

AGRADECIMENTOS

Agradeço primeiramente à Deus, pois sem Ele, eu não teria a

capacidade e força para entender nem uma linha de código sequer.

Agradeço à minha linda esposa, Luiza, pelo infindável ânimo e

incentivo às minhas loucas iniciativas e à minha família pelo amor e

suporte.

Agradeço ao grupo do Facebook Python Brasil – Programadores,

pelo apoio e suporte à comunidade Python!

SOBRE O AUTOR

Olá pessoal! Aqui quem vos fala é o Vinícius!

Bom, minha paixão por computadores e tecnologia despertou

desde cedo, quando ainda era bem novo.

Assim como você, entusiasta de tecnologia, eu sempre gostei de

brinquedos "tecnológicos" (como eu me divertia jogando Mister Show e

Pense Bem com a minha família).

Mas minha brincadeira ia além disso! Eu adorava ver como eles

funcionavam.

E como fazer isso sem abrí-los?! Certo?

Bom... Isso revoltava minha mãe, que via aquele brinquedo que

tinha demorado tanto para escolher, em "pedaços".

Cabos, motores, capacitores e baterias espalhados sempre fizeram

parte da decoração do meu quarto.

Mas minha trilha na computação estava apenas começando.

Chegou a época de escolher minha graduação e, como sempre fui

fascinado pelo funcionamento dos meus brinquedos eletrônicos, optei

por cursar Engenharia de Computação na Universidade de Brasília.

Dentre outras coisas, o curso serviu para aumentar ainda mais

minha vontade de aprender e desvendar a computação.

Quem nunca se perguntou como pode um processador conter mais

de 1 bilhão de transistores? Como 0's e 1's conseguem controlar toda essa

máquina extremamente intrigante que é um computador? Essas e outras

várias perguntas sempre fazem parte do dia a dia do universo de quem

tem sede de aprender um pouco mais sobre computação e tecnologia.

Durante o curso, tive experiência na área de suporte e na área de

desenvolvimento, estagiando na própria Universidade e em órgãos

públicos. Sem contar na oportunidade de aprender com grandes

professores e instrutores que tive por lá.

Os anos se passaram, me formei e estava na hora de decidir o rumo

da minha vida profissional, e como bom brasiliense que sou, optei pela

vida de concurseiro, fazendo concursos de TI para Tribunais, órgãos

públicos e empresas públicas.

Dado meu esforço, não demorou muito e passei no concurso para

área de Tecnologia do Banco do Brasil.

Atualmente eu estou nessa nova empreitada na Python Academy

para produzir e disponibilizar conteúdo da mais alta qualidade.

Espero que nosso conteúdo faça você entender Python DE

VERDADE!

É isso pessoal!

VÁ DIRETO AO ASSUNTO

INTRODUÇÃO ... 8

CAMADA MODEL ... 23

…

CAMADA VIEW .. 39

…

FUNCTION BASED VIEWS

CLASS BASED VIEWS

CAMADA TEMPLATE ... 80

…

TAGS

E AGORA?... 128

REFERÊNCIA .. 130

Capítulo I

INTRODUÇÃO

Django é um framework de alto nível, escrito em Python que encoraja o

desenvolvimento limpo de aplicações web.

Desenvolvido por experientes desenvolvedores, Django toma

conta da parte pesada do desenvolvimento web, como tratamento de

requisições, mapeamento objeto-relacional, preparação de respostas

HTTP, para que, dessa forma, você gaste seu esforço com aquilo

que realmente interessa: suas regras de negócio!

Foi desenvolvido com uma preocupação extra em segurança,

evitando os mais comuns ataques, como Cross site scripting (XSS), Cross

Site Request Forgery (CSRF), SQL injection, entre outros.

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/SQL_Injection

É bastante escalável: Django foi desenvolvido para tirar vanta-

gem da maior quantidade de hardware possível (desde que você queira).

Django usa uma arquitetura “zero-compartilhamento”, o que significa

que você pode adicionar mais recursos em qualquer nível: servidores de

banco de dados, cache e/ou servidores de aplicação.

Para termos uma boa noção do Django como um todo, esse ebook

utiliza uma abordagem bottom-up (de baixo para cima): primeiro

veremos os conceitos do Django, depois abordaremos a Camada de

Modelos, depois veremos a Camada de Views e, por fim, a Camada

de Templates.

Como disse anteriormente, o Django é um framework para construção de

aplicações web em Python.

E, como todo framework web, ele é um framework MVC (Model

View Controller), certo?

Bem... Não exatamente!

De acordo com sua documentação, os desenvolvedores o declaram

como um framework MTV - isto é: Model-Template-View.

Mas por que a diferença?

Para os desenvolvedores, as Views do Django representam qual

informação você vê, não como você vê. Há uma sutil diferença.

No Django, uma View é uma forma de processar os dados de uma

URL específica, pois ela descreve qual informação é apresentada,

através do processamento descrito pelo desenvolvedor em seu código.

Além disso, é imprescindível separar conteúdo de apresentação –

que é onde os templates residem.

Como disse, uma View descreve qual informação é apresentada,

mas uma View normalmalmente delega para um template, que descreve

como a informação é apresentada.

Assim, onde o Controller se encaixa nessa arquitetura?

No caso do Django, é o próprio framework que faz o trabalho

pesado de processar e rotear uma requisição para a View apropriada de

acordo com a configuração de URL descrita pelo desenvolvedor.

Para ajudar a entender um pouco melhor, vamos analisar o fluxo

de uma requisição saindo do browser do usuário, passando para o

servidor onde o Django está sendo executado e retornando ao browser do

usuário.

 Veja a seguinte ilustração:

O Django é dividido em três camadas:

 A Camada de Modelos.

 A Camada de Views.

 A Camada de Templates.

Vamos agora, dar nossos primeiros passos com o Django,

começando pela sua instalação!

Primeiro, precisamos nos certificar que o Python e o pip (gerenciador

de pacotes do Python) estão instalados corretamente.

Vá no seu terminal ou prompt de comando e digite o

comando python --version. Deve ser aberto o terminal interativo do

Python (se algo como bash: command not found aparecer, é por que

sua instalação não está correta).

Agora, digite pip --version. A saída desse comando deve ser a

versão instalada do pip. Se ele não estiver disponível, faça o download do

instalador nesse link e execute o código.

Vamos executar esse projeto em um ambiente virtual utilizando o

virtualenv para que as dependências não atrapalhem as que já estão

instaladas no seu computador.

Para saber mais sobre o virtualenv, leia esse post aqui sobre

desenvolvimento em ambientes virtuais.

Após criarmos nosso ambiente virtual, instalamos o Django com:

https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://pythonacademy.com.br/blog/python-e-virtualenv-como-programar-em-ambientes-virtuais

1 pip install django

Para saber se a instalação está correta, podemos abrir o terminal

interativo do Python (digitando python no seu terminal ou prompt de

comandos) e executar:

1

2

>>> import django

>>> print(django.get_version())

A saída deve ser a versão do Django instalada. No meu caso, a saída

foi 2.0.7.

Com tudo instalado corretamente, vamos agora fazer um projeto para

que você veja o Django em ação!

Nosso projeto é fazer um sistema de gerenciamento de

Funcionários. Ou seja, vamos fazer uma aplicação onde será possível

adicionar, listar, atualizar e deletar Funcionários.

Vamos começar criando a estrutura de diretórios e arquivos

principais para o funcionamento do Django. Para isso, o pessoal do

Django fez um comando muito bacana para nós: o django-admin.py.

Se sua instalação estiver correta, esse comando já foi adicionado

ao seu PATH!

Tente digitar django-admin --version no seu terminal (se não

estiver disponível, tente django-admin.py --version).

Digitando apenas django-admin, é esperado que aparece a lista de

comandos disponíveis, similar a:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Available subcommands:

[django]

 check

 compilemessages

 createcachetable

 dbshell

 diffsettings

 dumpdata

 flush

 inspectdb

 loaddata

 makemessages

 makemigrations

 migrate

 runserver

 sendtestemail

 shell

 showmigrations

 sqlflush

 sqlmigrate

 sqlsequencereset

 squashmigrations

 startapp

 startproject

 test

 testserver

Por ora, estamos interessados no comando startproject que cria

um novo projeto com a estrutura de diretórios certinha para

começarmos a desenvolver!

Executamos esse comando da seguinte forma:

1 django-admin.py startproject helloworld

Criando a seguinte estrutura de diretórios:

1

2

3

4

5

6

/helloworld

 - __init__.py

 - settings.py

 - urls.py

 - wsgi.py

- manage.py

Explicando cada arquivo:

 helloworld/settings.py: Arquivo muito importante com as

configurações do nosso projeto, como configurações do banco de

dados, aplicativos instalados, configuração de arquivos estáticos e

muito mais.

 helloworld/urls.py: Arquivo de configuração de rotas (ou

URLConf). É nele que configuramos quem responde a qual URL.

 helloworld/wsgi.py: Aqui configuramos a interface entre o

servidor de aplicação e nossa aplicação Django.

 manage.py: Arquivo gerado automaticamente pelo Django que

expõe comandos importantes para manutenção da nossa

aplicação.

Para testar, vá para a pasta raíz do projeto e execute o comando

python manage.py runserver.

Depois, acesse seu browser no endereço http://localhost:8000.

A seguinte tela deve ser mostrada:

Se ela aparecer, nossa configuração está correta e o Django está

pronto para começarmos a desenvolver!

Agora, vamos criar um app chamado website para separarmos os

arquivos de configuração da nossa aplicação, que vão ficar na

pasta /helloworld, dos arquivos relacionados ao website.

De acordo com a documentação, um app no Django é:

Uma aplicação Web que faz alguma coisa, por exemplo - um blog,

um banco de dados de registros públicos ou um aplicativo de

pesquisa. Já um projeto é uma coleção de configurações e apps para

um website em particular.

Um projeto pode ter vários apps e um app pode estar presente em

diversos projetos.

A fim de criar um novo app, o Django provê outro comando,

chamado django-admin.py startapp.

Ele nos ajuda a criar os arquivos e diretórios necessários para tal

objetivo.

Na raíz do projeto, execute:

1 django-admin.py startapp website

Agora, vamos criar algumas pastas para organizar a estrutura da

nossa aplicação. Primeiro, crie a pasta templates dentro de website.

Dentro dela, crie uma pasta website e dentro dela, uma pasta chamada

_layouts.

Crie também a pasta static dentro de website, para guardar os

arquivos estáticos (arquivos CSS, Javascript, imagens, fontes, etc). Dentro

dela crie uma pasta website, por questões de namespace. Dentro dela,

crie: uma pasta css, uma pasta img e uma pasta js.

Assim, nossa estrutura de diretórios deve estar similar a:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

/helloworld

 - __init__.py

 - settings.py

 - urls.py

 - wsgi.py

/website

 - templates/

 - website/

 - _layouts/

 - static/

 - website/

 - css/

 - img/

 - js/

 - migrations/

 - __init__.py

 - admin.py

 - apps.py

 - migrations.py

 - models.py

 - tests.py

 - views.py

- manage.py

Observação: Nós criamos uma pasta com o nome do app (website, no

caso) dentro das pastas static e templates para que o Django crie o

namespace do app. Dessa forma, o Django entende onde buscar os

recursos quando você precisar!

 Dessa forma, devemos estar com a estrutura da seguinte forma:

Para que o Django gerencie esse app, é necessário adicioná-lo

a lista de apps instalados. Fazemos isso atualizando a configuração

INSTALLED_APPS no arquivo de configuração helloworld/settings.py

Ela é uma lista e diz ao Django o conjunto de apps que devem ser

gerenciados no nosso projeto.

É necessário adicionar os apps da nossa aplicação à essa lista para

que o Django as enxergue. Para isso, procure por:

1

2

3

4

5

6

7

8

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

]

E adicione website e helloworld, ficando assim:

1

2

3

4

5

6

7

8

9

10

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'helloworld',

 'website'

]

Agora, vamos fazer algumas alterações na estrutura do projeto

para organizar e centralizar algumas configurações.

Primeiro, vamos passar o arquivo de modelos models.py de

/website para /helloworld, pois os arquivos comuns ao projeto vão

ficar centralizados no app helloworld (geralmente temos apenas um

arquivo models.py para o projeto todo).

Como não temos mais o arquivo de modelos na pasta /website,

podemos, então, excluir a pasta /migrations e o migrations.py, pois

estes serão gerados e gerenciados pelo app helloworld.

Por fim, devemos estar com a estrutura de diretórios da seguinte

forma:

1

2

3

4

5

6

7

8

9

10

11

12

13

/helloworld

 - __init__.py

 - settings.py

 - urls.py

 - wsgi.py

 - models.py

/website

 - __init__.py

 - admin.py

 - apps.py

 - tests.py

 - views.py

- manage.py

Nesse capítulo, vimos um pouco sobre o Django, suas principais

características, sua estrutura de diretórios e como começar a

desenvolver utilizando-o!

 Vimos as facilidades que o comando django-admin trazem e como

utilizá-lo para criar nosso projeto.

 Também o utilizamos para criar apps, que são estruturas

modulares do nosso projeto, usados para organizar e separar funções

específicas da nossa aplicação.

No próximo capítulo, vamos falar sobre a Camada Model do

Django, que é onde residem as entidades do nosso sistema e toda a lógica

de acesso a dados!

Capítulo II

CAMADA MODEL

A Camada de Modelos tem uma função essencial na arquitetura das

aplicações desenvolvidas com o Django. É nela que descrevemos os

campos e comportamentos das entidades que irão compor nosso

sistema. Também é nela que reside a lógica de acesso aos dados da nossa

aplicação. Vamos ver como é simples manipular os dados do nosso

sistema através da poderosa API de Acesso a Dados do Django.

…

No primeiro capítulo, tratamos de conceitos introdutórios do

framework, uma visão geral da sua arquitetura, sua instalacão e a

criação do famoso Hello World Django-based.

Agora, vamos tratar da primeira camada do Dango, conforme

abaixo:

Vamos mergulhar um pouco mais e conhecer a camada Model da

arquitetura MTV do Django (Model Template View).

Nela, vamos descrever, em forma de classes, as entidades do

nosso sistema, para que o resto (Template e View) façam sentido.

Vamos começar pelo básico: pela definição de modelo!

Um modelo é a descrição do dado que será gerenciado pela sua

aplicação.

Ele contém os campos e comportamentos desses dados. No fim,

cada modelo vai equivaler à uma tabela no banco de dados.

No Django, um modelo tem basicamente duas características:

 É uma classe que herda de django.db.models.Model

 Cada atributo representa um campo da tabela

Com isso, Django gera automaticamente uma API de Acesso à

Dados. Essa API facilita e muito nossa vida quando formos gerenciar

(adicionar, excluir e atualizar) nossos dados.

Para entendermos melhor, vamos modelar nosso “Hello World”!

Vamos supor que sua empresa está desenvolvendo um sistema de

gerenciamento dos funcionários e lhe foi dada a tarefa de modelar e

desenvolver o acesso aos dados da entidade Funcionário.

Pensando calmamente em sua estação de trabalho enquanto seu

chefe lhe cobra diversas metas e dizendo que o deadline do projeto foi

adiantado em duas semanas você pensa nos seguintes atributos para tal

classe:

 Nome

 Sobrenome

 CPF

 Tempo de serviço

 Remuneração

Ok!

Agora, é necessário passar isso para código Python para que o

Django possa entender.

No Django, os modelos são descritos no arquivo models.py.

Ele já foi criado no Capítulo anterior e está presente na pasta

helloworld/models.py.

Nele, nós iremos descrever cada atributo (nome, sobrenome, CPF

e etc) como um campo (ou Field) da nossa classe de Modelo.

Vamos chamar essa classe de Funcionário.

Seguindo as duas características que apresentamos (herdar da

classe Model e mapear os atributos da entidade com os campos),

podemos descrever nosso modelo da seguinte forma:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

from django.db import models

class Funcionario(models.Model):

 nome = models.CharField(

 max_length=255,

 null=False,

 blank=False

)

 sobrenome = models.CharField(

 max_length=255,

 null=False,

 blank=False

)

 cpf = models.CharField(

 max_length=14,

 null=False,

 blank=False

)

 tempo_de_servico = models.IntegerField(

 default=0,

 null=False,

 blank=False

)

 remuneracao = models.DecimalField(

 max_digits=8,

 decimal_places=2,

 null=False,

 blank=False

)

 objetos = models.Manager()

Explicando esse modelo:

 Cada campo tem um tipo.

 O tipo CharField representa uma string.

 O tipo PositiveIntegerField representa um número inteiro

positivo.

 O tipo DecimalField representa um número decimal com

precisão fixa (geralmente utilizamos para representar valores

monetários).

 Cada tipo tem um conjunto de propriedades, como:

max_length para delimitar o comprimento máximo da

string; decimal_places para configurar o número de casas

decimais; entre outras (a documentação de cada campo e

propriedade pode ser acessada aqui).

 O campo objetos = models.Manager() é utilizado para fazer

operações de busca e será explicado ali embaixo!

 Observação: não precisamos configurar o identificador id - ele é

herdado do objeto models.Model (do qual nosso modelo herdou)!

 Agora que criamos nosso modelo, é necessário executar a criação

das tabelas no banco de dados.

Para isso, o Django possui dois comandos que ajudam muito:

o makemigrations e o migrate.

 makemigrations

O comando makemigrations analisa se foram feitas mudanças nos

modelos e, em caso positivo, cria novas migrações (Migrations) para

alterar a estrutura do seu banco de dados, refletindo as alterações feitas.

https://docs.djangoproject.com/en/2.0/ref/models/fields/

 Vamos entender o que eu acabei de dizer: toda vez que você faz

uma alteração em seu modelo, é necessário que ela seja aplicada a

estrutura presente no banco de dados.

 A esse processo é dado o nome de Migração! De acordo com a

documentação do Django:

Migração é a forma do Django de propagar as alterações feitas

em seu modelo (adição de um novo campo, deleção de um modelo,

etc…) ao seu esquema do banco de dados. Elas foram desenvolvidas

para serem (a maioria das vezes) automáticas, mas cabe a você

saber a hora de fazê-las, de executá-las e de resolver os problemas

comuns que você possa vir a ser submetidos.

 Portanto, toda vez que você alterar o seu modelo, não se esqueça

de executar python manage.py makemigrations!

 Ao executar esse comando no nosso projeto, devemos ter a

seguinte saída:

1

2

3

4

5

$ python manage.py makemigrations

Migrations for 'helloworld':

 helloworld\migrations\0001_initial.py

 - Create model Funcionario

Observação: Ao executar pela primeira vez, talvez seja necessário

executar o comando referenciando o app os modelos estão definidos,

com: python manage.py makemigrations helloworld. Depois disso,

apenas python manage.py makemigrations deve bastar!

 Agora, podemos ver que foi criada um diretório chamado

migrations dentro de helloworld.

 Nele, você pode ver um arquivo chamado 0001_initial.py

 Ele contém a Migration que cria o model Funcionario no banco

de dados (veja na saída do comando makemigrations: Create model

Funcionario)

 migrate

Quando executamos o makemigrations, o Django cria o banco de dados

e as migrations, mas não as executa, isto é: não aplica as alterações no

banco de dados.

 Para que o Django as aplique, são necessárias três coisas,

basicamente:

 1. Que a configuração da interface com o banco de dados esteja

descrita no settings.py

 2. Que os modelos e migrations estejam definidos para esse

projeto.

 3. Execução do comando migrate

 Se você criou o projeto com django-admin.py createproject

helloworld, a configuração padrão foi aplicada. Procure pela

configuração DATABASES no settings.py.

Ela deve ser a seguinte:

1

2

3

4

5

6

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.sqlite3',

 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),

 }

}

 Por padrão, o Django utiliza um banco de dados leve e completo

chamado SQLite. Já já vamos falar mais sobre ele.

 Sobre os modelos e migrations, eles já foram feitos com a definição

do Funcionário no arquivo models.py e com a execução do comando

makemigrations.

 Agora só falta executar o comando migrate, propriamente dito!

 Para isso, vamos para a raíz do projeto e executamos: python

manage.py migrate. A saída deve ser:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

$ python manage.py migrate

Operations to perform:

 Apply all migrations: admin, auth, contenttypes, helloworld, s

essions

Running migrations:

 Applying contenttypes.0001_initial... OK

 Applying auth.0001_initial... OK

 Applying admin.0001_initial... OK

 Applying admin.0002_logentry_remove_auto_add...

 Applying contenttypes.0002_remove_content_ty...

 Applying auth.0002_alter_permission_name_max...

 Applying auth.0003_alter_user_email_max_leng...

 Applying auth.0004_alter_user_username_opts...

https://www.sqlite.org/index.html

14

15

16

17

18

19

20

 Applying auth.0005_alter_user_last_login_nul...

 Applying auth.0006_require_contenttypes_0002...

 Applying auth.0007_alter_validators_add_erro...

 Applying auth.0008_alter_user_username_max_l...

 Applying auth.0009_alter_user_last_name_max_...

 Applying helloworld.0001_initial... OK

 Applying sessions.0001_initial... OK

 Calma lá... Havíamos definido apenas uma Migration e foram

aplicadas 15!!! Por quê???

 Se lembra que a configuração INSTALLED_APPS continha vários

apps (e não apenas os nossos helloworld e website)?

 Pois então, cada app desses contém seus próprios modelos e

migrations. Sacou?!

 Com a execução do comando migrate, o Django irá criar diversas

tabelas no banco. Uma delas é a referente ao nosso modelo Funcionário,

similar à:

1

2

3

4

5

6

CREATE TABLE helloworld_funcionario (

 "id" serial NOT NULL PRIMARY KEY,

 "nome" varchar(255) NOT NULL,

 "sobrenome" varchar(255) NOT NULL,

 ...

);

- Isso está muito abstrato!

- Como eu posso ver o banco, as tabelas e os dados na prática?

Apresento-lhes uma ferramenta MUITO prática que nos auxilia verificar

se nosso código está fazendo aquilo que queríamos: o DB Browser for

SQLite!

 Com ele, podemos ver a estrutura do banco de dados, alterar dados

em tempo real, fazer queries, verificar se os dados foram efetivados no

banco e muito mais!

 Clique aqui para fazer o download e instalação do software.

 Ao terminar a instalação, abra o DB Browser for SQLite.

 Temos a seguinte tela:

http://sqlitebrowser.org/

 Aqui, podemos clicar em “Abrir banco de dados” e procurar pelo

banco de dados do nosso projeto db.sqlite3 (ele está na raíz do

projeto).

 Ao importá-lo, teremos uma visão geral, mostrando Tabelas,

Índices, Views e Triggers.

 Para ver os dados de cada tabela, vá para a aba “Navegar dados”,

escolha nossa tabela helloworld_funcionario e…

Voilá! O que temos? NADA

Calma jovem… Ainda não adicionamos nada! Já já vamos criar

as Views e Templates e popular esse BD!

Com nossa classe Funcionário modelada, vamos agora ver a API de

acesso à dados provida pelo Django para facilitar muito a nossa vida!

 Vamos testar a adição de um novo funcionário utilizando o shell do

Django. Para isso, digite o comando:

1 python manage.py shell

 O shell do Django é muito útil para testar trechos de código sem

ter que executar o servidor inteiro!

 Para adicionar um novo funcionário, basta criar uma instância do

seu modelo e chamar o método save() (não desenvolvemos esse método,

mas lembra que nosso modelo herdou de Models? Pois é, é de lá que ele

veio).

 Podemos fazer isso com o código abaixo (no shell do Django):

1

2

3

4

5

6

7

8

9

10

11

from helloworld.models import Funcionario

funcionario = Funcionario(

 nome='Marcos',

 sobrenome='da Silva',

 cpf='015.458.895-50',

 tempo_de_servico=5,

 remuneracao=10500.00

)

funcionario.save()

 E…. Pronto!

 O Funcionário Marcos da Silva será salvo no seu banco!

 NADA de código SQL e queries enormes!!! Tudo simples! Tudo

limpo! Tudo Python!

 A API de busca de dados é ainda mais completa! Nela, você

constrói sua query à nível de objeto!

 Mas como assim?!

 Por exemplo, para buscar todos os Funcionários, abra o shell do

Django e digite:

1 funcionarios = Funcionario.objetos.all()

 Se lembra do tal Manager que falamos lá em cima? Então,

um Manager é a interface na qual as operações de busca são definidas

para o seu modelo.

 Ou seja, através do campo objetos podemos fazer queries

incríveis sem uma linha de SQL!

 Exemplo de um query um pouco mais complexa:

Busque todos os funcionários que tenham mais de 3 anos de

serviço, que ganhem menos de R$ 5.000,00 de remuneração e

que não tenham Marcos no nome.

 Podemos atingir esse objetivo com:

1

2

3

4

5

funcionarios = Funcionario.objetos

 .exclude(name="Marcos")

 .filter(tempo_de_servico__gt=3)

 .filter(remuneracao__lt=5000.00)

 .all()

 O método exclude() retira linhas da pesquisa e filter() filtra a

busca!

 No exemplo, para filtrar por maior que concatenamos a string

__gt (gt = greater than = maiores que) ao filtro e __lt (lt = less than =

menores que) para resultados menores que o valor passado.

 O método .all() ao final da query serve para retornar todas as

linhas do banco que cumpram os filtros da nossa busca (também temos

o first() que retorna apenas o primeiro registro, o last(), que

retorna o último, entre outros).

 Agora, vamos ver como é simples excluir um Funcionário:

1

2

3

4

5

6

7

8

Primeiro, encontramos o Funcionário que desejamos deletar

funcionario = Funcionario

 .objetos

 .filter(id=1)

 .first()

Agora, o deletamos!

funcionario.delete()

 Legal, né?!

 A atualização também é extremamente simples, bastando buscar

a instância desejada, alterar o campo e salvá-lo novamente!

 Por exemplo: o funcionário de id = 13 se casou e alterou seu nome

de Marcos da Silva para Marcos da Silva Albuquerque.

 Podemos fazer essa alteração da seguinte forma:

1

2

3

4

5

6

7

8

9

10

11

Primeiro, buscamos o funcionario desejado

funcionario = Funcionario

 .objetos

 .filter(id=13)

 .first()

Alteramos seu sobrenome

funcionario.sobrenome = funcionario.sobrenome + " Albuquerque"

Salvamos as alterações

funcionario.save()

Com isso, concluímos a construção do modelo da nossa aplicação!

 Criamos o banco de dados, vimos como visualizar os dados com

o DB Browser for SQLite e como a API de acesso a dados do Django é

simples e poderosa!

 No próximo capítulo, vamos aprender sobre a Camada View e

como podemos adicionar lógica de negócio à nossa aplicação!

Capítulo III

CAMADA VIEW

Nesse capítulo, vamos abordar a Camada View do Django.

É nela que descreveremos a lógica de negócios da nossa aplicação,

ou seja: é nela que vamos descrever os métodos que irão processar as

requisições, formular respostas e enviá-las de volta ao usuário.

Vamos aprender o conceito das Views do Django, aprender a

diferença entre Function Based Views e Class Based Views, como utilizar

Forms, aprender o que é um Middleware e como desenvolver nossos

próprios e muito mais.

Então vamos nessa, que esse capítulo está completo!

…

Primeiramente, vamos nos situar:

Essa camada tem a responsabilidade de processar as requisições vindas

dos usuários, formar uma resposta e enviá-la de volta ao usuário. É aqui

que residem nossas lógicas de negócio!

 Ou seja, essa camada deve: recepcionar, processar e responder!

 Para isso, começamos pelo roteamento de URLs!

 A partir da URL que o usuário quer acessar (/funcionarios, por

exemplo), o Django irá rotear a requisicão para quem irá tratá-la.

 Mas primeiro, o Django precisa ser informado para onde mandar

a requisição.

 Fazemos isso no chamado URLconf e damos o nome a esse

arquivo, por convenção, de urls.py!

 Geralmente, temos um arquivo de rotas por app do Django.

Portanto, crie um arquivo urls.py dentro da pasta /helloworld e outro

na pasta /website.

 Como o app helloworld é o núcleo da nossa aplicação, ele faz o

papel de centralizador de rotas, isto é:

 Primeiro, a requisição cai no arquivo /helloworld/urls.py e é

roteada para o app correspondente.

 Em seguida, o URLConf do app (/website/urls.py, no nosso caso)

vai rotear a requisição para a view que irá processar a requisição.

 Dessa forma, o arquivo helloworld/urls.py deve conter:

1

2

3

4

5

6

7

8

9

10

11

from django.urls.conf import include

from django.contrib import admin

from django.urls import path

urlpatterns = [

 # Inclui as URLs do app ‘website’

 path('', include('website.urls', namespace='website')),

 # Interface administrativa

 path('admin/', admin.site.urls),

]

 Assim, o Django irá tentar fazer o match (casamento) de URLs

primeiro no arquivo de URLs do app Website (website/urls.py) depois

no URLConf da plataforma administrativa.

 Pode parecer complicado, mas ali embaixo, quando tratarmos mais

sobre Views, vai fazer mais sentido!

 A configuração do URLConf é bem simples!

Basta definirmos qual função ou View irá processar requisições

de tal URL. Por exemplo, queremos que:

Quando um usuário acesse a URL raíz /, o Django chame a

função index() para processar tal requisição.

 Vejamos como poderíamos configurar esse roteamento no nosso

arquivo urls.py:

1

2

3

4

5

6

7

8

9

10

Importamos a função index() definida no arquivo views.py

from . import views

app_name = 'website'

urlpatterns contém a lista de roteamentos de URLs

urlpatterns = [

 # GET /

 path('', views.index, name='index'),

]

 O atributo app_name = 'website' define o namespace do app

website (lembre-se do décimo nono Zen do Python: namespaces são uma

boa ideia! - clique aqui para saber mais sobre o Zen do Python).

 O método path() tem a seguinte assinatura:

path(rota, view, kwargs=None, nome=Nome).

 rota: string contendo a rota (URL).

 view: a função (ou classe) que irá tratar essa rota.

 kwargs: utilizado para passar dados adicionais à função ou

método que irá tratar a requisição.

 nome: nome da rota. O Django utiliza o app_name mais o nome da

rota para nomear a URL. Por exemplo, no nosso caso, podemos

chamar a rota raíz '/' com 'website:index' (app_site =

website e a rota raíz = index). Veja mais sobre padrões de formato

de URL.

https://pythonacademy.com.br/zen-of-python
https://docs.djangoproject.com/pt-br/2.0/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/pt-br/2.0/topics/http/urls/#naming-url-patterns

Com as URLs corretamente configuradas, o Django irá rotear a sua

requisição para onde você definiu. No caso acima, sua requisição irá cair

na função views.funcionarios_por_ano().

 Podemos tratar as requisições de duas formas: através de funções

(Function Based Views) ou através de Class Based Views (ou apenas

CBVs).

 Utilizando funções, você basicamente vai definir uma função que:

 Recebe como parâmetro uma requisição (request).

 Realiza algum processamento.

 Retorna alguma informação.

 Já as Class Based Views são classes que herdam da classe do Django

django.view.generic.base.View e que agrupam diversas

funcionalidades e facilitam a vida do desenvolvedor.

 Nós podemos herdar e estender as funcionalidades das Class

Based Views para atender a lógica da nossa aplicação.

 Por exemplo, suponha você quer criar uma página com a listagem

de todos os funcionários.

 Utilizando funções, você poderia chegar ao objetivo da seguinte

forma:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

def lista_funcionarios(request):

 # Primeiro, buscamos os funcionarios

 funcionarios = Funcionario.objetos.all()

 # Incluímos no contexto

 contexto = {

 'funcionarios': funcionarios

 }

 # Retornamos o template para listar os funcionários

 return render(

 request,

 "templates/funcionarios.html",

 contexto

)

 Aqui, algumas colocações:

 Toda função que vai processar requisições no Django recebe como

parâmetro um objeto request contendo os dados da requisição.

 Contexto é o conjunto de dados que estarão disponíveis para

construção da página - ou template.

 A função django.shortcuts.render() é um atalho (shortcut) do

próprio Django que facilita a renderização de templates: ela recebe

a própria requisição, o diretório do template, o contexto da

requisição e retorna o template renderizado.

 Já utilizando Class Based Views, podemos utilizar a ListView

presente em django.views.generic para listar todos os funcionários,

da seguinte forma:

1

2

3

4

5

6

from django.views.generic import ListView

class ListaFuncionarios(ListView):

 template_name = "templates/funcionarios.html"

 model = Funcionario

 context_object_name = "funcionarios"

 Perceba que você não precisou descrever a lógica para buscar a lista

de funcionários?

 É exatamente isso que as Views do Django proporcionam: elas

descrevem o comportamento padrão para as funcionalidades mais

simples (listagem, exclusão, busca simples, atualização).

 O caso comum para uma listagem de objetos é buscar todo o

conjunto de dados daquela entidade e mostrar no template, certo?! É

exatamente isso que a ListView faz!

 Com isso, um objeto funcionarios estará disponível no seu

template para iteração.

 Dessa forma, podemos então criar uma tabela no

nosso template com os dados de todos os funcionários:

1

2

3

4

5

6

7

8

<table>

 <tbody>

 {% for funcionario in funcionarios %}

 <tr>

 <td>{{ funcionario.nome }}</td>

 <td>{{ funcionario.sobrenome }}</td>

 <td>{{ funcionario.remuneracao }}</td>

 <td>{{ funcionario.tempo_de_servico }}</td>

9

10

11

12

 </tr>

 {% endfor %}

 </tbody>

</table>

 Vamos falar mais sobre templates no próximo artigo!

 O Django tem uma diversidade enorme de Views, uma para cada

finalidade, por exemplo:

 CreateView: Para criar de objetos (É o Create do CRUD)

 DetailView: Traz os detalhes de um objeto (É o Retrieve do CRUD)

 UpdateView: Para atualização de um objeto (É o Update do CRUD)

 DeleteView: Para deletar objetos (É o Delete do CRUD)

 E várias outras muito úteis!

 Agora vamos tratar detalhes do tratamento de requisições através

de Funções. Em seguida, trataremos mais sobre as Class Based Views.

Function Based Views

Utilizar funções é a maneira mais explícita para tratar requisições no

Django (veremos que as Class Based Views podem ser um pouco mais

complexas pois muita coisa acontece implicitamente).

 Utilizando funções, geralmente tratamos primeiro o método HTTP

da requisição: foi um GET? Foi um POST? Um OPTION?

 A partir dessa informação, processamos a requisição da maneira

desejada.

 Vamos seguir o exemplo abaixo:

1

2

3

4

5

6

7

8

9

10

11

12

def cria_funcionario(request, pk):

 # Verificamos se o método POST

 if request.method == 'POST':

 form = FormularioDeCriacao(request.POST)

 if form.is_valid():

 form.save()

 return HttpResponseRedirect(reverse('lista_funcionarios'))

 # Qualquer outro método: GET, OPTION, DELETE, etc...

 else:

 return render(request, "templates/form.html", {'form': form})

 O fluxo é o seguinte:

 Primeiro, conforme mencionei, verificamos o método HTTP da

requisição no campo method do objeto request na linha 3.

 Depois instanciamos um form com os dados da requisição (no

caso POST) com FormularioDeCriacao(request.POST) na linha

4 (vamos falar mais sobre Form já já).

 Verificamos os campos do formulário com form.is_valid() na

linha 6.

 Se tudo estiver OK, utilizamos o helper reverse() para traduzir a

rota 'lista_funcionarios' para funcionários/. Utilizamos

isso para retornar um redirect para a view de listagem na linha 8.

 Se for qualquer outro método, apenas renderizamos a página

novamente com o método render() na linha 12.

Deu para perceber que o objeto request é essencial nas nossas

Views, né?

 Separei aqui alguns atributos desse objeto que provavelmente

serão os mais utilizados por você:

 request.scheme: String representando o esquema (se veio por

uma conexão HTTP ou HTTPS).

 request.path: String com o caminho da página requisitada -

exemplo: /cursos/curso-de-python/detalhes.

 request.method: Conforme citamos, contém o método HTTP da

requisição (GET, POST, UPDATE, OPTION, etc).

 request.content_type: Representa o tipo MIME da requisição

- text/plain para texto plano, image/png para arquivos .PNG, por

exemplo - saiba mais clicando aqui.

 request.GET: Um dict contendo os parâmetros GET da requisição.

 request.POST: Um dict contendo os parâmetros do corpo de uma

requisição POST.

 request.FILES: Caso seja uma página de upload, contém os

arquivos que foram enviados. Só contém dados se for uma

requisição do tipo POST e o <form> da página HTML tenha o

parâmetro enctype="multipart/form-data".

 request.COOKIES: Dict contendo todos os COOKIES no formato de

string.

Observação: Para saber mais sobre os campos do objeto request, dê

uma olhada na classe django.http.request.HttpRequest!

https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Basico_sobre_HTTP/MIME_types

Algumas vezes, é interessante você ver o conjunto de dados que

estão vindo do brower do usuário para o servidor onde o Django está

sendo executado.

Outras vezes, precisamos verificar se está tudo correto, se tudo

está vindo como esperado ou se existem erros na requisição.

Uma forma de vermos isso é debugando o código, isto é: pausando

a execução do código no momento que em que a requisição chega no

servidor e vendo os atributos da requisição, verificando se está tudo OK

(ou não).

Se você utiliza o PyCharm, ou alguma outra IDE com debugger,

pode fazer os passos que eu vou descrever aqui (creio que em outra IDE,

o processo seja similar).

Por exemplo, vamos adicionar um breakpoint no método de uma

View. Para isso, clique duas vezes ao lado esquerdo da linha onde quer

adicionar o breakpoint. O resultado deve ser esse (linha 75, veja o círculo

vermelho na barra à esquerda, próximo ao contador das linhas):

 Com isso, quando você disparar uma requisição no seu browser

que venha a cair nessa linha de código, o debugger entrará em ação,

mostrando as variáveis naquela linha de código.

 Nesse exemplo, quando o debugger chegou nessa linha, obtive a

seguinte saída:

 A partir dessa visão, podemos verificar todos os atributos do

objeto request que chegou no servidor!

Vão por mim, isso ajuda MUITO a detectar erros!

Dito isso, agora vamos tratar detalhes do tratamento de

requisições através de Class Based Views.

Class Based Views

Conforme expliquei anteriormente, as Class Based Views servem para

automatizar e facilitar nossa vida, encapsulando funcionalidades

comuns que todo desenvolvedor sempre acaba implementando. Por

exemplo, geralmente:

 Queremos que quando um usuário vá para página inicial, seja

mostrado apenas uma página simples, com as opções possíveis.

 Queremos que nossa página de listagem contenha a lista de todos

os funcionários cadastrados no banco de dados.

 Queremos uma página com um formulário contendo todos os

campos pré-preenchidos para atualização de dado funcionário.

 Queremos uma página de exclusão de funcionários.

 Queremos um formulário em branco para inclusão de um novo

funcionário.

 Certo?!

 Pois é, as CBVs - Class Based Views - facilitam isso para nós!

 Temos basicamente duas formas para utilizar uma CBV.

 Primeiro, podemos utilizá-las diretamente no nosso URLConf

(urls.py), assim:

1

2

3

4

5

6

from django.urls import path

from django.views.generic import TemplateView

urlpatterns = [

 path('', TemplateView.as_view(template_name="index.html")),

]

 E a segunda maneira, a mais utilizada e mais poderosa, é herdar

da View desejada e sobrescrever os atributos e métodos na subclasse.

 Abaixo, veremos as Views mais utilizadas, e como podemos utilizá-

las em nosso projeto.

TemplateView

Por exemplo, para o primeiro caso, podemos utilizar a TemplateView

(acesse a documentação) para renderizar uma página, da seguinte

forma:

1

2

class IndexTemplateView(TemplateView):

 template_name = "index.html"

 E a configuração de rotas fica assim:

1

2

3

4

5

6

from django.urls import path

from helloworld.views import IndexTemplateView

urlpatterns = [

 path('', IndexTemplateView.as_view(), name='index'),

]

https://docs.djangoproject.com/en/2.0/ref/class-based-views/base/#templateview

ListView

Já para o segundo caso, de listagem de funcionários, podemos utilizar

a ListView (acesse a documentação).

Nela, nós configuramos o Model que deve ser buscado

(Funcionario no nosso caso), e ela automaticamente faz a busca por

todos os registros presentes no banco de dados da entidade informada.

 Por exemplo, podemos descrever a View da seguinte forma:

1

2

3

4

5

6

7

from django.views.generic.list import ListView

from helloworld.models import Funcionario

class FuncionarioListView(ListView):

 template_name = "website/lista.html"

 model = Funcionario

 context_object_name = "funcionarios"

 Utilizamos o atributo contexto_object_name para nomear a

variável que estará disponível no contexto do template (se não, o nome

padrão dado pelo Django será object).

 E configurá-la assim:

1

2

3

4

5

6

from django.urls import path

from helloworld.views import FuncionarioListView

urlpatterns = [

 path(

 'funcionarios/',

https://docs.djangoproject.com/en/2.0/ref/class-based-views/generic-display/#listview

7

8

9

 FuncionarioListView.as_view(),

 name='lista_funcionarios'),

]

 Isso resultará em uma página lista.html contendo um objeto

chamado funcionarios contendo todos os Funcionários disponível para

iteração.

Dica: É uma boa prática colocar o nome da View como o Model + CBV

base. Por exemplo: uma view que lista todos os Cursos, receberia o nome

de CursoListView (Model = Curso e CBV = ListView).

UpdateView

Para a atualização de usuários podemos utilizar a UpdateView (veja a

documentação). Com ela, configuramos qual o Model (atributo model),

quais campos (atributo field) e qual o nome do template (atributo

template_name), e com isso temos um formulário para atualização do

modelo definido.

 No nosso caso:

1

2

3

4

5

6

7

8

9

from django.views.generic.edit import UpdateView

from helloworld.models import Funcionario

class FuncionarioUpdateView(UpdateView):

 template_name = 'atualiza.html'

 model = Funcionario

 fields = [

 'nome',

 'sobrenome',

https://docs.djangoproject.com/en/2.0/ref/class-based-views/generic-editing/#updateview
https://docs.djangoproject.com/en/2.0/ref/class-based-views/generic-editing/#updateview

10

11

12

13

 'cpf',

 'tempo_de_servico',

 'remuneracao'

]

 Dica: Ao invés de listar todos os campos em fields em formato de

lista de strings, podemos utilizar fields = '__all__'. Dessa forma, o

Django irá buscar todos os campos para você!

 Mas de onde o Django vai pegar o id do objeto a ser buscado?

 O Django precisa ser informado do id ou slug para poder buscar

o objeto correto a ser atualizado. Podemos fazer isso de duas formas.

 Primeiro, na configuração de rotas (urls.py):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from django.urls import path

from helloworld.views import FuncionarioUpdateView

urlpatterns = [

 # Utilizando o {id} para buscar o objeto

 path(

 'funcionario/<id>',

 FuncionarioUpdateView.as_view(),

 name='atualiza_funcionario'),

 # Utilizando o {slug} para buscar o objeto

 path(

 'funcionario/<id>',

 FuncionarioUpdateView.as_view(),

 name='atualiza_funcionario'),

]

 Mas o que é slug?

 Slug é uma forma de gerar URLs mais legíveis a partir de dados já

existentes.

 Exemplo: podemos criar um campo slug utilizando o campo nome

do funcionário. Dessa forma, as URLs ficariam assim:

 /funcionario/vinicius-ramos

 E não assim (utilizando o id na URL):

 /funcionario/175

 No campo slug, todos os caracteres são transformados em minús-

culos e os espaços são transformados em hífens, o que dá mais sentido à

URL.

 A segunda forma de buscar o objeto é utilizando (ou sobrescre-

vendo) o método get_object() da classe pai UpdateView.

 A documentação desse método traz (traduzido):

Retorna o objeto que a View irá mostrar. Requer self.queryset e

um argumento pk ou slug no URLConf. Subclasses podem

sobrescrever esse método e retornar qualquer objeto.

 Ou seja, o Django nos dá total liberdade de utilizarmos

a convenção (quando passamos os parâmetros na configuração da rota

- URLConf) ou a configuração (quando sobrescrevemos o

método get_object()).

 Basicamente, o método get_object() deve pegar o id ou slug da

URL e realizar a busca no banco de dados até encontrar o objeto com

aquele id.

 Uma forma de sobrescrevermos esse método na View de listagem

de funcionários (FuncionarioListView) pode ser implementada da

seguinte maneira:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

from django.views.generic.edit import UpdateView

from helloworld.models import Funcionario

class FuncionarioUpdateView(UpdateView):

 template_name = "atualiza.html"

 model = Funcionario

 fields = '__all__'

 context_object_name = 'funcionario'

 def get_object(self, queryset=None):

 funcionario = None

 # Os campos {pk} e {slug} estão presentes em self.kwargs

 id = self.kwargs.get(self.pk_url_kwarg)

 slug = self.kwargs.get(self.slug_url_kwarg)

 if id is not None:

 # Busca o funcionario apartir do id

 funcionario = Funcionario

 .objects

 .filter(id=id)

 .first()

 elif slug is not None:

 # Pega o campo slug do Model

 campo_slug = self.get_slug_field()

27

28

29

30

31

32

33

34

35

 # Busca o funcionario apartir do slug

 funcionario = Funcionario

 .objects

 .filter(**{campo_slug: slug})

 .first()

 # Retorna o objeto encontrado

 return funcionário

 Dessa forma, os dados do funcionário estarão disponíveis na

variável funcionario no template atualiza.html!

DeleteView

Para deletar funcionários, utilizamos a DeleteView (documentação).

 Sua configuração é similar à UpdateView: nós devemos informar

ao Django qual o objeto queremos excluir via URLConf ou através do

método get_object().

 Precisamos configurar:

 O template que será renderizado.

 O model associado à essa view.

 O nome do objeto que estará disponível no template.

 A URL de retorno, caso haja sucesso na deleção do Funcionário.

 Com isso, a view pode ser codificada da seguinte forma:

1

2

class FuncionarioDeleteView(DeleteView):

 template_name = "website/exclui.html"

https://docs.djangoproject.com/en/2.0/ref/class-based-views/generic-editing/#deleteview

3

4

5

6

7

 model = Funcionario

 context_object_name = 'funcionario'

 success_url = reverse_lazy(

 "website:lista_funcionarios"

)

 O método reverse_lazy() serve para fazer a conversão de rotas

(similar ao reverse()) mas em um momento em que o URLConf ainda não

foi carregado (que é o caso aqui)

Assim como na UpdateView, fazemos a configuração do id a ser buscado

no URLConf, da seguinte forma:

1

2

3

4

5

6

urlpatterns = [

 path(

 'funcionario/excluir/<pk>',

 FuncionarioDeleteView.as_view(),

 name='deleta_funcionario'),

]

 Assim, precisamos apenas fazer um template de confirmação da

exclusão do funcionário (o link será feito através de um botão “Excluir”

que vamos adicionar à página lista.html no próximo capítulo).

 Podemos fazer o template da seguinte forma:

1

2

3

4

5

6

<form method="post">

 {% csrf_token %}

 Você tem certeza que quer excluir

 o funcionário {{ funcionario.nome }}?

7

8

9

10

11

12

13

14

 <button type="button">

 Cancelar

 </button>

 <button>Excluir</button>

</form>

 Algumas colocações:

 A tag do Django {% csrf_token %} é obrigatório em todos

os forms pois está relacionado à proteção que o Django provê

ao CSRF - Cross Site Request Forgery (tipo de ataque malicioso

- saiba mais aqui).

 Não se preocupe com a sintaxe do template veremos mais sobre

ele no próximo post!

CreateView

Nessa View, precisamos apenas dizer para o Django o model, o nome

do template, a classe do formulário (vamos tratar mais sobre Forms ali

embaixo) e a URL de retorno, caso haja sucesso na inclusão do

Funcionário.

 Podemos fazer isso assim:

1

2

3

4

from django.views.generic import CreateView

class FuncionarioCreateView(CreateView):

 template_name = "website/cria.html"

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

5

6

7

8

9

 model = Funcionario

 form_class = InsereFuncionarioForm

 success_url = reverse_lazy(

 "website:lista_funcionarios"

)

 O método reverse_lazy() traduz a View em URL. No nosso caso,

queremos que quando haja a inclusão do Funcionário, sejamos

redirecionados para a página de listagem, para podermos conferir que o

Funcionário foi realmente adicionado.

 E a configuração da rota no arquivo urls.py:

1

2

3

4

5

6

7

8

9

from django.urls import path

from helloworld.views import FuncionarioCreateView

urlpatterns = [

 path(

 'funcionario/cadastrar/',

 FuncionarioCreateView.as_view()

 name='cadastra_funcionario'),

]

 Com isso, estará disponível no template configurado

(website/cria.html, no nosso caso), um objeto form contendo os

campos do formulário para criação do novo funcionário.

 Podemos mostrar o formulário de duas formas.

 A primeira, mostra o formulário inteiro cru, isto é, sem

formatação e estilo, conforme o Django nos entrega.

Podemos mostrá-lo no nosso template da seguinte forma:

1

2

3

4

5

6

7

<form method="post">

 {% csrf_token %}

 {{ form }}

 <button type="submit">Cadastrar</button>

</form>

 Observação: apesar de ser um Form, sua renderização não contém

as tags <form></form> - cabendo a nós incluí-los no template.

 Já a segunda, é mais trabalhosa, pois temos que renderizar campo

a campo no template. Porém, nos dá um nível maior de customização.

 Podemos renderizar cada campo do form dessa forma:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

<form method="post">

 {% csrf_token %}

 <label for="{{ form.nome.id_for_label }}">

 Nome

 </label>

 {{ form.nome }}

 <label for="{{ form.sobrenome.id_for_label }}">

 Sobrenome

 </label>

 {{ form.sobrenome }}

 <label for="{{ form.cpf.id_for_label }}">

 CPF

 </label>

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 {{ form.cpf }}

 <label for="{{ form.tempo_de_servico.id_for_label }}">

 Tempo de Serviço

 </label>

 {{ form.tempo_de_servico }}

 <label for="{{ form.remuneracao.id_for_label }}">

 Remuneração

 </label>

 {{ form.remuneracao }}

 <button type="submit">Cadastrar</button>

</form>

 Nesse template:

 {{ form.campo.id_for_label }} traz o id da tag <input> para

adicionar à tag <label></label>.

 Utilizamos o {{ form.campo }} para renderizar apenas um

campo do formulário, e não ele inteiro.

 Agora vamos aprender mais sobre a utilização do Form do Django!

O tratamento de formulários é uma tarefa que pode ser bem complexa.

 Considere um formulário com diversos campos e diversas regras

de validação: seu tratamento não é mais um processo simples.

 Os Forms do Django são formas de descrever, em código Python,

os formulários das páginas HTML, simplificando e automatizando seu

processo de criação e validação.

 O Django trata três partes distintas dos formulários:

 Preparação dos dados tornando-os prontos para renderização

 Criação de formulários HTML para os dados

 Recepção e processamento dos formulários enviados ao servidor

 Basicamente, queremos uma forma de renderizar em

nosso template o seguinte código HTML:

1

2

3

4

5

<form action="/insere-funcionario/" method="post">

 <label for="nome">Your name: </label>

 <input id="nome" type="text" name="nome" value="">

 <input type="submit" value="Enviar">

</form>

 E que, ao ser submetido ao servidor, tenha seus campos de entrada

validados e, em caso de validação positiva – sem erros, seja inserido no

banco de dados.

 No centro desse sistema de formulários do Django está a

classe Form.

 Nela, nós deescrevemos os campos que estarão disponíveis no

formulário HTML.

 Para o formulário acima, podemos descrevê-lo da seguinte forma.

1

2

3

4

5

6

7

from django import forms

class InsereFuncionarioForm(forms.Form):

 nome = forms.CharField(

 label='Nome do Funcionário',

 max_length=100

)

 Nesse formulário:

 Utilizamos a classe forms.CharField para descrever um campo

de texto.

 O parâmetro label descreve um rótulo para esse campo.

 max_length decreve o tamanho máximo que esse input pode

receber (100 caracteres, no caso).

 Veja os diversos tipos de campos disponíveis acessando aqui.

 A classe forms.Form possui um método muito importante,

chamado is_valid().

 Quando um formulário é submetido ao servidor, esse é um dos

métodos que irá realizar a validação dos campos do formulário.

 Se tudo estiver OK, ele colocará os dados do formulário no

atributo cleaned_data (que pode ser acessado por você posteriormente

para pegar alguma informação - como o nome que foi inserido pelo

usuário no campo <input name='nome'>).

https://docs.djangoproject.com/pt-br/2.0/ref/forms/fields/

 Como o processo de validação do Django é bem complexo, optei por

descrever aqui o essencial para começarmos a utilizá-lo. Para saber mais

sobre o funcionamento dos Forms, acesse a documentação aqui.

 Vamos ver agora um exemplo mais complexo com um formulário

de inserção de um Funcionário com todos os campos. Para isso, crie o

arquivo forms.py no app website.

Em seguida, e consultando a documentação dos possíveis campos

do formulário, podemos descrever um Form de inserção assim:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

from django import forms

class InsereFuncionarioForm(forms.Form)

 nome = forms.CharField(

 required=True,

 max_length=255

)

 sobrenome = forms.CharField(

 required=True,

 max_length=255

)

 cpf = forms.CharField(

 required=True,

 max_length=14

)

 tempo_de_servico = forms.IntegerField(

 required=True

)

 remuneracao = forms.DecimalField()

https://docs.djangoproject.com/en/2.0/ref/forms/validation/
https://docs.djangoproject.com/pt-br/2.0/ref/forms/fields/

 Affff, mas o Model e o Form são quase iguais… Terei que reescrever

os campos toda vez?

 Claro que não, jovem! Por isso o Django nos presenteou com o

incrível ModelForm

 Com o ModelForm nós configuramos de qual Model o Django deve

pegar os campos. A partir do atributo fields, nós dizemos quais campos

nós queremos e, através do campo exclude, os campos que não

queremos.

 Para fazer essa configuração, utilizamos os metadados da classe

interna Meta. Metadado (no caso do Model e do Form) é tudo aquilo que

não será transformado em campo, como model, fields, ordering etc

(veja mais sobre Meta options).

 Assim, nosso ModelForm, pode ser descrito da seguinte forma:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

from django import forms

class InsereFuncionarioForm(forms.ModelForm):

 class Meta:

 # Modelo base

 model = Funcionario

 # Campos que estarão no form

 fields = [

 'nome',

 'sobrenome',

 'cpf',

 'remuneracao'

]

https://docs.djangoproject.com/en/2.0/topics/db/models/#meta-options

15

16

17

18

19

 # Campos que não estarão no form

 exclude = [

 'tempo_de_servico'

]

 Podemos utilizar apenas o campo fields, apenas o exclude ou os

dois juntos e mesmo ao utilizá-los, ainda podemos adicionar outros

campos, independente dos campos do Model.

 O resultado será um formulário com todos os campos presentes

no fields, menos os campos do exclude mais os outros campos que

adicionarmos.

 Ficou confuso? Então vamos ver um exemplo que utiliza todos os

artributos e ainda adiciona novos campos ao formulário:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

from django import forms

class InsereFuncionarioForm(forms.ModelForm)

 chefe = forms.BooleanField(

 label='Chefe?',

 required=True,

)

 biografia = forms.CharField(

 label='Biografia',

 required=False,

 widget=forms.TextArea

)

 class Meta:

 # Modelo base

18

19

20

21

22

23

24

25

26

27

28

29

30

31

 model = Funcionario

 # Campos que estarão no form

 fields = [

 'nome',

 'sobrenome',

 'cpf',

 'remuneracao'

]

 # Campos que não estarão no form

 exclude = [

 'tempo_de_servico'

]

 Isso vai gerar um formulário com:

 Todos os campos contidos em fields

 Serão retirados os campos contidos em exclude

 O campo forms.BooleanField, como um checkbox (<input

type='checkbox' name='chefe' ...>)

 Biografia como uma área de texto (<textarea name='biografia'

...></textarea>)

 Assim como é possível definir atributos nos modelos, os campos

do formulário também são customizáveis.

 Veja que o campo biografia é do tipo CharField, portanto

deveria ser renderizado como um campo <input type='text' ...>'.

 Contudo, eu modifiquei o campo configurando o atributo widget

com forms.TextArea.

 Assim, ele não mais será um simples input, mas será renderizado

como um <textarea></textarea> no nosso template!

 Nós veremos mais sobre formulários no próximo capítulo,

quando formos renderizá-los nos nossos templates.

 Agora vamos tratar de um componente muito importante no

processamente de requisições e formulação das respostas da nossa

aplicação: os Middlewares.

Middlewares são trechos de códigos que podem ser executados antes ou

depois do processamento de requisições/respostas pelo Django.

 É uma forma que os desenvolvedores, nós, temos para alterar

como o Django processa algum dado de entrada ou de saída.

 Se você olhar no arquivo settings.py, nós temos a lista

MIDDLEWARE com diversos middlewares pré-configurados:

1

2

3

4

5

6

7

8

9

MIDDLEWARE = [

 'django.middleware.security.SecurityMiddleware',

 'django.contrib.sessions.middleware.SessionMiddleware',

 'django.middleware.common.CommonMiddleware',

 'django.middleware.csrf.CsrfViewMiddleware',

 'django.contrib.auth.middleware.AuthenticationMiddleware',

 'django.contrib.messages.middleware.MessageMiddleware',

 'django.middleware.clickjacking.XFrameOptionsMiddleware',

]

 Por exemplo, temos o middleware AuthenticationMiddleware.

 Ele é responsável por adicionar a variável user a todas as

requisições. Assim, você pode, por exemplo, mostrar o usuário logado no

seu template:

1

2

3

4

5

 Olá, {{ user.email }}

 Você pode pesquisar e perceber que em lugar nenhum em nosso

código nós adicionamos a variável user ao Contexto das requisições.

 Não é muito comum, mas pode ser que você tenha que adicionar

algum comportamento antes de começar a tratar a Requisição ou depois

de formar a Resposta.

 Portante, veremos agora como podemos criar o nosso próprio

middleware.

 Um middleware é um método callable (que tem uma implementa-

ção do método __call__()) que recebe uma requisição e retorna uma

resposta e, assim como uma View, pode ser escrito como função ou

como Classe.

 Um exemplo de middleware escrito como função é:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

def middleware_simples(get_response):

 # Código de inicialização do Middleware

 def middleware(request):

 # Código a ser executado antes da View e

 # antes de outros middlewares serem executados

 response = get_response(request)

 # Código a ser executado após a execução

 # da View que irá processar a requisição

 return response

 return middleware

 E como Classe:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

class MiddlewareSimples:

 def __init__(self, get_response):

 self.get_response = get_response

 # Código de inicialização do Middleware

 def __call__(self, request):

 # Código a ser executado antes da View e

 # antes de outros middlewares serem executados

 response = self.get_response(request)

 # Código a ser executado após a execução

 # da View que irá processar a requisição

 return response

 Como cada Middleware é executado de maneira encadeada, do

topo da lista MIDDLEWARE para o fim, a saída de um é a entrada do

próximo.

 O método get_response() pode ser a própria View, caso ela seja

a última configurada no MIDDLEWARE do settings.py, ou o próximo

middleware da cadeia.

 Utilizando a construção do middleware via Classe, nós temos três

métodos importantes:

process_view

Assinatura: process_view(request, func, args, kwargs)

 Esse método é chamado logo antes do Django executar

a View que vai processar a requisição e possui os seguintes parâmetros:

 request é o objeto HttpRequest.

 func é a própria view que o Django está para chamar ao final da

cadeia de middlewares.

 args é a lista de parâmetros posicionais que serão passados à view.

 kwargs é o dict contendo os argumentos nomeados (keyword

arguments) que serão passados à view.

 Esse método deve retornar None ou um objeto HttpResponse:

 Caso retorne None, o Django entenderá que deve continuar a

cadeia de Middlewares.

 Caso retorne HttpResponse, o Django entenderá que a resposta

está pronta para ser enviada de volta e não vai se preocupar em

chamar o resto da cadeia de Middlewares, nem a view que iria

processar a requisição.

process_exception

Assinatura: process_exception(request, exception)

 Esse método é chamado quando uma View lança uma exceção e

deve retornar ou None ou HttpResponse.

 Caso retorne um objeto HttpResponse, o Django irá aplicar

o middleware de resposta e o middleware de template, retornando a

requisição ao browser.

 request é o objeto HttpRequest

 exception é a exceção propriamente dita lançada pela view.

process_template_response

Assinatura: process_template_response(request, response)

 Esse método é chamado logo após a View ter terminado sua

execução caso a resposta tenha uma chamada ao método render()

indicando que a reposta possui um template.

 Possui os seguintes parâmetros:

 request é um objeto HttpRequest.

 response é o objeto TemplateResponse retornado pela view ou

por outro middleware.

 Agora vamos criar um middleware um pouco mais complexo para

exemplificar o que foi dito aqui!

 Vamos supor que queremos um middleware que filtre requisições

e só processe aquelas que venham de uma determinada lista de IP’s.

 Esse middleware é muito útil quando temos, por exemplo, um

conjunto de servidores com IP fixo que vão se conectar entre si. Você

poderia, por exemplo, ter uma configuração no seu settings.py

chamada ALLOWED_SERVERS contendo a lista de IP autorizados a se

conectar ao seu serviço.

 Para isso, precisamos abrir o cabeçalho das requisições que

chegam no nosso servidor e verificar se o IP de origem está autorizado.

 Como precisamos dessa lógica antes da requisição chegar na View,

vamos adicioná-la ao método process_view, da seguinte forma:

1

2

3

4

5

6

7

8

9

class FiltraIPMiddleware:

 def __init__(self, get_response=None):

 self.get_response = get_response

 def __call__(self, request):

 response = self.get_response(request)

 return response

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

 def process_view(request, func, args, kwargs):

 # Lista de IPs autorizados

 ips_autorizados = ['127.0.0.1']

 # IP do usuário

 ip = request.META.get('REMOTE_ADDR')

 # Verifica se o IP do está na lista de IPs autorizados

 if ip not in ips_autorizados:

 # Se usuário não autorizado > HTTP 403 (Não Autorizado)

 return HttpResponseForbidden(

 "IP não autorizado"

)

 # Se for autorizado, não fazemos nada

 return None

 Depois disso, precisamos registrar nosso middleware no arquivo

de configurações settings.py (na configuração MIDDLEWARE):

1

2

3

4

5

6

7

8

9

10

11

12

MIDDLEWARE = [

 'django.middleware.security.SecurityMiddleware',

 'django.contrib.sessions.middleware.SessionMiddleware',

 'django.middleware.common.CommonMiddleware',

 'django.middleware.csrf.CsrfViewMiddleware',

 'django.contrib.auth.middleware.AuthenticationMiddleware',

 'django.contrib.messages.middleware.MessageMiddleware',

 'django.middleware.clickjacking.XFrameOptionsMiddleware',

 # Nosso Middleware

 'helloworld.middlewares.FiltraIPMiddleware',

]

 Agora, podemos testar seu funcionamento alterando a

lista ips_autorizados:

 Coloque ips_autorizados = ['127.0.0.1'] e tente acessar

alguma URL da nossa aplicação: devemos conseguir acessar

normalmente nossa aplicação, pois como estamos executando o

servidor localmente, nosso IP será 127.0.0.1 e, portanto,

passaremos no teste.

 Coloque ips_autorizados = [] e tente acessar alguma URL da

nossa aplicação: deve aparecer a mensagem “IP não autorizado”,

pois nosso IP (127.0.0.1) não está autorizado a acessar o servidor.

Nesse capítulo vimos vários conceitos sobre os tipos de Views (funções e

classes), os principais tipos de CBV (Class Based Views), como mapear

suas URL para suas views através do URLConf, como entender o fluxo da

sua requisição utilizando o debug da sua IDE, como utilizar os

poderosos Forms do Django e como utilizar middlewares para adicionar

camadas extras de processamento às requisições e respostas que chegam

e saem da nossa aplicação.

 No próximo capítulo, vamos melhorar a interface com o usuário

através da Camada de Templates do Django!

Capítulo IV

CAMADA TEMPLATE

Chegamos ao nosso último capítulo do noss ebook!

Nesse capítulo vamos aprender a configurar, customizar e esten-

der templates, como utilizar os filtros e tags do Django, como criar tags e

filtros customizados e um pouquinho de Bootstrap, para deixar as

páginas bonitonas!

A Camada Template é quem dá cara à nossa aplicação, isto é, faz

a interface com o usuário. É nela que se encontra o código Python,

responsável por renderizar nossas páginas web, e os arquivos HTML,

CSS e Javascript que darão vida à nossa aplicação!

…

Primeiro, vamos relembrar onde estamos no fluxo requisição/resposta

do nosso servidor Django:

 Agora, estamos na camada que faz a interface do nosso código

Python/Django com o usuário, interagindo, trocando informações,

captando dados de input e gerando dados de output.

 SPOILER ALERT: Nesse post vamos concentrar nossos esforços em

entender a camada de templates para construção de páginas. Nesse

momento, não vamos focar na implementação da lógica por trás da Engine

de templates, pois acredito que é algo que dificilmente você se verá

fazendo, ok?!

 Vamos começar pelo começo: o que é um Template?

Basicamente, um template é um arquivo de texto que pode ser

transformado em outro arquivo (um arquivo HTML, um CSS, um CSV,

etc).

 Um template no Django contém:

 Variáveis que podem ser substituídas por valores, a partir do

processamento por uma Engine de Templates (núcleo ou “motor”

de templates). Usamos os marcadores {{ variável }}.

 Tags que controlam a lógica do template. Usamos com {% tag %}.

 Filtros que adicionam funcionalidades ao template. Usamos com

{{ variável|filtro }}.

 Por exemplo, abaixo está representado um template mínimo que

demonstra alguns conceitos básicos:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

{# base.html contém o template que usaremos como esqueleto #}

{% extends "base.html" %}

{% block conteudo %}

 <h1>{{ section.title }}</h1>

 {% for f in funcionarios %}

 <h2>

 {{ funcionario.nome|upper }}

 </h2>

 {% endfor %}

{% endblock %}

 Alguns pontos importantes:

 Linha 1: Escrevemos comentário com a tag {# comentário #}.

Eles serão processados pelo Engine e não estarão na página

resultante.

 Linha 2: Utilizamos {% extends "base.html" %} para estender

de um template, ou seja, utilizá-lo como base, passando o caminho

para ele.

 Linha 4: Podemos facilitar a organização do template, criando

blocos com {% block nome_do_bloco %}{% endblock %}.

 Linha 5: Podemos interpolar variáveis vindas do servidor com

nosso template com {{ secao.titulo }} - dessa forma, estamos

acessando o atributo titulo do objeto secao (que deve estar

no Contexto da resposta).

 Linha 7: É possível iterar sobre objetos de uma lista através

da tag {% for objeto in lista %}{% endfor %}.

 Linha 10: Podemos utilizar filtros para aplicar alguma função à

algum conteúdo. Nesse exemplo, estamos aplicando o filtro upper,

que transforma todos os caracteres da string em maísculos, no

conteúdo de funcionario.nome. Também é possível encadear

filtros, por exemplo: {{ funcionario.nome|upper|cut:" " }}

Para facilitar a manipulação de templates, os desenvolvedores do

Django criaram uma linguagem que contém todos esses elementos.

 Chamaram-na de DTL - Django Template Language! Veremos mais

dela nesse capítulo!

 Para começarmos a utilizar os templates do Django, é necessário

primeiro configurar sua utilização.

 E é isso que veremos agora!

Se você já deu uma espiada no nosso arquivo de configurações,

o settings.py, você já deve ter visto a seguinte configuração:

1

2

3

4

5

6

7

8

TEMPLATES = [

 {

 'BACKEND': 'django.template.backends.django.DjangoTemplates',

 'DIRS': [],

 'APP_DIRS': True,

 'OPTIONS': {},

 },

]

 Mas você já se perguntou o que essa configuração quer dizer?

 Nela:

 BACKEND é o caminho para uma classe que implementa a API de

templates do Django.

 DIRS define uma lista de diretórios onde o Django deve procurar

pelos templates. A ordem da lista define a ordem de busca.

 APP_DIRS define se o Django deve procurar por templates dentro

dos diretórios dos apps instalados em INSTALLED_APPS.

 OPTIONS contém configurações específicas do BACKEND escolhido,

ou seja, dependendo do backend de templates que você escolher,

você poderá configurá-lo utilizando parâmetros em OPTIONS.

 Por ora, vamos utilizar as configurações padrão “de fábrica” pois

elas já nos atendem!

 Agora, vamos ver sobre a tal Django Template Language!

A DTL é a linguagem padrão de templates do Django. Ela é simples,

porém poderosa.

 Dando uma olhada na sua documentação, podemos ver a filosofia

da DTL (traduzido):

 Se você tem alguma experiência em programação, ou se você

está acostumado com linguagens que misturam código de

https://docs.djangoproject.com/en/2.0/ref/templates/language/

programação diretamente no HTML, você deve ter em mente que o

sistema de templates do Django não é simplesmente código Python

embutido no HTML. Isto é: o sistema de templates foi desenhado

para ser a apresentação, e não para conter lógica!

 Se você vem de outra linguagem de programação deve ter tido

contato com o seguinte tipo de construção: código de programação

adicionado diretamente no código HTML (como PHP).

 Isto é o terror dos designers (e não só deles)!

 Ponha-se no lugar de um designer que não sabe nada sobre

programação. Agora imagina você tendo que dar manutenção nos estilos

de uma página LOTADA de código de programação?!

 Complicado, hein?!

 Agora, nada melhor para aprender sobre a DTL do que botando a

mão na massa e melhorando as páginas da nossa aplicação, né?!

Observação: nesse post eu vou utilizar o Bootstrap 4 para dar um “tapa

no visual”.

Nosso template que servirá de esqueleto deve conter o código HTML que

irá se repetir em todas as páginas.

 Devemos colocar nele os trechos de código mais comuns das

páginas HTML.

https://getbootstrap.com/

 Por exemplo, toda página HTML:

 Deve ter as tags: <html></html>, <head></head> e

<body></body>.

 Deve ter os links para os arquivos estáticos: <link></link> e

<script></script>.

 Quaisquer outros trechos de código que se repitam em nossas

páginas.

 Você pode fazer o download dos arquivos necessários para o nosso

projeto aqui (Bootstrap) e aqui (jQuery), que é uma dependência

do Bootstrap, ou utilizar os arquivos que eu já baixei e estão na

pasta website/static/.

 Faça isso para todos as bibliotecas externas que queira utilizar (ou

utilize um CDN - Content Delivery Network).

 Ok! Agora, com os arquivos devidamente colocados na

pasta /static/, podemos começar com nosso template:

1

2

3

4

5

6

7

8

9

10

11

12

13

<!DOCTYPE html>

<html>

{% load static %}

<head>

 <title>

 {% block title %}Gerenciador de Funcionários{% endblock %}

 </title>

 <!-- Estilos -->

 <link rel="shortcut icon" type="image/png"

 href="{% static 'website/img/favicon.png' %}">

 <link rel="stylesheet"
 href="{% static 'website/css/bootstrap.min.css' %}">

https://getbootstrap.com/docs/4.1/getting-started/download/
https://jquery.com/download/
https://pt.wikipedia.org/wiki/Rede_de_fornecimento_de_conte%C3%BAdo

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

 <link rel="stylesheet"

 href="{% static 'website/css/master.css' %}">

 {% block styles %}{% endblock %}

</head>

<body>

 <nav class="navbar navbar-expand-lg navbar-light">

 <button class="navbar-toggler" type="button" data-toggle="collapse"

 data-target="#conteudo-navbar" aria-controls="conteudo-navbar"

 aria-expanded="false" aria-label="Ativar navegação">

 </button>

 <div class="collapse navbar-collapse" id="conteudo-navbar">

 <ul class="navbar-nav mr-auto">

 <li class="nav-item active">

 Página Inicial

 <li class="nav-item">

 Funcionários

 </div>

 </nav>

 {% block conteudo %}{% endblock %}

 <script src="{% static 'website/js/jquery.min.js' %}"></script>
 <script src="{% static 'website/js/bootstrap.min.js' %}"></script>

 {% block scripts %}{% endblock %}

 <script src="{% static 'website/js/scripts.js' %}"></script>

</body>

</html>

 E vamos as explicações:

 <!DOCTYPE html> serve para informar ao browser do usuário que

se trata de uma página HTML5.

 Para que o Django possa carregar dinamicamente os arquivos

estáticos do site, utilizamos a tag static. Ela vai fazer a busca do

arquivo que você quer e fazer a conversão dos links corretamente.

Para utilizá-la, é necessário primeiro carregá-la. Fazemos isso

com {% load <modulo> %}. Após seu carregamento, utilizamos

a tag {%static 'caminho/para/arquivo' %}, passando como

parâmetro a localização relativa à pasta /static/.

 Podemos definir quaisquer blocos no nosso template com

a tag {% blocknome_do_bloco %}{% endblock %}. Fazemos isso

para organizar melhor as páginas que irão estender

desse template. Podemos passar um valor padrão dentro do bloco

(igual está sendo utilizado na linha 6) - dessa forma caso não seja

definido nenhum valor no template filho - é aplicado o valor

padrão.

 Colocamos nesse template os arquivos necessários para o

funcionamento do Bootstrap, isto é: o jQuery, o CSS e Javascript do

Bootstrap.

 O link para outras páginas da nossa aplicação é feito utilizando-se

a tag {% url'nome_da_view' parm1 parm2... %}. Dessa forma,

deixamos que o Django cuide da conversão para URLs válidas!

 O conjunto de tags <nav></nav> definem a barra superior de

navegação com os links para as páginas da aplicação. Esse também

é um trecho de código presente em todas as páginas, por isso,

adicionamos ao template. (Documentação da Navbar - Bootstrap)

https://getbootstrap.com/docs/4.0/components/navbar/

 E pronto! Temos um template base!

 Agora, vamos customizar a tela principal da nossa aplicação:

a index.html!

Template: website/index.html

 Nossa tela inicial tem o objetivo de apenas mostrar as opções

disponíveis ao usuário, que são:

 Link para a página de cadastro de novos Funcionários.

 Link para a página de listagem de Funcionários.

 Primeiramente, precisamos dizer ao Django que queremos utilizar

o template que definimos acima como base.

 Para isso, utilizamos a seguinte tag do Django, que serve para que

um template estenda de outro:

1 {% extends “caminho/para/template” %}

Com isso, podemos fazer:

1

2

3

4

5

6

<!-- Estendemos do template base -->

{% extends "website/_layouts/base.html" %}

<!-- Bloco que define o <title></title> da nossa página -->

{% block title %}Página Inicial{% endblock %}

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

<!-- Bloco de conteúdo da nossa página -->

{% block conteudo %}

<div class="container">

 <div class="row">

 <div class="col-lg-6 col-md-6 col-sm-6 col-xs-12">

 <div class="card">

 <div class="card-body">

 <h5 class="card-title">Cadastrar Funcionário</h5>

 <p class="card-text">

 Cadastre aqui um novo <code>Funcionário</code>.

 </p>

 <a href="{% url 'website:cadastra_funcionario' %}"

 class="btn btn-primary">

 Novo Funcionário

 </div>

 </div>

 </div>

 <div class="col-lg-6 col-md-6 col-sm-6 col-xs-12">

 <div class="card">

 <div class="card-body">

 <h5 class="card-title">Lista de Funcionários</h5>

 <p class="card-text">

 Veja aqui a lista de <code>Funcionários</code> cadastrados.

 </p>

 <a href="{% url 'website:lista_funcionarios' %}"

 class="btn btn-primary">

 Vá para Lista

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock %}

 Nesse template:

 A classe container do Bootstrap (linha 9) serve para definir a

área útil da nossa página (para que nossa página fique

centralizada e não fique ocupando todo o comprimento da tela).

https://getbootstrap.com/docs/4.1/layout/overview/#containers

 As classes row e col-* fazem parte do sistema Grid do Bootstrap e

nos ajuda a tornar nossa página responsiva (que se adapta aos

diversos tipos e tamanhos de tela: celular, tablet, desktop etc…).

 As classes card* fazem parte do component Card do Bootstrap.

 As classes btn e btn-primary (documentação) são usados para dar

o visual de botão à algum elemento.

 Com isso, nossa Página Inicial - ou nossa Homepage - fica assim:

 Top, hein?!

https://getbootstrap.com/docs/4.1/layout/grid/
https://getbootstrap.com/docs/4.0/components/card/
https://getbootstrap.com/docs/4.0/components/buttons/

 Agora vamos para a página de cadastro de Funcionários:

a cria.html

Template

Template: website/cria.html

 Nesse template, mostramos o formulário para cadastro de novos

funcionários.

 Se lembra que definimos o formulário InsereFuncionarioForm

no capítulo passado?

 Vamos utilizá-lo nesse template, adicionando-o na View

FuncionarioCreateView. Dessa forma, ela irá expor um objeto form no

nosso template para que possamos utilizá-lo.

 Mas antes de seguir, vamos instalar uma biblioteca que vai nos

auxiliar e muito a renderizar os campos de input do nosso formu-

lário: a Widget Tweaks!

 Com ela, nós temos maior liberdade para customizar os campos

de input do nosso formulário (adicionando classes CSS e/ou atributos, por

exemplo).

 Para isso, primeiro nós a instalamos com:

1 pip install django-widget-tweaks

https://github.com/jazzband/django-widget-tweaks

 Depois a adicionamos a lista de apps instalados, no arquivo

helloworld/settings.py:

1

2

3

4

5

INSTALLED_APPS = [

 ...

 'widget_tweaks',

 ...

]

 E, no template onde formos utilizá-lo, carregamos ela com

{% load widget_tweaks %}!

 E pronto, agora podemos utilizar a tag que irá renderizar os

campos do formulário, a render_field:

1 {% render_field nome_do_campo parametros %}

 Para alterar como o input será renderizado, utilizamos os

parâmetros da tag. Dessa forma, podemos alterar o código HTML

resultante. Portanto, nosso template pode ser escrito assim:

1

2

3

4

5

6

7

8

9

10

11

12

{% extends "website/_layouts/base.html" %}

{% load widget_tweaks %}

{% block title %}Cadastro de Funcionários{% endblock %}

{% block conteudo %}

<div class="container">

 <div class="row">

 <div

 class="col-lg-12 col-md-12 col-sm-12 col-xs-12">

 <div class="card">

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

 <div class="card-body">

 <h5 class="card-title">Cadastro de Funcionário</h5>

 <p class="card-text">

 Complete o formulário abaixo para cadastrar

 um novo <code>Funcionário</code>.

 </p>

 <form method="post">

 <!-- Não se esqueça dessa tag -->

 {% csrf_token %}

 <!-- Nome -->

 <div class="input-group mb-3">

 <div class="input-group-prepend">

 Nome

 </div>

 {% render_field form.nome class+="form-control" %}

 </div>

 <!-- Sobrenome -->

 <div class="input-group mb-3">

 <div class="input-group-prepend">

 Sobrenome

 </div>

 {% render_field form.sobrenome class+="form-control" %}

 </div>

 <!-- CPF -->

 <div class="input-group mb-3">

 <div class="input-group-prepend">

 CPF

 </div>

 {% render_field form.cpf class+="form-control" %}

 </div>

 <!-- Tempo de Serviço -->

 <div class="input-group mb-3">

 <div class="input-group-prepend">

 Tempo de Serviço

 </div>

 {% render_field form.tempo_de_servico class+="form-control" %}

 </div>

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

 <!-- Remuneração -->

 <div class="input-group mb-3">

 <div class="input-group-prepend">

 Remuneração

 </div>

 {% render_field form.remuneracao class+="form-control" %}

 </div>

 <button class="btn btn-primary">Enviar</button>

 </form>

 </div>

 </div>

 </div>

 </div>

</div>

{% endblock %}

 Aqui:

 Utilizamos, novamente as classes container, row, col-

* e card* do Bootstrap.

 Conforme mencionei no capítulo passado, devemos adicionar

a tag {% csrf_token %} para evitar ataques de Cross Site Request

Forgery.

 As classes Input Group do Bootstrap input-group, input-group-

prepend e input-group-text servem para customizar o estilo dos

elementos <input />.

 Para aplicar a classe form-control do Bootstrap, utilizamos

{% render_field form.campo class+='form-control' %}

 Observação: É possível adicionar a classe CSS form-control

diretamente no nosso Form InsereFuncionarioForm, da seguinte forma:

https://getbootstrap.com/docs/4.1/components/input-group/

1

2

3

4

5

6

7

8

9

10

class InsereFuncionarioForm(forms.ModelForm):

 nome = forms.CharField(

 max_length=255,

 widget=forms.TextInput(

 attrs={

 'class': "form-control"

 }

)

)

 ...

 Mas eu não aconselho, pois deixa nosso código extremamente

acoplado. Veja que para mudar a classe CSS (atributo da interface)

teremos que mudar código do backend. Por isso, aconselho a utilização de

bibliotecas como o Widget Tweaks, pois alteramos apenas no template!

 Com isso, nosso formulário deve ficar assim:

 Agora, vamos desenvolver o template de listagem de Funcionários.

Template

Template: website/lista.html

 Nessa página, nós queremos mostrar o conjunto de Funcionários

cadastrado no banco de dados e as ações que o usuário pode tomar:

atualizar os dados do Funcionário ou excluí-lo.

 Se lembra da view FuncionarioListView? Ela é responsável por

buscar a lista de Funcionários e expor um objeto chamado

funcionarios para iteração no template.

 Podemos construir nosso template da seguinte forma:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

{% extends "website/_layouts/base.html" %}

{% block title %}Lista de Funcionários{% endblock %}

{% block conteudo %}
<div class="container">
 <div class="row">
 <div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
 <div class="card">
 <div class="card-body">

 <h5 class="card-title">Lista de Funcionário</h5>

 {% if funcionarios|length > 0 %}
 <p class="card-text">

 Aqui está a lista de <code>Funcionários</code>

 cadastrados.
 </p>

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

 <table class="table">
 <thead class="thead-dark">
 <tr>

 <th>ID</th>

 <th>Nome</th>

 <th>Sobrenome</th>

 <th>Tempo de Serviço</th>

 <th>Remuneração</th>

 <th>Ações</th>
 </tr>
 </thead>

 <tbody>

 {% for f in funcionarios %}
 <tr>

 <td>{{ f.id }}</td>

 <td>{{ f.nome }}</td>

 <td>{{ f.sobrenome }}</td>

 <td>{{ f.tempo_de_servico }}</td>

 <td>{{ f.remuneracao }}</td>
 <td>
 <a href="{% url 'website:atualiza_funcionario' pk=f.id %}"
 class="btn btn-info">

 Atualizar

 <a href="{% url 'website:deleta_funcionario' pk=f.id %}"
 class="btn btn-outline-danger">

 Excluir

 </td>
 </tr>

 {% endfor %}
 </tbody>
 </table>

 {% else %}
 <div class="text-center mt-5 mb-5 jumbotron">

 <h5>Nenhum <code>Funcionário</code> cadastrado ainda.</h5>
 </div>

 {% endif %}
 <hr />
 <div class="text-right">

57

58

59

60

61

62

63

64

65

66

 <a class="btn btn-primary"
 href="{% url 'website:cadastra_funcionario' %}">

 Cadastrar Funcionário

 </div>
 </div>
 </div>
 </div>
 </div>
</div>

{% endblock %}

 Nesse template:

 Utilizamos as seguintes classes do Bootstrap para estilizar as

tabelas: table para estilizar a tabela e thead-dark para escurecer

o cabeçalho.

 Na linha 13, utilizamos o filtro length para verificar se a lista de

funcionários está vazia. Se ela contiver dados, a tablea é mostrada.

Se ela estiver vazia, será renderizado o componente Jumbotron do

Bootstrap com o texto “Nenhum Funcionário cadastrado ainda”.

 Utilizamos a tag {% for funcionario in funcionarios %} na

linha 30 para iterar sobre a lista funcionarios.

 Nas linhas 39 e 46 fazemos o link para as páginas de atualização e

exclusão do usuário.

 O resultado, sem Funcionários cadastrados, deve ser esse:

https://getbootstrap.com/docs/4.0/content/tables/
https://getbootstrap.com/docs/4.0/content/tables/
https://v4-alpha.getbootstrap.com/components/jumbotron/
https://v4-alpha.getbootstrap.com/components/jumbotron/

 E com um Funcionário cadastrado:

 Quando o usuário clicar em “Excluir”, ele será levado para a

página exclui.html e quando clicar em “Atualizar”, ele será levado

para a página atualiza.html.

 Vamos agora construir a página de Atualização de Funcionários!

Template

Template: website/atualiza.html

 Nessa página, queremos que o usuário possa ver os dados atuais

do Funcionário e possa atualizá-los, conforme sua vontade. Para isso

utilizamos a View FuncionarioUpdateView que implementamos no

capítulo passado.

 Ela expõe um formulário com os campos do modelo preenchidos

com os dados atuais para que o usuário possa alterar.

 Vamos utilizar novamente a biblioteca Widget Tweaks para

facilitar a renderização dos campos de input.

 Abaixo, como podemos fazer nosso template:

1

2

3

4

5

6

7

8

9

{% extends "website/_layouts/base.html" %}

{% load widget_tweaks %}

{% block title %}Atualização de Funcionário{% endblock %}

{% block conteudo %}
<div class="container">

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

 <div class="row">
 <div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
 <div class="card">
 <div class="card-body">
 <h5 class="card-title">

 Atualização de Dados do Funcionário
 </h5>
 <form method="post">
 <!-- Não se esqueça dessa tag -->

 {% csrf_token %}

 <!-- Nome -->
 <div class="input-group mb-3">
 <div class="input-group-prepend">

 Nome
 </div>

 {% render_field form.nome class+="form-control" %}
 </div>

 <!-- Sobrenome -->
 <div class="input-group mb-3">
 <div class="input-group-prepend">

 Sobrenome
 </div>

 {% render_field form.sobrenome class+="form-control" %}
 </div>

 <!-- CPF -->
 <div class="input-group mb-3">
 <div class="input-group-prepend">

 CPF
 </div>

 {% render_field form.cpf class+="form-control" %}
 </div>

 <!-- Tempo de Serviço -->
 <div class="input-group mb-3">
 <div class="input-group-prepend">

 Tempo de Serviço
 </div>

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

 {% render_field form.tempo_de_servico class+="form-contro

l" %}
 </div>

 <!-- Remuneração -->
 <div class="input-group mb-3">
 <div class="input-group-prepend">

 Remuneração
 </div>

 {% render_field form.remuneracao class+="form-control" %}
 </div>

 <button class="btn btn-primary">Enviar</button>
 </form>
 </div>
 </div>
 </div>
 </div>
</div>

{% endblock %}

 Nesse template, não temos nada de novo.

Perceba que seu código é similar ao template de adição de

Funcionários, com os campos sendo renderizados com a tag

render_field.

Como nossa View herda de UpdateView, o objeto form já vem

populado com os dados do modelo em questão (aquele cujo id foi

enviado ao se clicar no botão de edição).

 Sua interface deve ficar similar à:

 E por último, temos o template de exclusão de Funcionários.

Template

Template: website/exclui.html

 A função dessa página é mostrar uma página de confirmação para

o usuário antes da exclusão de um Funcionário. Essa página vai

concretizar a sua exclusão.

 A view que fizemos, a FuncionarioDeleteView, facilita bastante

nossa vida. Com ela, basta dispararmos uma requisição POST para a URL

configurada, que o Funcionário será deletado!

 Dessa forma, nosso objetivo se resume à:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

<!-- Estendemos do template base -->

{% extends "website/_layouts/base.html" %}

<!-- Bloco que define o <title></title> da nossa página -->

{% block title %}Página Inicial{% endblock %}

<!-- Bloco de conteúdo da nossa página -->

{% block conteudo %}

 <div class="container mt-5">

 <div class="card">

 <div class="card-body">

 <h5 class="card-title">Exclusão de Funcionário</h5>

 <p class="card-text">

 Você tem certeza que quer excluir o funcionário

 {{ funcionario.nome }}?

 </p>

 <form method="post">

 {% csrf_token %}

 <hr />

 <div class="text-right">

 <a href="{% url 'website:lista_funcionarios' %}"

 class="btn btn-outline-danger">

 Cancelar

 <button class="btn btn-danger">Excluir</button>

 </div>

 </form>

 </div>

 </div>

</div>

{% endblock %}

 Aqui, nada de novo.

 Apenas mostramos o formulário onde o usuário pode decidir

excluir ou não o Funcionário, que deve ficar assim:

 Pronto!

 Com isso, temos todas as páginas do nosso projeto!

 Agora vamos ver como construir tags e filtros customizados!

Tags

Sabemos, até agora, que o Django possui uma grande variedade de filtros

e tags pré-configurados.

 Contudo, é possível que, em alguma situação específica, o Django

não te ofereça o filtro ou tag necessários.

 Por isso, ele previu a possibilidade de você construir seus

próprios filtros e tags!

 Portanto, vamos construir uma tag que irá nos dizer o tempo

atual formatado e um filtro que irá retornar a primeira letra da string

passada.

 Para isso, vamos começar com a configuração necessária!

Os filtros e tags customizados residem em uma pasta específica da nossa

estrutura: a /templatetags.

Portanto, crie na raíz do app website essa pasta

(website/templatetags) e adicione:

 Um script __init__.py em branco (para que o Django enxergue

como um pacote Python).

 O script tempo_atual.py em branco referente à nossa tag

 O script primeira_letra.py em branco referente ao nosso filtro.

 Nossa estrutura, portanto, deve ficar:

1

2

3

4

5

6

7

- website/

 ...

 - templatetags/

 - __init__.py

 - tempo_atual.py

 - primeira_letra.py

 ...

 Para que o Django enxergue nossas tags e filtros é necessário que

o app onde eles estão instalados esteja configurada na lista

INSTALLED_APPS do settings.py (no nosso caso, website já está lá,

portanto, nada a fazer aqui).

 Também é necessário carregá-los com o {% load filtro/tag %}.

 Vamos escolher um para começar: vamos começar com o filtro.

 Vamos chamá-lo de primeira_letra e, quando estiver pronto,

iremos utilizá-lo da seguinte maneira:

1 <p>{{ valor|primeira_letra }}</p>

primeira_letra

Filtros customizados são basicamente funções que recebem um ou dois

argumentos. São eles:

 O valor do input.

 O valor do argumento - que pode ter um valor padrão ou não

receber nenhum valor.

 No nosso filtro {{ valor|primeira_letra }}:

 valor será o value.

 Nosso filtro não irá receber argumentos, portanto não foi passado

nada para ele.

 Para ser um filtro válido, é necessário que o código dele contenha

uma variável chamada register que seja uma instância de

template.Library (onde todos os tags e filtros são registrados).

 Isso define um filtro!

 Outra questão importante são as Exceções. Como a engine de

templates do Django não provê tratamento de exceção ao executar o

código do filtro, qualquer exceção será exposta como uma exceção do

próprio servidor.

 Por isso, nosso filtro deve evitar lançar exceções e, ao invés disso,

deve retornar um valor padrão.

 Vamos ver um exemplo de filtro do Django.

Abra o arquivo django/template/defaultfilter.py. Lá temos a

definição de diversos filtros que podemos utilizar em nossos templates

(eu separei alguns e vou explicar ali embaixo).

Lá temos o exemplo do filtro lower:

1

2

3

4

5

@register.filter(is_safe=True)

@stringfilter

def lower(value):

 """Convert a string into all lowercase."""

 return value.lower()

 Nele:

 @register.filter(is_safe=True) é um decorator utilizado

para registrar sua função como um filtro para o Django. Só assim

o framework vai enxergar seu código (saiba mais sobre decorators

no nosso post - Domine Decorators em Python).

 @stringfilter é um decorator utilizado para dizer ao Django que

seu filtro espera uma string como argumento.

Com isso, vamos agora codificar e registrar nosso filtro!

 Uma forma de pegarmos a primeira letra de uma string é

transformá-la em lista e pegar o elemento de índice [0], da seguinte

forma:

1

2

3

4

5

6

7

8

9

from django import template

from django.template.defaultfilters import stringfilter

register = template.Library()

@register.filter

@stringfilter

def primeira_letra(value):

 return list(value)[0]

 Nesse código:

https://pythonacademy.com.br/blog/domine-decorators-em-python

 O código register = template.Library() é necessário para

pegarmos uma instância da biblioteca de filtros do Django. Com

ela, podemos registrar nosso filtro com @register.filter.

 @register.filter e @stringfilter são os decorators que citei

aqui em cima.

 E agora vamos testar, fazendo o carregamento e utilização em

algutm template. Para isso, vamos alterar a tabela do template

website/lista.html para incluir nosso filtro da seguinte forma:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

<!—- Primeiro, carregamos nosso filtro, logo após o extends -->

{% load primeira_letra %}

...

<table class="table">

 <thead class="thead-dark">

 <tr>

 <th><!-- Retiramos o "ID" aqui --></th>

 <th>Nome</th>

 <th>Sobrenome</th>

 <th>Tempo de Serviço</th>

 <th>Remuneração</th>

 <th class="text-center">Ações</th>

 </tr>

 </thead>

 <tbody>

 {% for f in funcionarios %}

 <tr>

 <!-- Aplicamos nosso filtro no atributo funcionario.nome -->

 <td>{{ f.nome|primeira_letra }}</td>

 <td>{{ f.nome }}</td>

 <td>{{ f.sobrenome }}</td>

 <td>{{ f.tempo_de_servico }}</td>

 <td>{{ f.remuneracao }}</td>

 <td class="text-center">

 <a class="btn btn-primary"

26

27

28

29

30

31

32

33

34

35

36

37

38

39

 href="{% url 'website:atualiza_funcionario' pk=f.id %}">

 Atualizar

 <a class="btn btn-danger"

 href="{% url 'website:deleta_funcionario' pk=f.id %}">

 Excluir

 </td>

 </tr>

 {% endfor %}

 </tbody>

</table>

 O que resulta em:

 E com isso, terminamos nosso primeiro filtro!

 Agora vamos fazer nossa tag customizada: a tempo_atual!

tempo_atual

De acordo com a documentação do Django, “tags são mais complexas que

filtros pois podem fazer qualquer coisa“.

 Desenvolver uma tag pode ser algo bem trabalhoso, dependendo

do que você deseja fazer. Mas também pode ser simples.

 Como nossa tag vai apenas mostrar o tempo atual, sua implemen-

tação não deve ser complexa.

 Para isso, utilizaremos um “atalho” do Django: a simple_tag!

 A simple_tag é uma ferramenta para construção de tags simples

(assim como o próprio nome já diz).

 Com ela, a criação de tags fica similar à criação de filtros, que

vimos na seção passada.

 Assim como na criação da tag, precisamos incluir uma instância

de template.Library (para ter acesso à biblioteca de filtros e tags do

Django), utilizar o decorator @register (para registrar nossa tag) e

definir a implementação da nossa função.

 Para pegar o tempo atual, podemos utilizar o método now() da

biblioteca datetime. Como queremos formatar a data, também

utilizamos o método strftime(), passando como parâmetro a string

formatada (%H é a hora, %M são os minutos e %S são os segundos).

Podemos, então, definir nossa tag da seguinte forma:

1

2

3

4

5

6

7

8

import datetime

from django import template

register = template.Library()

@register.simple_tag

def tempo_atual():

 return datetime.datetime.now().strftime('%H:%M:%S')

 E para utilizá-la, a carregamos com {% load tempo_atual %} e

a utilizamos em nosso template com {% tempo_atual %}.

 No nosso caso, vamos utilizar nossa tag no template-base: o

website/_layouts/base.html.

 Vamos adicionar um novo item à barra de navegação (do lado

direito), da seguinte forma:

1

2

3

4

5

6

7

8

9

10

11

<body>

 <!-- Navbar -->

 <nav class="navbar navbar-expand-lg navbar-light bg-light">

 ...

 <div class="collapse navbar-collapse" id="navbarSupportedContent">

 <ul class="navbar-nav mr-auto">

 <li class="nav-item active">

 Página Inicial

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

 <li class="nav-item">

 Funcionários

 <!-- Adicione a lista abaixo -->

 <ul class="navbar-nav float-right">

 <li class="nav-item">

 <!-- Aqui está nosso filtro -->

 Hora: {% tempo_atual %}

 </div>

 </nav>

 ...

 O resultado deve ser:

 Com isso, temos nosso filtro e tag customizados!

 Agora vamos dar uma olhada nos filtros que estão presentes no

próprio Django: os Built-in Filters!

É possível fazer muita coisa com os filtros que já veem instalados no

próprio Django!

 Muitas vezes, é melhor você fazer algumas operações

no template do que fazê-las no backend. Sempre verifique a viabilidade

de um ou de outro para facilitar sua vida!

 Como a lista de built-in filters do Django é bem extensa (veja a lista

completa aqui), vou listar aqui os que eu considero mais úteis!

 Sem mais delongas, aí vai o primeiro: o capfirst!!!

 capfirst

O que faz: Torna o primeiro caracter do valor para maiúsculo.

Exemplo:

Entrada: valor = 'esse é um texto'.

Utilização:

1 {{ valor|capfirst }}

https://docs.djangoproject.com/en/2.0/ref/templates/builtins/#built-in-filter-reference
https://docs.djangoproject.com/en/2.0/ref/templates/builtins/#built-in-filter-reference

Saída:

Esse é um texto

 cut

O que faz: Remove todas as ocorrências do parâmetro no valor passado.

Exemplo:

Entrada: valor = 'Esse É Um Texto De Testes'

Utilização:

1 {{ valor|cut:" " }}

Saída:

EsseÉUmTextoDeTestes

 date

O que faz: Utilizado para formatar datas. Possui uma grande variedade

de configurações (veja aqui).

Exemplo:

Entrada: Objeto datetime.

Utilização:

https://docs.djangoproject.com/en/2.0/ref/templates/builtins/#date

1 {{ data|date:'d/m/Y' }}

Saída:

01/07/2018

 default

O que faz: Caso o valor seja False, utiliza o valor default.

Exemplo:

Entrada: valor = False

Utilização:

1 {{ valor|default:'Nenhum valor' }}

Saída:

Nenhum valor

 default_if_none

O que faz: Similar ao filtro default, caso o valor seja None, utiliza o valor

configurado em default_if_none.

Exemplo:

Entrada: valor = None

Utilização:

1 {{ valor|default:'Nenhum valor' }}

Saída:

Nenhum valor

 divisibleby

O que faz: Retorna True se o valor for divisível pelo argumento.

Exemplo:

Entrada: valor = 14 e divisibleby:'2'

Utilização:

1 {{ valor|divisibleby:'2' }}

Saída:

True

 filesizeformat

O que faz: Transforma tamanhos de arquivos em valores legíveis.

Exemplo:

Entrada: valor = 123456789

Utilização:

1 {{ valor|filesizeformat }}

Saída:

117.7 MB

 first

O que faz: Retorna o primeiro item em uma lista

Exemplo:

Entrada: valor = ["Marcos", "João", "Luiz"]

Utilização:

1 {{ valor|first }}

Saída:

Marcos

 last

O que faz: Retorna o último item em uma lista

Exemplo:

Entrada: valor = ["Marcos", "João", "Luiz"]

Utilização:

1 {{ valor|last }}

Saída:

Luiz

 floatformat

O que faz: Arredonda números com ponto flutuante com o número de

casas decimais passado por argumento.

Exemplo:

Entrada: valor = 14.25145

Utilização:

1 {{ valor|floatformat:"2" }}

Saída:

14.25

 join

O que faz: Junta uma lista utilizando a string passada como argumento

como separador.

Exemplo:

Entrada: valor = ["Marcos", "João", "Luiz"]

Utilização:

1 {{ valor|join:" - " }}

Saída:

Marcos – João – Luiz

 length

O que faz: Retorna o comprimento de uma lista ou string. É muito

utilizado para saber se existem valores na lista (se length > 0, lista não

está vazia).

Exemplo:

Entrada: valor = ['Marcos', 'João']

Utilização:

1

2

3

4

5

{% if valor|length > 0 %}

<p>Lista contém valores</p>

{% else %}

<p>Lista vazia</p>

{% endif %}

Saída:

<p>Lista contém valores</p>

 lower

O que faz: Transforma todos os caracteres de uma string em minúsculas.

Exemplo:

Entrada: valor = PaRaLeLePíPeDo

Utilização:

1 {{ valor|lower }}

Saída:

paralelepípedo

 pluralize

O que faz: Retorna um sufixo plural caso o número seja maior que 1.

Exemplo:

Entrada: valor = 12

Utilização:

1 Sua empresa tem {{ valor }} Funcionário{{ valor|pluralize:"s" }}

Saída:

Sua empresa tem 12 Funcionários

 random

O que faz: Retorna um item aleatório de uma lista.

Exemplo:

Entrada: valor = [1, 2, 3, 4, 5, 6, 7, 9]

Utilização:

1 {{ valor|random }}

Sua saída será um valor da lista escolhido randomicamente.

 title

O que faz: Transforma em maísculo o primeiro caracter de todas as

palavras do texto.

Exemplo:

Entrada: valor = 'primeiro post do blog'

Utilização:

1 {{ valor|title }}

Saída:

Primeiro Post Do Blog

 upper

O que faz: Transforma em maísculo todos caracteres da string.

Exemplo:

Entrada: valor = texto de testes

Utilização:

1 {{ valor|upper }}

Saída:

TEXTO DE TESTES

 wordcount

O que faz: Retorna o número de palavras da string.

Exemplo:

Entrada: valor = Django é o melhor framework web

Utilização:

1 {{ valor|wordcount }}

Saída:

6

O código completo desenvolvido nesse projeto está disponível no

Github da Python Academy. Clique aqui para acessá-lo e baixá-lo!

Para rodar o projeto, execute em seu terminal:

 pip install -r requirements.txt para instalar as depen-

dências.

 python manage.py makemigrations para criar as Migrações.

 python manage.py migrate para efetivar as Migrações no banco

de dados.

 python manage.py runserver para executar o servidor de testes

do Django.

 Acessar o seu navegador na página http://localhost:8000 (por

padrão).

E pronto… Servidor rodando!

Nesse capítulo vimos como configurar, customizar e estender templates,

como utilizar os filtros e tags do Django, como criar tags e filtros

customizados e um pouquinho de Bootstrap, para deixar as

páginas bonitonas!

https://github.com/pythonacademybr/HelloWorldDjango

Capítulo V

E AGORA?

Finalmente chegamos ao fim do nosso ebook! Mas, como você sabe, o

Django está em constante evolução. Por isso, é bom você se manter

atualizado nas novidades lendo, pesquisando e acompanhando o mundo

do Django.

 Para lhe ajudar, vou colocar aqui algumas referências para você

se manter atualizado e também para aprender cada vez mais sobre o

Django:

 Site oficial do Django: https://www.djangoproject.com/

 Documentação: https://docs.djangoproject.com/pt-br/2.0/

 Github do Django: https://github.com/django/django

https://www.djangoproject.com/
https://docs.djangoproject.com/pt-br/2.0/
https://github.com/django/django

 Twitter do Django: https://twitter.com/djangoproject

 Django RSS: https://www.djangoproject.com/rss/weblog/

 Lista de e-mails do Django:

https://groups.google.com/forum/#!forum/django-users

 Grupo do Facebook:

https://www.facebook.com/groups/django.brasil/

E, é claro que não podia falta, o Blog da Python Academy:

https://pythonacademy.com.br/blog/

Lá, nós temos conteúdos completos sobre Python, Django, Kivy e muito

mais! Conheça e se inscreva na nossa lista de Pythonistas viciados por

conteúdo de qualidade!

https://twitter.com/djangoproject
https://www.djangoproject.com/rss/weblog/
https://groups.google.com/forum/#!forum/django-users
https://pythonacademy.com.br/blog/

Capítulo VI

REFERÊNCIA

Django, Documentação do Django em Português (largamente utilizada):

https://docs.djangoproject.com/pt-br/2.0/.

The Django Book, Read The Docs:

http://django-book.readthedocs.io/en/latest/.

How to create custom a custom Django Middleware:

https://simpleisbetterthancomplex.com/tutorial/2016/07/18/how-to-

create-a-custom-django-middleware.html.

Classy Class Based Views:

https://ccbv.co.uk/

DB Browser for SQLite:

https://sqlitebrowser.org/

Codementor, Creating Custom Template Tags in Django:

https://www.codementor.io/hiteshgarg14/creating-custom-template-

tags-in-django-application-58wvmqm5f

Estendendo os Templates, Django Girls:

 https://tutorial.djangogirls.org/pt/template_extending/

https://docs.djangoproject.com/pt-br/2.0/
http://django-book.readthedocs.io/en/latest/
https://simpleisbetterthancomplex.com/tutorial/2016/07/18/how-to-create-a-custom-django-middleware.html
https://simpleisbetterthancomplex.com/tutorial/2016/07/18/how-to-create-a-custom-django-middleware.html
https://ccbv.co.uk/
https://sqlitebrowser.org/
https://www.codementor.io/hiteshgarg14/creating-custom-template-tags-in-django-application-58wvmqm5f
https://www.codementor.io/hiteshgarg14/creating-custom-template-tags-in-django-application-58wvmqm5f

