com/djangoproject
https://www.djangoproject.com/rss/weblog/
https://groups.google.com/forum/#!forum/django-users
https://pythonacademy.com.br/blog/

Capitulo VI

REFERENCIA

Django, Documentac¢ao do Django em Portugués (largamente utilizada):

https://docs.djangoproject.com/pt-br/2.0/.

The Django Book, Read The Docs:
http://django-book.readthedocs.io/en/latest/.

How to create custom a custom Django Middleware:

https://simpleisbetterthancomplex.com/tutorial/2016/07/18/how-to-
create-a-custom-django-middleware.html.

Classy Class Based Views:
https://ccbv.co.uk/

DB Browser for SQLite:
https://sqlitebrowser.org/

Codementor, Creating Custom Template Tags in Django:

https://www.codementor.io/hiteshgargl4/creating-custom-template-
tags-in-django-application-58wvmgm5f

Estendendo os Templates, Django Girls:

https://tutorial.djangogirls.org/pt/template_extending/

https://docs.djangoproject.com/pt-br/2.0/
http://django-book.readthedocs.io/en/latest/
https://simpleisbetterthancomplex.com/tutorial/2016/07/18/how-to-create-a-custom-django-middleware.html
https://simpleisbetterthancomplex.com/tutorial/2016/07/18/how-to-create-a-custom-django-middleware.html
https://ccbv.co.uk/
https://sqlitebrowser.org/
https://www.codementor.io/hiteshgarg14/creating-custom-template-tags-in-django-application-58wvmqm5f
https://www.codementor.io/hiteshgarg14/creating-custom-template-tags-in-django-application-58wvmqm5f

