
Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Apostila Oracle

Ricardo Terra
rterrabh [at] gmail.com

Apostila Oracle 1

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

CV

Apostila Oracle 2

Nome: Ricardo Terra
Email: rterrabh [at] gmail.com
www: ricardoterra.com.br
Twitter: rterrabh
Lattes: lattes.cnpq.br/ 0162081093970868

Ph.D. (UFMG/UWaterloo),
Post-Ph.D. (INRIA/Université Lille 1)

Background
Acadêmico: UFLA (desde 2014), UFSJ (1 ano), FUMEC (3 anos), UNIPAC (1 ano), FAMINAS (3 anos)

Profissional: DBA Eng. (1 ano), Synos (2 anos), Stefanini (1 ano)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 01

Apostila Oracle 3

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 4

Instalando o servidor Oracle XE

n  Baixando o Oracle XE
q  Registrar-se na Oracle
q  Ir ao endereco

http://www.oracle.com/technology/software/products/database/xe/index.html

n  Instalando o Oracle XE
q  Depois que já baixar o instalador do Oracle, basta executá-lo e seguir os passos

n  Você deverá registrar o cadastro de uma senha para o usuário system

q  Dica:
n  Geralmente o próprio instalador já o configura como serviço do Windows, porém, como o

mesmo é muito pesado, vá em Serviços e configure o serviço OracleXETNSListener e
OracleServiceXE para iniciar manualmente

n  Assim, quando você precisar utilizar o banco de dados, basta ir na opção Start Database
disponível no menu iniciar

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 5

Instalando o cliente Oracle XE

n  Baixando o Oracle SQL Developer
q  Registrar-se na Oracle
q  Ir ao endereco

http://www.oracle.com/technology/software/products/sql/index.html
q  Este é um cliente gráfico gratuito e muito utilizado

n  Baixando o SQL*Plus
q  O SQL*Plus é largamente utilizado por DBAs e desenvolvedores para a interação

com a base de dados. Usando o SQL*Plus, você pode executar todas as
instruções SQL e programas PL/SQL, formatar resultados de consultas e
administrar a base de dados

q  Ir ao endereço
http://www.oracle.com/technology/software/products/database/oracle10g/htdocs/
10201winsoft.html

q  Baixar Oracle Database 10g Client Release 2 (10.2.0.1.0)
n  Instalar pela opção Runtime.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 6

Configurando o SQL*Plus

n  Configurando o SQL*Plus
q  Depois de instalado, basta entrar no Net Configuration Assistant.

n  Selecione Configuração do Nome do Serviço de Rede Local
n  Selecione Adicionar
n  Em nome do serviço: xe
n  Selecione TCP
n  Em nome do host deve ser inserido o IP ou hostname onde encontra-se instalado o

Oracle
n  Realize o teste

q  Talvez seja necessário alterar o login para o teste
q  Com isto, o SQL*Plus já estará funcionando perfeitamente.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 7

Arquitetura do Oracle

n  Algumas arquiteturas de hardware permitem múltiplos computadores
compartilharem os mesmos dados, softwares ou periféricos. O Oracle permite
tirar proveito dessa característica através da execução de múltiplas instancias
que compartilham um único banco de dados. Assim os usuários de múltiplas
maquinas podem acessar o mesmo banco de dados com uma melhoria da
performance.

n  Quando o Oracle é iniciado um grupo de buffers de memória denominado
System Global Área (SGA) é alocado e alguns processos que permanecem
em background são inicializados. A combinação dos buffers com os processos
em background formam uma instância.

n  SGA é um grupo de buffers de memória compartilhados que são alocados pelo
Oracle para uma instância.

n  Processos em background executam tarefas distintas assincronamente em
benefício de todos os usuários de um banco de dados.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 8

Arquitetura do Oracle

n  Tablespace é uma sub-divisão lógica de um banco de dados utilizado para
agrupar estruturas lógicas relacionadas.

n  As tablespaces apenas especificam a localização de armazenamento do banco
de dados e são armazenadas fisicamente em datafiles, que alocam
imediatamente o espaço especificado na sua criação.

n  A primeira tablespace criada pelo Oracle é a SYSTEM.

n  Existe um relacionamento "um para muitos" entre os bancos e as tablespaces e
um relacionamento "um para muitos" entre as tablespaces e os datafiles. A
qualquer momento um datafile pode ser incluído em uma tablespace.

n  Um banco de dados pode ter vários usuários, cada qual com seu esquema,
que nada mais é do que uma coleção lógica de objetos de banco de dados,
como tabelas e índices. Por sua vez, esses objetos referem-se às estruturas
físicas dos dados, que são armazenados nos datafiles das tablespaces.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 9

Usuários do Oracle

n  Usuários
q  SYS

n  Usuário que é conhecido como o proprietário do dicionário. Ele possui todas as tabelas
bases e visões de acesso ao usuário de um dicionário de dados.

n  Nenhum usuário deve alterar (UPDATE, DELETE ou INSERT) qualquer linha ou objetos
de esquema contidos no esquema SYS, pois tal ação pode comprometer a integridade
dos dados.

q  SYSTEM
n  Usuário do DBA.
n  Pode-se dizer que o SYSTEM é um pouco mais “ fraco” que o SYS.
n  Responsável pela criação de tabelas e visões adicionais que exibem informações

administrativas e/ou são utilizadas pelas ferramentas da Oracle.
n  Nunca deve-se criar tabelas no esquema SYSTEM de interesse de usuários particulares.

q  HR
n  Esquema de exemplo.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 10

Criando seu próprio usuário

n  Para criar seu próprio usuário, basta:

create user <nome_do_usuario> identified by <senha_do_usuario>;

grant connect, resource, create view, create sequence, create synonym,

 create trigger, create procedure to <nome_do_usuario>;

n  Veremos maiores detalhes sobre as instruções acima nas aulas
posteriores.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 11

Tabela dual

n  A tabela dual é uma tabela que é criada pelo Oracle junto com o dicionário de dados.
n  Ela consiste exatamente de uma única coluna cujo nome é DUMMY e um registro

cujo valor é “X”.

 SQL> desc dual
 Name Null? Type
 ----------------------- -------- ----------------
 DUMMY VARCHAR2(1)

 SQL> select * from dual;
 D
 -
 X

n  O proprietário da tabela dual é o SYS, mas ela pode ser acessada por qualquer
usuário.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 12

Tabela dual

n  A tabela dual é a tabela predileta para selecionar uma pseudo-coluna (tal como
sysdate)

 SQL> select sysdate from dual
 SYSDATE

 15-FEB-08

n  Mesmo sendo possível excluir o único registro ou inserir registros adicionais,

realmente isto não deve ser feito.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 13

Comandos importantes

n  SPOOL <caminho_do_arquivo>
q  Grava toda a saída a partir deste comando no arquivo indicado até que seja

inserido o seguinte comando:
n  SPOOL off

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 14

Comandos importantes

n  SHOW <opcao>
q  ALL

n  Exibe todas as informações do ambiente
q  SGA

n  Exibe o tamanho atual da SGA (System Global Area)

q  RELEASE
n  Exibe o número da versão atual do Oracle

q  USER
n  Exibe o usuário corrente

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 15

Comandos importantes

n  PASSWORD <usuario>
q  Altera a senha de um dado usuário.

n  CONNECT <usuario>/<senha>@<nome_do_servico>
q  Conecta em dado usuário.

n  DISCONNECT
q  Comita alterações pendentes na base de dados e desconecta o usuário do

Oracle, porém não encerra o SQL*Plus.

n  EXIT ou QUIT
q  Desconecta o usuário do Oracle e encerra o SQL*Plus.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 16

Comandos importantes

n  / (barra)
q  Executa o comando SQL que está no buffer.

n  EDIT ou EDIT <nome_do_arquivo>
q  Edita o buffer ou um arquivo

n  @<caminho_do_arquivo>
q  Executa todo o arquivo de script
q  Dica:

n  Caso queira inserir um comentário em um script basta inseri-lo entre /* e */.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 17

Comandos importantes

n  SET TIME ON
q  Exibe a hora no prompt.

n  SET LINESIZE <tamanho>
q  Redimensiona o tamanho da linha a ser exibida.
q  Geralmente 100.

n  SET PAGESIZE <tamanho>
q  Redimensiona o tamanho da página a ser exibida.
q  Geralmente 40.

n  PAUSE <texto>
q  Exibe a mensagem e espera até que o usuário digite ENTER.

n  PROMPT <texto>
q  Exibe a mensagem.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 18

Comandos importantes

n  select sysdate from dual;
q  Exibe a data.

n  select systimestamp from dual;
q  Exibe a data e a hora.

n  select TABLE_NAME from USER_TABLES;
q  Exibe a listagem de todas as tabelas do usuário ativo.

n  DESC <nome_da_tabela> ou DESCRIBE <nome_da_tabela>
q  Descreve a estrutura da tabela.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 19

Comandos importantes

n  CLEAR <opcao>
q  screen

n  Limpa a tela.
q  buffer

n  Limpa o buffer.

n  Dica interessante:
q  A seta para cima não volta aos comandos, para isto, no SQL*Plus, basta

selecionar o texto que você deseja e, antes de soltar o botão esquerdo, aperte o
botão direito. Assim, ele copiará o texto que você selecionou.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 20

Utilizando parametrização

n  Às vezes é necessária a parametrização de algum comando e isto pode ser
facilmente realizado.

 SQL> select &campo from dual
 Enter value for campo: sysdate
 old 1: select &campo from dual
 new 1: select sysdate from dual
 SYSDATE

 15-FEB-08

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 02

Apostila Oracle 21

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 22

Categorias de Instruções SQL

n  DML (Data Manipulation Language)
q  Utilizada para acesso, criação, alteração e exclusão de dados em existentes

estruturas do banco de dados.
n  SELECT, INSERT, UPDATE, DELETE, EXPLAIN PLAN e LOCK TABLE são as

instruções de DML.
q  Também conhecida como LMD (tradução desnecessária)

n  DDL (Data Definition Language)
q  Utilizada para criar, alterar ou destruir objetos do banco de dados e seus

privilégios.
n  CREATE, ALTER, DROP, RENAME, TRUNCATE, GRANT, REVOKE, AUDIT,

NOAUDIT e COMMENT são as instruções de DDL.
q  Também conhecida como LDD (tradução desnecessária)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 23

Categorias de Instruções SQL

n  Controle de Transação (Transaction Control)
q  Utilizada para agrupar um conjunto de instruções como uma única transação.

n  COMMIT, ROLLBACK, SAVE POINT, SET TRANSACTION são as instruções de
controle de transação.

n  Controle de Sessão (Session Control)
q  Utilizada para controlar as propriedades de uma sessão de um usuário.

n  ALTER SESSION, SET ROLE são as instruções de controle de sessão.

n  Controle de Sistema (System Control)
q  Utilizada para controlar as propriedades do banco de dados.

n  ALTER SYSTEM é a única instrução de controle de sistema.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 24

Literais

n  Literais são valores que representam uma constante.
Existem quatro tipos de literais:
q  Texto (ou caractere)

n  Entre aspas simples.
q  Ex.: 'Firefox', 'Maria José'

q  Inteiro
n  Número sem casas decimais.

q  Ex.: -2 43 0

q  Número
n  Números inteiros e números decimais.

q  Ex.: 32 -2,55 3,14159 23e-10

q  Intervalo
n  Especifica um período de tempo em termos de anos e meses ou de dias e

segundos.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 25

Como trabalhar com outro esquema

n  Como já foi visto, o usuário no Oracle tem o seu próprio esquema.

n  Na maioria das aulas irei criar um esquema que será utilizado em
nosso aprendizado. O esquema de hoje será um do próprio Oracle
denominado HR.

n  O usuário HR vem bloqueado. Para desbloqueá-lo deve realizar o
seguinte comando utilizando o usuário SYSTEM:
q  alter user HR identified by HRPASSWORD ACCOUNT UNLOCK;

n  Para permitir um usuário a acessar tabelas de um outro usuário deve-
se realizar o seguinte comando utilizando o usuário SYSTEM:
q  grant select on <usuário_origem>.<tabela> to <usuário_destino>;

n  Ex.:
q  grant select on HR.DEPARTMENTS to TERRA;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 26

Como trabalhar com outro esquema

n  As tabelas não pertencem ao seu usuário, mas sim, ao usuário HR,
portanto para verificar as tabelas, que possui acesso, de um outro
esquema deve ser realizado o seguinte comando:
q  select TABLE_NAME from ALL_TABLES where OWNER = 'HR';

n  Portanto, para acessar, descrever, enfim, qualquer ação nas tabelas
deste esquema deve-se colocar o nome do esquema antes da tabela:
q  select * from HR.DEPARTMENTS;
q  desc HR.DEPARTMENTS;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 27

Esquema HR

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 28

Instruções Básicas de SQL

n  O SQL é a linguagem padrão ANSI para acesso a banco de dados
relacionais e engloba tanto uma DDL quanto uma DML.

n  É uma linguagem baseada em conjunto, isto é, com um simples
comando recuperamos um conjunto de registros, sem precisarmos
efetuar leituras registro a registro.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 29

Select

n  Comando para seleção (recuperação) de dados em uma tabela.
q  Uma sintaxe básica (veremos order by ainda hoje e where futuramente):

n  select <lista_de_colunas> from <TABELA>
 where <condições>
 order by <lista_de_colunas> <asc|desc>

q  Na lista de colunas, deverá ser citada cada uma das colunas

separadas por vírgula (,).
n  select JOB_TITLE, MIN_SALARY, MAX_SALARY from HR.JOBS;

q  A lista de colunas pode ser substituida por asterisco (*), que indica a
exibição de todas as colunas.
n  select * from HR.JOBS;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 30

Select

n  Em algumas situações o nome do cabeçalho de uma coluna pode
apresentar pouco significado. Nestas situações pode ser utilizado um
‘apelido’ para a coluna.

n  O ‘apelido’ é definido logo em seguida ao nome da coluna com um
espaço ou utilizando a palavra AS. É recomendável inserir o nome do
‘apelido’ entre aspas duplas (").
q  Caso o apelido tenha espaço, é obrigatório o uso de aspas duplas (").

n  Exemplo:
q  select JOB_TITLE AS “CARGO", MIN_SALARY AS "SALÁRIO BASE" from HR.JOBS;

 equivalente a

q  select JOB_TITLE “CARGO", MIN_SALARY "SALÁRIO BASE" from HR.JOBS;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 31

Select distinct

n  Em algumas situações o resultado pode apresentar repetição.

n  Buscar os códigos de departamento dos empregados, por exemplo,
retornará código de departamento repetido caso exista mais de um
empregado que trabalhe em um mesmo departamento.
q  Observe:

n  select DEPARTMENT_ID from HR.EMPLOYEES order by 1;
q  Veremos em um futuro próximo o que quer dizer “order by 1”

n  Para evitar registro repetidos basta inserir a palavra DISTINCT.
q  select distinct DEPARTMENT_ID from HR.EMPLOYEES order by 1;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 32

Select distinct

n  Esta unicidade não é aplicada somente à primeira coluna, mas sim, a
toda linha. Observe fazendo a seguinte consulta:
q  select distinct DEPARTMENT_ID, JOB_ID from HR.EMPLOYEES order by 1;

n  Observe que não houve um único registro com o mesmo código de
departamento e código do cargo.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 33

Ordenando

n  Ordenação (ORDER BY)
q  A expressão ORDER BY é utilizada quando se pretende exibir os

registros em uma determinada ordem, seja esta crescente (ASC -
default) ou decrescente (DESC). Caso a expressão não esteja presente,
os registros serão exibidos na ordem em que foram inseridos na tabela.

q  Os campos que constam na expressão ORDER BY não devem
obrigatoriamente estarem presentes na expressão SELECT. Caso
estejam presentes, pode-se utilizar números indicando que a ordenação
será feira por determinado campo de acordo com a ordem do select.

q  Não é necessário possuir um índice fisicamente criado e composto
pelos campos da ordenação para usar o ORDER BY. No entanto, na
existência do índice, o comando será executado com melhor
desempenho.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 34

Ordenando

n  Deve ser a última instrução do select e tem a seguinte sintaxe:
q  select ... order by <lista_de_colunas> <asc|desc> <nulls first|nulls last>

n  A lista de colunas pode referenciar à posição da coluna na lista de colunas do
select, caso a coluna esteja sendo exibida.

n  Exemplos:
q  select FIRST_NAME, SALARY from HR.EMPLOYEES order by SALARY desc

 equivale a

q  select FIRST_NAME, SALARY from HR.EMPLOYEES order by 2 desc
n  Observe que caso a ordenação seja feita por uma coluna que não esteja na lista de colunas do

select, esta sintaxe não é possível.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 35

Ordenando

n  Mais exemplos:
q  Listagem do código do departamento e do nome do empregado

ordenados ascendentemente pelo código do departamento:
n  select DEPARTMENT_ID, FIRST_NAME from HR.EMPLOYEES

 order by DEPARTMENT_ID asc

q  Agora ordenados descendentemente:
n  select DEPARTMENT_ID, FIRST_NAME from HR.EMPLOYEES

 order by DEPARTMENT_ID desc

q  Agora ordenados descendentemente pelo código do departamento e
ascedentemente pelo nome do empregado:
n  select DEPARTMENT_ID, FIRST_NAME from HR.EMPLOYEES

 order by DEPARTMENT_ID desc, FIRST_NAME asc

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 36

Ordenando

n  Ainda mais exemplos:
q  Listagem do código do departamento e do nome do empregado

ordenados ascendentemente pelo código do departamento, porém com
a exibição de departamentos nulos no início:
n  select DEPARTMENT_ID, FIRST_NAME from HR.EMPLOYEES

 order by DEPARTMENT_ID asc nulls first;

q  Agora com os departamentos nulos no final:
n  select DEPARTMENT_ID, FIRST_NAME from HR.EMPLOYEES

 order by DEPARTMENT_ID asc nulls last;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 37

Limitando o número de resultados

n  As vezes você não está interessado em ver o resultado como um todo,
mas sim, alguma parte do resultado. Para isto, o Oracle utiliza de uma
pseudo-coluna conhecida como ROWNUM a partir do resultado.

n  Por exemplo, a seguinte consulta retorna o nome e o salário de todos
os empregados ordenados do maior salário para o menor.
q  select FIRST_NAME, SALARY from HR.EMPLOYEES order by SALARY desc;

n  Mas o interesse é obter somente a lista dos TOP 3. Portanto o uso de
ROWNUM é indispensável:
q  select * from (

 select FIRST_NAME, SALARY from HR.EMPLOYEES order by SALARY desc
) where ROWNUM <= 3;

n  A princípio parece ser difícil já que outros SGBDs fazem de um modo

muito mais fácil, porém estamos trabalhando com um SGBD de alta
robustez.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 03

Apostila Oracle 38

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 39

Esquema RH (tradução do HR)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 40

Restrigindo

n  Existem vários operadores que pode ser usados para a restrição do
número de resultados.

q  Operadores de comparação
n  Equalidade: =
n  Diferença: <> != ^=
n  Demais:

q  > < >= <=
q  ANY
q  SOME
q  ALL

q  Lógicos:
n  AND OR NOT

q  A utilização dos operadores lógicos
 utiliza a precedência de parênteses
 como em linguagens de programação.

q  Outros operadores:
n  IN

q  NOT IN
n  BETWEEN
n  EXISTS
n  IS NULL

q  IS NOT NULL
n  LIKE

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 41

Restrigindo

n  Operadores de comparação
q  São operadores que retornam um booleano como resultado.

q  Permite que realizemos consultas restringindo pela equalidade, diferença,
relações de maior, maior ou igual, menor e menor ou igual.
n  O oracle acrescenta os operadores SOME, ANY e ALL.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 42

Restrigindo

n  Um exemplo de uso da equalidade é a busca dos empregados de um
determinado departamento, por exemplo:
q  select * from RH.EMPREGADO where ID_DEPARTAMENTO = 90

n  Para retornar os que não estão em um departamento basta:
q  select * from RH.EMPREGADO where ID_DEPARTAMENTO <> 90

equivalente a

q  select * from RH.EMPREGADO where ID_DEPARTAMENTO != 90
equivalente a

q  select * from RH.EMPREGADO where ID_DEPARTAMENTO ^= 90

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 43

Restrigindo

n  Um exemplo de uso da relação de maior, maior ou igual, menor ou
menor ou igual é o busca de um empregado que possui um salário
maior que um certo valor e menor do que outro.
q  select * from RH.EMPREGADO where SALARIO > 13000

n  Busca os que possuem salário maior que 13.000

q  select * from RH.EMPREGADO where SALARIO >= 13000
n  Busca os que possuem salário maior ou igual a 13.000

q  select * from RH.EMPREGADO where SALARIO < 13000
n  Busca os que possuem salário menor que 13.000

q  select * from RH.EMPREGADO where SALARIO <= 13000
n  Busca os que possuem salário menor ou igual a 13.000

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 44

Restrigindo

n  ANY ou SOME
q  São utilizados para comparar um valor para cada valor em uma lista ou

subquery.

q  Devem ser precedidos por um dos operadores de comparação.
n  =, <>, !=, ^=, <, <=, >, ou >=

q  Para retornar os usuário que estão em uma determinada lista de
departamentos utilizamos:
n  select * from RH.EMPREGADO where ID_DEPARTAMENTO = ANY (90,100)

 equivalente a
n  select * from RH.EMPREGADO where ID_DEPARTAMENTO = SOME (90,100)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 45

Restrigindo

n  ALL
q  São utilizados para comparar um valor para todos os valores em uma

lista ou subquery.

q  Assim como SOME e ANY, devem ser precedidos por um dos
operadores de comparação.

q  Para retornar os usuário que não estão nos departamentos de uma
determinada lista utilizamos:
n  select * from RH.EMPREGADO where ID_DEPARTAMENTO != ALL (10,30,50)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 46

Restrigindo

n  Operadores lógicos
q  Os operadores lógicos são utilizados para combinar os resultados de

duas condições de comparação para produzir um único resultado (AND
e OR) ou para inverter o resultado de uma simples comparação (NOT).

q  NOT
n  Às vezes, no português falado dizemos, por exemplo, que queremos todos os

funcionários que não estão no departamento 30.

n  A consulta abaixo faz exatamente isto:
q  select * from RH.EMPREGADO where not ID_DEPARTAMENTO = 30

n  E poderia ser feito, de forma equivalente, como abaixo:
q  select * from RH.EMPREGADO where ID_DEPARTAMENTO <> 30

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 47

Restrigindo

n  Operadores lógicos
q  AND

n  Às vezes, no português falado dizemos, por exemplo, que queremos todos os
funcionários que estão no departamento 30 e que ganham mais de 3.000.

n  A consulta abaixo faz exatamente isto:
q  select * from RH.EMPREGADO where

 ID_DEPARTAMENTO = 30 AND SALARIO > 3000

q  OR
n  Existem outros casos que queremos todos os funcionários que estão no

departamento 30 ou que ganham mais de 17.000.

n  A consulta abaixo faz exatamente isto:
q  select * from RH.EMPREGADO where

 ID_DEPARTAMENTO = 30 OR SALARIO > 17000

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 48

Restrigindo

n  IN e NOT IN
q  O operador IN e NOT IN são utilizados para testar uma condição de um

grupo de valores.

q  IN é equivalente ao operador =ANY, pois ambos retornam verdadeiro se
um valor existe em uma lista ou em uma subquery.

q  NOT IN é equivalente ao operador !=ALL, pois ambos retornam
verdadeiro se o valor não existe em uma lista ou em uma subquery.

q  Vamos ver um exemplo no próximo slide e um comparativo com o ANY
e SOME.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 49

Restrigindo

n  IN
q  Para retornar os usuário que estão em uma determinada lista de

departamentos utilizamos:
n  select * from RH.EMPREGADO where ID_DEPARTAMENTO IN (90,100)

 equivalente a

n  select * from RH.EMPREGADO where ID_DEPARTAMENTO = ANY (90,100)

n  NOT IN
q  Para retornar os usuário que não estão nos departamentos de uma

determinada lista utilizamos:
n  select * from RH.EMPREGADO where ID_DEPARTAMENTO NOT IN (10,30,50)

 equivalente a

n  select * from RH.EMPREGADO where ID_DEPARTAMENTO != ALL (10,30,50)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 50

Restrigindo

n  BETWEEN
q  O operador BETWEEN permite testar se um determinado campo assume o

valor dentro de um intervalo especificado. É utilizado por ser mais prático
que o teste de >= e <=.

q  Para retornar os usuário que recebem entre 5.000 e 10.000 utilizamos:
n  select * from RH.EMPREGADO where SALARIO between 5000 and 10000

q  Caso queíramos os que não se enquadram neste intervalo, basta
acrescentar o operador lógico NOT:
n  select * from RH.EMPREGADO where not SALARIO between 5000 and 10000

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 51

Restrigindo

n  EXISTS
q  O operador EXISTS é sempre seguido por uma subquery em parênteses.

Este operador retorna verdadeiro se o resultado da subquery retorna pelo
menos um registro.

q  O exemplo abaixo retorna os empregados que trabalham no departamento
de marketing. Pode não ficar claro o entendimento desde operador, porém o
abordaremos mais detalhadamente ao falarmos de subqueries.

select * from RH.EMPREGADO e
 where EXISTS (
 select 1 from RH.DEPARTAMENTO d
 where d.ID_DEPARTAMENTO = e.ID_DEPARTAMENTO AND
 d.NOME_DEPARTAMENTO = 'Marketing'
)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 52

Restrigindo

n  IS NULL e IS NOT NULL
q  Para encontrar valores nulos, você deve utilizar o operador IS NULL. Os

operadores ‘=‘ ou ‘!=‘ não funcionam com valores nulos.

q  A literal NULL é a representação para campos sem valores (é bem diferente
um campo ser nulo e ser zero). O nulo significa que nenhum valor se aplica.
n  No momento da criação da tabela é que se define se o campo pode ou não conter

valores nulos.

q  Para retornar os usuários que não estão lotados em nenhum departamento
utilizamos:
n  select * from RH.EMPREGADO e where ID_DEPARTAMENTO is NULL

q  Caso queíramos os que estejam lotados em um departamento:
n  select * from RH.EMPREGADO e where ID_DEPARTAMENTO is not NULL

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 53

Restrigindo

n  LIKE
q  O operador LIKE é usado quando se deseja obter colunas de um registro

que sigam um determinado padrão pré-especificado. Quando se quer saber
o nome de todos os funcionários cujo nome começa com ‘João’ ou termina
com ‘Silva’, utiliza-se o operador LIKE.

q  Comparando com MS-DOS:
n  % funciona como o * (indica quaisquer caracteres)
n  _ funciona como o ? (indica que naquela posição pode qualquer caractere)

q  Exemplo:
n  select * from RH.EMPREGADO where PRIMEIRO_NOME like 'Alex%'

q  Seleciona os empregados cujo nome inicia-se com ‘Alex’.

n  select * from RH.EMPREGADO where PRIMEIRO_NOME like '_o%'
q  Seleciona os empregados cujo nome possua a letra ‘o’ na 2º posição.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 54

Restrigindo

n  Restringindo pelo valor de uma data
q  No Oracle, ‘07-06-1994’ não é uma data, mas sim, uma string. Portanto,

como representar uma data para utilizar os operadores aprendidos?

q  Basta utilizar a função to_date que veremos mais à frente, porém segue um
exemplo para já ir experimentando.

q  Selecionar os empregados que foram pagos em 07 de junho de 1994.
n  select * from RH.EMPREGADO

 where DATA_PAGAMENTO = to_date('07/06/1994', 'dd/mm/yyyy')

q  Selecionar os empregados que já foram pagos.
n  select * from RH.EMPREGADO

 where DATA_PAGAMENTO < sysdate

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 04

Apostila Oracle 55

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 56

Esquema RH (tradução do HR)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 57

Tipos de dados no Oracle

n  No oracle, existem vários tipos de dados. Observe:

q  Nos slides seguintes, veremos, em detalhes, os mais utilizados.

Categoria Tipos de dados
Caractere CHAR, NCHAR, VARCHAR2, NVARCHAR2

Número NUMBER

D a d o s b r u t o s
a l f a n u m é r i c o s e
binários

LONG, LONG RAW, RAW

Data e hora DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL YEAR TO
MONTH, INTERVAL DAY TO SECOND

Objetos largos CLOB, NCLOB, BCLOB, BFILE

Identificadores de
linha

ROWID, UROWID

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 58

Tipos de dados

n  CHAR(<size>)
q  É uma string alfanumérica de tamanho fixo, que possui um tamanho máximo

em bytes.

q  Seu tamanho deve ser de 1 à 2000 bytes. O valor padrão é 1.

q  Dados armazenados em um tipo char são completados com espaços até
completar o tamanho máximo.
n  Ex.: Gravar "Olá" em um char(10), ficaria mais ou menos assim: "Olá "

q  O Oracle garante que todo dado dentro deste tipo terá sempre o mesmo
tamanho.
n  Se for menor, é completado com espaços.
n  Se for maior, um erro é levantado.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 59

Tipos de dados

n  VARCHAR2(<size>)
q  É uma string alfanumérica de tamanho variável, que possui um tamanho

máximo em bytes.

q  Seu tamanho deve ser de 1 à 4000 bytes e não há valor padrão de tamanho.

q  Dados armazenados em um tipo varchar2 somente requerem o espaço
necessário para armazenar o dado.
n  Isto é, um coluna varchar2(4000) vazia gasta o mesmo espaço que uma coluna

varchar(1) vazia.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 60

Tipos de dados

n  NUMBER(<p>,<s>)
q  O tipo NUMBER armazena números com uma precisão de p dígitos tendo

uma escala de s dígitos reservados para as casas decimais.

q  A precisão e a escala de dígitos são opcionais, porém se não informadas o
Oracle assume o valor máximo possível.

q  Exemplos:
n  NUMBER(6,2) à -9999.99 a 9999.99
n  NUMBER(2,0) à -99 a 99

q  Se o número a ser inserido é superior à capacidade, um erro é levantando.
Porém, caso a parte decimal informada é superior a suportada pelo tipo, o
Oracle realiza o arrendondamento.
n  Ex.:

q  9.555 em um NUMBER(3,2) ficará 9.56
q  99.0123 em um NUMBER(4,2) ficará 99.01
q  100 em um NUMBER(4,2) gerará erro.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 61

Tipos de dados

n  DATE
q  É o tipo utilizado para armazenar informação de data e hora.

q  Este tipo pode ser convertido para outras formas de visualização, mas
existe várias funções e propriedades especiais que permite sua
manipulação e cálculos simples.

q  Um tipo data ocupa 7 bytes. As seguintes informações são
armazenadas em cada tipo DATE:
n  Século
n  Ano
n  Mês
n  Dia
n  Hora
n  Minuto
n  Segundo

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 62

Concatenação

n  Concatenação
q  Antes de iniciar com funções, vamos falar um pouco sobre o operador

de concatenação.

q  Ele é representado por duas barras verticais (||) e é utilizado para
concatenar ou juntar duas strings.

q  Exemplos:
n  select 'Eu ' || 'amo ' || 'Oracle' as "FRASE" from DUAL;

n  select PRIMEIRO_NOME || ' ' || ULTIMO_NOME as "NOME COMPLETO"
from RH.EMPREGADO

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 63

Expressões

n  Expressões
q  Antes de iniciar com funções, vamos falar um pouco sobre expressões.

q  Uma expressão é uma combinação de um ou mais valores, operadores
e funções SQL que resultam em um único valor.

q  Exemplos:
n  5+6 à 11
n  mod(4*2, 3) à 2
n  upper(‘José ’ || ‘oliveira’) à ‘JOSÉ OLIVEIRA’
n  sqrt(mod((4*4)+3, 5)) à 2

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 64

Expressão CASE

n  Expressão CASE
q  A expressão CASE pode ser usada como uma derivação da lógica if..

then.. else no SQL.

q  Sintaxe:
n  CASE <expressao>

 WHEN <valor de comparação> THEN <valor de retorno>
 ELSE <valor de retorno>
 END

q  A cláusula WHEN pode se repetir.
q  A cláusula ELSE é opcional.

q  No slide seguinte, veremos um exemplo.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 65

Expressão CASE

n  Expressão CASE
q  Retorna o nome do país, o código da região e o continente. Este último

é realizado a partir de uma expressão CASE pelo código da região.

 select NOME_PAIS , ID_REGIAO,
 CASE ID_REGIAO
 WHEN 1 THEN 'Europa'
 WHEN 2 THEN 'America'
 WHEN 3 THEN 'Asia'
 ELSE 'Outro'
 END as "Continente"
from RH.PAIS
where upper(NOME_PAIS) like 'B%'

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 66

Funções

n  O Oracle criou várias funções que podem ser chamadas a partir de
instruções SQL.

n  O Oracle possui cinco classes principais de funções:
q  Funções de única linha (serão abordadas nesta aula)

q  Funções de agregação (serão abordadas nas próximas aulas)

q  Funções analíticas
q  Funções de referência à objetos
q  Funções definidas pelo programador

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 67

Funções de única linha (single-row funcions)

n  Funções de uma única linha
q  Trabalha em expressões derivadas de colunas ou literais.
q  São executadas uma vez para cada linha recuperada.

n  Existem vários tipos: funções textuais, funções numéricas, funções
de data, funções de conversão e funções diversas.

n  Todas as funções de uma única linha pode ser incorporadas no
SQL (e, certamente, em PL/SQL).
q  Elas são utilizadas no SELECT, WHERE e ORDER BY de instruções

SELECT.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 68

Funções de única linha de valores nulos

n  Existem as funções NVL e NVL2

n  NVL (x1, x2)
q  Possui dois argumentos nos quais ambos são expressões.
q  A função NVL retorna x2 se x1 é nulo.

n  Se x1 não é nulo, então x1 é retornado.

q  Ex.:
n  select PRIMEIRO_NOME || ' ' || ULTIMO_NOME as "NOME COMPLETO",

 NVL(PERCENTUAL_COMISSAO,0) AS "COMISSAO (%)"
 from RH.EMPREGADO order by 2 desc

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 69

Funções de única linha (single-row funcions)

n  Veremos agora várias tabelas com a listagem de todas as funções
de única linha utilizadas pelo Oracle.

n  A idéia é passar uma visão sobre cada uma delas, porém a sintaxe
destas funções deverá ser estudada nas bibliografias da disciplina.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 70

Funções textuais de única linha (1/2)

Função Descrição
ASCII Retorna o código na tabela ASCII equivalente ao caractere informado.

CHR Retorna o caractere dado o código da tabela ASCII.

CONCAT Concatena duas strings, assim como o operador ||.

INITCAP Retorna uma string com a primeira letra de cada palavra em maíuscula.

INSTR Encontra a posição numérica inicial de uma string dentro de uma outra string.

INSTRB Assim com INSTR, porém conta bytes ao invés de caracteres.

LENGTH Retorna o tamanho de uma string em caracteres.

LENGTHB Retorna o tamanho de uma string em bytes.

LOWER Converte toda a string para minúscula.

LPAD Complementa à esquerda uma string até um tamanho especificado usando um
caractere específico.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 71

Funções textuais de única linha (2/2)

Função Descrição
LTRIM Retira espaços à esquerda de uma string.

RPAD Complementa à direita uma string até um tamanho especificado usando um
caractere específico.

RTRIM Retira espaços à direita de uma string.

REPLACE Realiza pesquisa e substituição de substring.

SUBSTR Retorna uma parte de uma string especificada pelo posição numérica dos
caracteres.

SUBSTRB Retorna uma parte de uma string especificada pelo posição numérica dos
bytes.

SOUNDEX Retorna a representação fonética de uma string.

TRANSLATE Realiza pesquisa e substituição de caracteres.

TRIM Retira espaços à direita e à esquerda de uma string.

UPPER Converte toda a string para maiúscula.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 72

Funções numéricas de única linha (1/3)

Função Descrição
ABS Retorna o valor absoluto.

ACOS Retorna o arco-cosseno.

ASIN Retorna o arco-seno.

ATAN Retorna o arco-tangente.

ATAN2 Retorna o arco-tangente. Recebe dois parâmetros.

BITAND Retorna o resultado de uma operação AND nos bits de dois parâmetros.

CEIL Retorna o próximo inteiro superior.

COS Retorna o cosseno.

COSH Retorna o cosseno hiperbólico.

EXP Retorna a base de um logaritmo natural elevada a uma potência.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 73

Funções numéricas de única linha (2/3)

Função Descrição
FLOOR Retorna o próximo inteiro inferior.

LN Retorna o logaritmo natural.

LOG Retorna o logaritmo.

MOD Retorna o módulo (resto) de uma operação de divisão.

POWER Retorna um número elevado a uma potência.

ROUND Arredonda o número.

SIGN Retorna o signal: negativo, positivo ou zero.

SIN Retorna o seno.

SINH Retorna o seno hiperbólico.

SQRT Retorna a raiz quadrada de um número

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 74

Funções numéricas de única linha (3/3)

Função Descrição
TAN Retorna a tangente.

TANH Retorna a tangente hiperbólica.

TRUNC Retorna o número truncado.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 75

Funções de data de única linha (1/2)

Função Descrição
ADD_MONTHS Adiciona um número de meses a uma data.

CURRENT_DATE Retorna a data corrente.

CURRENT_TIMESTAMP Retorna a data e hora corrente.

DBTIMEZONE Retorna o fuso horário do banco de dados.

EXTRACT Retorna um componente de uma data.

FROM_TZ Retorna uma data e hora com o fuso horário dado.

LAST_DAY Retorna o último dia do mês.

LOCALTIMESTAMP Retorna a data e hora corrente do fuso horário da sessão.

MONTHS_BETWEEN Retorna o número de meses entre duas datas.

NEW_TIME Retorna a data e hora em um diferente fuso horário.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 76

Funções de data de única linha (2/2)

Função Descrição
NEXT_DAY Retorna o próximo dia da semana de um dada data.

ROUND Arredonda a data/hora.

SESSIONTIMEZONE Retorna o fuso horário do sessão corrente.

SYS_EXTRACT_UTC Retorna o UTC (GMT) de uma data/hora.

SYSDATE Retorna a data corrente.

SYSTIMESTAMP Retorna a data e hora corrente.

TRUNC Trunca uma data para uma dada granularidade.

TZ_OFFSET Retorna a diferença da UTC de uma determinada localização.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 77

Funções de conversão de única linha (1/2)

Função Descrição
ASCIISTR Converte caracteres para ASCII.

BIN_TO_NUM Converte uma string de bits para um número.

CAST Converte tipos.

CHARTOROWID Converte um caractere para um tipo ROWID.

COMPOSE Converte para UNICODE.

CONVERT Converte de um conjunto de caracteres para outro.

DECOMPOSE Decompõe um string UNICODE.

HEXTORAW Converte um hexadecimal para um raw.

NUMTODSINTERVAL Converte um número para um intervalo de dias por segundo.

NUMTOYMINTERVAL Converte um número para um intervalo de anos por mês.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 78

Funções de conversão de única linha (2/2)

Função Descrição
RAWTOHEX Converte um raw para um hexadecimal.

ROWIDTOCHAR Converte um ROWID para um caractere.

TO_CHAR Converte e formata uma data em uma string.

TO_DATE Converte uma string para uma data, especificando o formato.

TO_DSINTERVAL Converte uma string para um intervalo dias por segundo.

TO_MULTIBYTE Converte um caractere de um único byte para seu correspondente
multibyte.

TO_NUMBER Converte uma string numérica para um número, especificado o
formato.

TO_SINGLE_BYTE Converte um caractere multibyte para seu correspondente único
byte.

TO_YMINTERVAL Converte uma string para um intervalo anos por mês.

UNISTR Converte UCS2 Unicode.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 79

Funções diversas de única linha (1/2)

Função Descrição
BFILENAME Retorna o localizador BFILE para o especificado diretório e

arquivo.

COALESCE Retorna o primeiro não-nulo em uma lista.

DECODE Instrução case em uma única linha (uma função if.. então.. else)

DUMP Retorna uma substring raw na codificação especificada.

EMPTY_BLOB Retorna um localizador BLOB vazio.

EMPTY_CLOB Retorna um localizador CLOB vazio.

GREATEST Organiza os argumentos e retorna o maior.

LEAST Organiza os argumentos e retorna o menor.

NULLIF Retorna NULL se duas expressões são iguais.

SYS_CONNECT_BY_PATH Retorna valores da raiz até os nodos de uma consulta usando
CONNECT BY.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 80

Funções diversas de única linha (2/2)

Função Descrição
SYS_CONTEXT Retorna vários atributos de sessão, tais como endereço IP,

terminal e usuário corrente.

UID Retorna o ID numérico do usuário da sessão corrente.

USER Retorna o nome do usuário da sessão corrente.

USERENV Não mais utilizado. Substituído por SYS_CONTEXT.

VSIZE Retorna o tamanho interno em bytes de uma expressão.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 05

Apostila Oracle 81

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 82

Esquema RH (tradução do HR)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 83

Fundamentos de funções de agregação

n  Funções de agregação (group functions)
q  Também conhecidas como funções de agrupamento e retornam um valor

baseado no número de entradas.

q  O número exato de entradas não está determinado até que a consulta tenha
sido executada e todas as linhas tenham sido trazidas. Isto difere das
funções de uma única linha, em que o número de entradas já é conhecido
antes que a consulta seja executada.

q  Devido a diferença acima, funções de agregação possuem requisitos e
comportamentos ligeiramente diferentes que funções de uma única linha.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 84

Fundamentos de funções de agregação

n  Valores Nulos
q  Funções de agregação não processam valores nulos e nunca retornam um

valor nulo, mesmo quando somente valores nulos são avaliados.
n  Ex.:

q  Uma contagem (COUNT) ou uma soma (SUM) de valores nulos irá retornar 0 (zero).

n  Aplicabilidade
q  A maioria das funções de agregação podem ser aplicadas em todos os

valores (ALL) ou somente em valores distintos (DISTINCT).

q  Ex.:
n  Soma de todos os salários

q  select sum(SALARIO) from RH.EMPREGADO
 ou

q  select sum(all SALARIO) from RH.EMPREGADO

n  Soma de todos os salários diferentes
q  select sum(distinct SALARIO) from RH.EMPREGADO

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 85

Fundamentos de funções de agregação

n  Observe a consulta simples abaixo e o seu resultado:

q  select PRIMEIRO_NOME || ' ' || ULTIMO_NOME as "NOME COMPLETO", SALARIO
 from RH.EMPREGADO where ID_DEPARTAMENTO = 90 order by 1

NOME COMPLETO SALARIO
-- ----------
Lex De Haan 17000
Neena Kochhar 17000
Steven King 24000

n  Observe a consulta utilizando função de agregação abaixo e o seu
resultado:

q  select avg(SALARIO) "MEDIA", avg(ALL SALARIO) "MEDIA",
 avg(DISTINCT SALARIO) "MEDIA DISTINTA",
 count(SALARIO) "CONTAGEM", count(DISTINCT SALARIO) "CONTAGEM DISTINTA",
 sum(SALARIO) "SOMA", sum(DISTINCT SALARIO) "SOMA DISTINTA" from TABELA_ACIMA

 MEDIA MEDIA MEDIA DISTINTA CONTAGEM CONTAGEM DISTINTA SOMA SOMA DISTINTA
---------- ---------- -------------- ---------- ----------------- ---------- -------------
19333.3333 19333.3333 20500 3 2 58000 41000

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 86

Funções de agregação

n  Usando funções de agregação
q  Assim como funções de uma única linha, o Oracle oferece uma grande

variedade de funções de múltiplas linhas. Estas funções aparecem no
SELECT ou nas cláusulas HAVING de instruções SELECT.

q  Quando utilizada em um SELECT, geralmente requer uma cláusula GROUP
BY, porém quando a mesma não é especificada, o agrupamente padrão é
por todo o resultado.

q  Funções de agregação NÃO PODEM aparecer na cláusula WHERE de uma
instrução SELECT.

q  Nos próximos slides veremos as seguintes funções de agregação:
n  AVG
n  COUNT
n  MAX
n  MIN
n  SUM

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 87

Funções de agregação

n  AVG (média aritmética):
q  Retorna a média dos valores de uma determinada coluna. Sintaxe:

n  avg([ALL | DISTINCT] <nome-da-coluna>)

q  Ex.:
n  select avg(SALARIO) from EMPREGADO where ID_DEPARTAMENTO=30

q  Seleciona a média salarial dos empregados do departamento 30

n  SUM (soma de valores):
q  Retorna a soma dos valores de uma determinada coluna. Sintaxe:

n  sum([ALL | DISTINCT] <nome-da-coluna>)

q  Ex.:
n  select sum(SALARIO) from EMPREGADO

q  Seleciona a soma dos salários de todos os empregados

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 88

Funções de agregação

n  MAX (maior valor):
q  Retorna o maior valor de uma determinada coluna. Sintaxe:

n  max([ALL | DISTINCT] <nome-da-coluna>)

q  Exemplo:
n  select max(SALARIO) from EMPREGADO

q  Seleciona o maior salário de todos os empregados

n  MIN (menor valor):
q  Retorna o menor valor de uma determinada coluna. Sintaxe:

n  min([ALL | DISTINCT] <nome-da-coluna>)

q  Exemplo:
n  select min(SALARIO) from EMPREGADO

q  Seleciona o menor salário de todos os empregados

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 89

Funções de agregação

n  COUNT (contagem)
q  Retorna o número de linhas ou de colunas do resultado. Pode vir a ser

distinta com a utilização do operador DISTINCT. Sintaxe:
n  count(*)

q  Retorna o número de linhas do resultado.
n  count(<nome-da-coluna>) ou count(ALL <nome-da-coluna>)

q  Retorna o número de colunas do resultado.
n  count(DISTINCT <nome-da-coluna>)

q  Retorna o número de colunas distintas do resultado.

q  Exemplo:
n  select count(*) from EMPREGADO

q  Seleciona o número de empregados.

n  select count(PERCENTUAL_COMISSAO) from EMPREGADO
q  Seleciona o número de empregados que possuem percentual de comissão, pois

valores nulos não são avaliados.

n  select count(DISTINCT ULTIMO_NOME) from EMPREGADO
q  Seleciona o número dos sobrenomes distintos de empregados.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 90

Agrupando dados com GROUP BY

n  Agrupando os dados utilizando GROUP BY
q  As funções de agregação são úteis, porém seu uso comum é vinculá-las a

uma cláusula GROUP BY.

q  A cláusula GROUP BY como o próprio nome diz trabalha nos dados que
estão agrupados. Como já visto, quando a mesma não é especificada, o
agrupamente padrão é por todo o resultado.

q  Por exemplo, seria interessante buscar o menor e o maior salário por cada
departamento, a média salarial por função, o número de países por cada
região, entre outros. Para isto, devemos aplicar um função de agregação e
agrupá-la por algum campo.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 91

Agrupando dados com GROUP BY

n  Buscar o maior e o menor salário por cada departamento
q  select ID_DEPARTAMENTO, MIN(SALARIO), MAX(SALARIO) from RH.EMPREGADO

group by ID_DEPARTAMENTO order by 1 nulls first

ID_DEPARTAMENTO MIN(SALARIO) MAX(SALARIO)

--------------- ------------ ------------
 7000 7000

 10 4400 4400

 20 6000 13000

 30 2500 11000
 40 6500 6500

 50 2100 8200

 60 4200 9000
 70 10000 10000

 80 6100 14000

 90 17000 24000

 100 6900 12000
 110 8300 12000

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 92

Agrupando dados com GROUP BY

n  Buscar a média salarial por função.
q  select ID_FUNCAO, AVG(SALARIO) from RH.EMPREGADO

 group by ID_FUNCAO order by 1 nulls first

ID_FUNCAO AVG(SALARIO)

---------- ------------

AC_ACCOUNT 8300
AC_MGR 12000

AD_ASST 4400

AD_PRES 24000
...

SA_MAN 12200

SA_REP 8350

SH_CLERK 3215
ST_CLERK 2785

ST_MAN 7280

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 93

Agrupando dados com GROUP BY

n  Buscar o número de países por região
q  select ID_REGIAO, count(ID_PAIS) from RH.PAIS

 group by ID_REGIAO order by 1

 ID_REGIAO COUNT(ID_PAIS)

---------- --------------

 1 8
 2 5

 3 6

 4 6

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 94

Limitando com HAVING

n  Limitando dados agrupados com HAVING
q  Funções de agregação não podem ser usadas na cláusula WHERE, porém em alguns

casos você deseja agrupar os dados e aplicar um certo filtro no agrupamento dos
dados.

q  Este filtro não pode ser feito na cláusula WHERE, pois ele é um filtro sobre as linhas
agrupadas.

q  Por exemplo, exibir a média salarial dos empregados de cada departamento cuja
média salarial seja superior a 8.000,00. O filtro não é sobre a tabela de
DEPARTAMENTO, mas sim, sobre o agrupamento feito sobre esta tabela.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 95

Limitando com HAVING

n  Buscar a média salarial dos empregados que não possuem percentual
de comissão de cada departamento cuja média salarial seja superior ou
igual a 10.000,00.
q  select ID_DEPARTAMENTO, avg(SALARIO) from RH.EMPREGADO

 where PERCENTUAL_COMISSAO is null
 group by ID_DEPARTAMENTO
 having avg(SALARIO) >= 10000.00
 order by avg(SALARIO)

ID_DEPARTAMENTO AVG(SALARIO)
--------------- ------------

 70 10000

 110 10150

 90 19333.3333

q  Observe como a ordenação pode ser feita pelo resultado da função de agregação.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 06

Apostila Oracle 96

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 97

Esquema RH (tradução do HR)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 98

Consultas em múltiplas tabelas

n  Um banco de dados possui várias tabelas que armazenam dados. Nós
já aprendemos a escrever consultas simples que selecionam
informações de uma única tabela.

n  A capacidade de junção de duas ou mais tabelas e o acesso às
informações é a principal força dos banco de dados relacionais.

n  Usando a instrução SELECT podemos escrever consultas avançadas
que satisfazem os requisitos dos usuários.

n  O foco deste material é vermos como escrever consultas avançadas
que satisfazem os requisitos dos usuários.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 99

Consultas em múltiplas tabelas

n  A instrução SELECT possui as seguintes cláusulas obrigatórias:
q  SELECT

n  possui uma lista de colunas, expressões, funções e afins.
q  FROM

n  diz em qual(is) tabela(s) irá buscar as informações desejadas.
q  Até então, aprendemos a buscar informações de uma única tabela, porém isto agora

não mais será uma limitação.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 100

Consultas em múltiplas tabelas

n  Para consultar dados de mais de uma tabela, você precisa identificar
colunas comuns entre as duas tabelas.
q  Um exemplo seria a coluna ID_DEPARTAMENTO na tabela de

EMPREGADO que cor responde a co luna de mesmo nome
(ID_DEPARTAMENTO) na tabela de DEPARTAMENTO.

n  Na cláusula WHERE, você define a relação entre as tabelas listadas na
cláusula FROM usando operadores de comparação.
q  Normalmente o operador de igualdade (=) é o utilizado.

n  Veremos que ao invés de utilizarmos o WHERE, podemos indicar a
correspondência entre duas tabelas utilizando a cláusula JOIN.
q  A consulta entre múltiplas tabelas sem correspondência ou colunas em

comum é conhecida como produto cartesiano e será abordada à frente.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 101

Junções Simples

n  Uma junção simples é conhecida como inner join, pois ela retorna
somente as linhas que satisfazem as condições de junção.
q  Um exemplo seria a busca do código e nome dos departamentos e suas

respectivas cidades. Esta informação não consta em uma única tabela,
bastando uma junção simples.
n  select RH.DEPARTAMENTO.ID_DEPARTAMENTO,

 R H . D E P A R T A M E N T O . N O M E _ D E P A R T A M E N T O ,
 RH.LOCALIZACAO.CIDADE

 from RH.DEPARTAMENTO, RH.LOCALIZACAO
 where RH.DEPARTAMENTO.ID_LOCALIZACAO = RH.LOCALIZACAO.ID_LOCALIZACAO

q  O resultado é algo como abaixo:

ID_DEPARTAMENTO NOME_DEPARTAMENTO CIDADE
--------------- ------------------------------ ------------------------------
 10 Administration Seattle
 20 Marketing Toronto

 270 Payroll Seattle

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 102

Junções Complexa

n  Uma junção complexa é uma junção simples que contém na
cláusula WHERE, além da condição de junção, uma outra condição
para filtrar as linhas retornadas.
q  Um exemplo seria a busca do código e nome dos departamentos e suas

respectivas cidades fora dos Estados Unidos.
n  select RH.DEPARTAMENTO.ID_DEPARTAMENTO,

 R H . D E P A R T A M E N T O . N O M E _ D E P A R T A M E N T O ,
 RH.LOCALIZACAO.CIDADE

 from RH.DEPARTAMENTO, RH.LOCALIZACAO
 where RH.DEPARTAMENTO.ID_LOCALIZACAO = RH.LOCALIZACAO.ID_LOCALIZACAO
 and RH.LOCALIZACAO.ID_PAIS != 'US'

q  O resultado é algo como abaixo:

ID_DEPARTAMENTO NOME_DEPARTAMENTO CIDADE
--------------- ------------------------------ ------------------------------
 20 Marketing Toronto

 80 Sales Oxford

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 103

Criando aliases para tabelas

n  Antes de iniciar nosso estudo sobre consultas em múltiplas tabelas, é
indispensável o conhecimento sobre “apelidar” tabelas.

n  Assim como em colunas, tabelas também pode ter “apelidos”.

n  Observe a consulta do slide anterior reescrita usando “apelidos”, como
o seguinte:

n  select d.ID_DEPARTAMENTO, d.NOME_DEPARTAMENTO, l.CIDADE
 from RH.DEPARTAMENTO d, RH.LOCALIZACAO l
 where d.ID_LOCALIZACAO = l.ID_LOCALIZACAO
 and l.ID_PAIS != 'US'

n  Apelidos de tabela aumentam a legibilidade da consulta. Eles são muito
utilizados para reduzir grandes nomes de tabelas em curtos apelidos.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 104

Sintaxe ANSI

n  A diferença entre a sintaxe de junção tradicional do Oracle e a sintaxe
ANSI/ISO SQL1999 é que na ANSI, o tipo de junção é especificado
explicitamente na cláusula FROM.

n  Usar a sintaxe ANSI é mais clara e é mais recomendada do que a
sintaxe de junção tradicional do Oracle. As junções simples podem ter
as seguintes formas:
q  NATURAL JOIN

n  <nome-da-tabela> NATURAL [INNER] JOIN <nome-da-tabela>

q  JOIN ... USING
n  <nome-da-tabela> [INNER] JOIN <nome-da-tabela> USING (<colunas>)

q  JOIN ... ON
n  <nome-da-tabela> [INNER] JOIN <nome-da-tabela> ON <condição>

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 105

NATURAL JOIN

n  No natural join, a junção é realizada por todas as colunas que possuem
o mesmo nome em ambas as tabelas.

n  Neste tipo de junção não se deve qualificar o nome das colunas com o
nome da tabela ou com o “apelido” da tabela.

n  Sintaxe:
q  <nome-da-tabela> NATURAL [INNER] JOIN <nome-da-tabela>

n  Vamos refazer o exemplo da busca do código e nome dos
departamentos e suas respectivas cidades.
q  select ID_DEPARTAMENTO, NOME_DEPARTAMENTO, CIDADE

 from RH.DEPARTAMENTO natural join RH.LOCALIZACAO

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 106

JOIN ... USING

n  Neste tipo de junção, a junção é realizada pelas colunas indicadas e
que possuem o mesmo nome em ambas as tabelas.

n  A cláusula USING especifica os nomes das colunas que devem ser
utilizadas para realizar a junção das tabelas.

n  Também neste tipo de junção não se deve qualificar o nome das
colunas com o nome da tabela ou com o “apelido” da tabela.

n  Sintaxe:
q  <nome-da-tabela> [INNER] JOIN <nome-da-tabela> USING (<colunas>)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 107

JOIN ... USING

n  Vamos refazer o exemplo da busca do código e nome dos
departamentos e suas respectivas cidades.
q  select ID_DEPARTAMENTO, NOME_DEPARTAMENTO, CIDADE

 from RH.DEPARTAMENTO join RH.LOCALIZACAO
 using (ID_LOCALIZACAO)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 108

JOIN ... ON

n  Quando não se tem nomes de colunas comuns entre tabelas para fazer
uma junção ou deseja-se especificar condições de junções arbitrárias,
este é o tipo de junção a ser utilizado.

n  Neste tipo de junção pode-se e deve-se qualificar o nome das colunas
com o nome da tabela ou com o “apelido” da tabela.

n  Sintaxe:
q  <nome-da-tabela> [INNER] JOIN <nome-da-tabela> ON <condição>

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 109

JOIN ... ON

n  Vamos refazer o exemplo da busca do código e nome dos
departamentos e suas respectivas cidades.
q  select d.ID_DEPARTAMENTO, d.NOME_DEPARTAMENTO, l.CIDADE

 from RH.DEPARTAMENTO d join RH.LOCALIZACAO l
 on (d.ID_LOCALIZACAO = l.ID_LOCALIZACAO)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 110

Junções em múltiplas tabelas

n  Uma junção em múltiplas tabelas é uma junção em mais de duas
tabelas.

n  Na sintaxe ANSI, as junções são realizadas da esquerda para a direita.
A primeira condição de junção pode referenciar colunas somente da
primeira e segunda tabelas; a segunda condição de junção da primeira,
segunda e terceira e assim por diante.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 111

Junções em múltiplas tabelas

n  Vamos fazer o exemplo da busca do primeiro nome do empregado,
nome do seu departamento, nome da cidade do seu departamento.
q  select e.PRIMEIRO_NOME, d.NOME_DEPARTAMENTO, l.CIDADE

 from RH.EMPREGADO e
 JOIN RH.DEPARTAMENTO d
 on (e.ID_DEPARTAMENTO = d.ID_DEPARTAMENTO)
 JOIN RH.LOCALIZACAO l
 on (d.ID_LOCALIZACAO = l.ID_LOCALIZACAO)

n  Perguntas:

q  Será que poderia utilizar NATURAL JOIN ou JOIN ... USING ao invés de
JOIN ... ON?

q  Outra pergunta: Será que poderia misturar NATURAL JOIN, JOIN ... USING,
JOIN ... ON e, até mesmo, junção tradicional em uma mesma consulta?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 112

Junções cartesianas

n  Uma junção cartesiana ocorre quando os dados são selecionados de
duas ou mais tabelas e não há uma condição de junção especificada.

n  Assim, é feita a junção de cada linha da primeira tabela com todas as
linhas da segunda tabela.
q  Se a primeira tabela tem 5 linhas e a segunda tabela tem 10 linhas, será

gerado um resultado de 50 linhas. Se for adicionada uma nova tabela de 10
linhas sem ainda especificar uma condição de junção, o resultado terá 500
linhas.

n  Para se evitar um produto cartesiano, deve existir pelo menos n-1
condições de junções para a junção de n tabelas.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 113

Junções cartesianas

n  Um exemplo seria buscar o nome da região e o nome do país daqueles
países que começam com ‘I’.
q  select r.NOME_REGIAO, p.NOME_PAIS

 from RH.REGIAO r, RH.PAIS p
 where p.NOME_PAIS like 'I%'
 ou
 select r.NOME_REGIAO, p.NOME_PAIS
 from RH.REGIAO r cross join RH.PAIS p
 where p.NOME_PAIS like 'I%'

q  Observe o resultado no próximo slide.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 114

Junções cartesianas

NOME_REGIAO NOME_PAIS
------------------------- --
Europe Israel
Americas Israel
Asia Israel
Middle East and Africa Israel
Europe India
Americas India
Asia India
Middle East and Africa India
Europe Italy
Americas Italy
Asia Italy
Middle East and Africa Italy

q  Observe que não foi citada nenhuma condição de junção e, portanto, cada
uma das regiões será relacionada a todos os países.
n  Isto faz sentido? Por que?

q  Existe um exemplo em que o produto cartesiano deva ser usado?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 115

OUTER JOINS

n  Até agora, nos vimos inner joins, que retornam somente as linhas
correspondentes entre ambas as tabelas, e produtos cartesianos, que
retornam uma combinação de todas as linhas de ambas as tabelas.

n  Em alguns casos, deseja-se ver os dados de uma tabela, mesmo que
não haja uma linha correspondente na tabela de junção.

n  Para o problema acima, existe a junção do tipo outer join. Ele retorna
valores baseados nas condições de inner join, como trás também
linhas não relacionadas de um ou dos dois lados das tabelas.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 116

OUTER JOINS

n  Na sintaxe tradicional do Oracle, o símbolo + envolvido por parênteses,
denota um outer join na consulta.

n  Digite (+) próximo a coluna da tabela onde pode não haver linhas
correspondentes.

n  Um exemplo é buscar a lista de nomes de todos os países e cidades
em que possuem departamentos localizados. Caso o país não tenha
nenhum departamento localizado, deseja-se exibí-lo mesmo assim.
q  select p.NOME_PAIS, l.CIDADE from RH.PAIS p, RH.LOCALIZACAO l

where p.ID_PAIS = l.ID_PAIS (+)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 117

OUTER JOINS

n  O exemplo da página anterior pode ser reescrito das seguintes formas:
q  select p.NOME_PAIS, l.CIDADE

from RH.PAIS p left outer join RH.LOCALIZACAO l
on p.ID_PAIS = l.ID_PAIS

q  select p.NOME_PAIS, l.CIDADE
from RH.PAIS p left outer join RH.LOCALIZACAO l
using (ID_PAIS)

q  select p.NOME_PAIS, l.CIDADE
from RH.PAIS p natural left outer join RH.LOCALIZACAO l

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 118

OUTER JOINS

n  Um exemplo inverso é buscar a lista de todas as cidades que possuem
departamentos e os seus países. Caso a cidade não esteja vinculada a
um país, deseja-se exibí-la mesmo assim.
q  select p.NOME_PAIS, l.CIDADE from RH.PAIS p, RH.LOCALIZACAO l

where p.ID_PAIS (+) = l.ID_PAIS

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 119

OUTER JOINS

n  O exemplo da página anterior pode ser reescrito das seguintes formas:
q  select p.NOME_PAIS, l.CIDADE

from RH.PAIS p right outer join RH.LOCALIZACAO l
on p.ID_PAIS = l.ID_PAIS

q  select p.NOME_PAIS, l.CIDADE
from RH.PAIS p right outer join RH.LOCALIZACAO l
using (ID_PAIS)

q  select p.NOME_PAIS, l.CIDADE
from RH.PAIS p natural right outer join RH.LOCALIZACAO l

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 120

OUTER JOINS

n  Um exemplo que envolva os dois lados, isto é, inverso é buscar a lista
de todas as cidades que possuem departamentos e os todos os países.
Caso a cidade não esteja vinculada a um país ou caso o país não
tenha nenhum departamento localizado, deseja-se exibí-lo mesmo
assim.
q  select p.NOME_PAIS, l.CIDADE from RH.PAIS p, RH.LOCALIZACAO l

where p.ID_PAIS (+) = l.ID_PAIS (+)
n  ERRO. Não funciona. Deve-se utilizar o full outer join.

q  select p.NOME_PAIS, l.CIDADE

 from RH.PAIS p full outer join RH.LOCALIZACAO l
 using (ID_PAIS)

n  Se preferir, pode-se utilizar o NATURAL JOIN ou JOIN ... ON sem problemas.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 121

SELF JOINS

n  Um self-join é uma junção na própria tabela. Certamente um resultado
de um auto-relacionamento.

n  Um exemplo claro é o ID_GERENTE na tabela EMPREGADO que
referencia o ID_EMPREGADO na própria tabela. Portanto, como fazer
a junção, isto é, buscar o nome completo dos gerentes e de seus
respectivos subordinados.
q  select e.PRIMEIRO_NOME || ' ' || e.ULTIMO_NOME as "NOME EMPREGADO",

 g.PRIMEIRO_NOME || ' ' || g.ULTIMO_NOME as "NOME GERENTE"
 from RH.EMPREGADO e INNER JOIN RH.EMPREGADO g
 ON e.ID_GERENTE = g.ID_EMPREGADO
 order by 1, 2

n  Em um self-join pode ser utilizado NATURAL JOIN? E JOIN ... USING?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 06 - Complementar

Apostila Oracle 122

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 123

Esquema HOMEM x MULHER

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 124

Esquema HOMEM x MULHER

n  Tabela HOMEM
 ID_HOMEM NOME_HOMEM ID_MULHER

---------- ------------------------------ ----------

 10 Anderson

 20 Jander 1

 30 Rogério 2

n  Tabela MULHER
 ID_MULHER NOME_MULHER

---------- ------------------------------

 1 Edna

 2 Stefanny

 3 Cássia

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 125

INNER JOINS

n  Selecionar os casamentos:
q  select h.NOME_HOMEM, m.NOME_MULHER
 from HOMEM h, MULHER m
 where h.ID_MULHER = m.ID_MULHER

n  Resultado:
NOME_HOMEM NOME_MULHER

------------------------------ ------------------------------

Jander Edna

Rogério Stefanny

n  Também pode ser feito com NATURAL JOIN, JOIN ... USING e
JOIN ... ON conforme poderá ser visto no próximo slide.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 126

INNER JOINS

n  NATURAL JOIN
q  select h.NOME_HOMEM, m.NOME_MULHER
 from HOMEM h natural join MULHER m

n  JOIN ... USING
q  select h.NOME_HOMEM, m.NOME_MULHER
 from HOMEM h join MULHER m
 USING (ID_MULHER)

n  JOIN ... ON
q  select h.NOME_HOMEM, m.NOME_MULHER

 from HOMEM h join MULHER m
 ON (h.ID_MULHER = m.ID_MULHER)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 127

Produto Cartesiano

n  Simular todos os casamentos possíveis:
q  select h.NOME_HOMEM, m.NOME_MULHER
 from HOMEM h, MULHER m
 ou
q  select h.NOME_HOMEM, m.NOME_MULHER

 from HOMEM h cross join MULHER m

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 128

Produto Cartesiano

n  Resultado:
NOME_HOMEM NOME_MULHER

------------------------------ ------------------------------

Anderson Edna

Anderson Stefanny

Anderson Cássia

Jander Edna

Jander Stefanny

Jander Cássia

Rogério Edna

Rogério Stefanny

Rogério Cássia

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 129

OUTER JOINS

n  Selecionar os casamentos, caso não haja homens casados
também é desejável exibí-los:
q  select h.NOME_HOMEM, m.NOME_MULHER
 from HOMEM h, MULHER m
 where h.ID_MULHER = m.ID_MULHER (+)

n  Resultado:
NOME_HOMEM NOME_MULHER

------------------------------ ------------------------------

Anderson

Jander Edna

Rogério Stefanny

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 130

OUTER JOINS

n  Selecionar os casamentos, caso não haja mulheres casadas
também é desejável exibí-las:
q  select h.NOME_HOMEM, m.NOME_MULHER
 from HOMEM h, MULHER m
 where h.ID_MULHER (+) = m.ID_MULHER

n  Resultado:
NOME_HOMEM NOME_MULHER

------------------------------ ------------------------------

Jander Edna

Rogério Stefanny

 Cássia

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 131

OUTER JOINS

n  Além da símbolo (+), um outer join pode ser feito por NATURAL
OUTER JOIN, OUTER JOIN ... USING e OUTER JOIN ... ON.

n  Casamentos e todos os homens mesmo que não estejam casados.
q  select h.NOME_HOMEM, m.NOME_MULHER
 from HOMEM h natural left outer join MULHER m

n  Casamentos e todas as mulheres mesmo que não estejam casadas.
q  select h.NOME_HOMEM, m.NOME_MULHER
 from HOMEM h natural right outer join MULHER m

n  Como exercício refaça as consultas acima usando OUTER JOIN ...
USING e OUTER JOIN ... ON.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 132

OUTER JOINS

n  E se deseja-se selecionar todos casamentos e caso não hajam
homens ou mulheres casados também é desejável exibí-los:
q  select h.NOME_HOMEM, m.NOME_MULHER

 from HOMEM h natural full outer join MULHER m

n  Resultado:
NOME_HOMEM NOME_MULHER

------------------------------ ------------------------------

Anderson

Jander Edna

Rogério Stefanny

 Cássia

n  Como exercício refaça a consulta acima usando OUTER JOIN ...
USING e OUTER JOIN ... ON. Observe que não é possível com (+).

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 07

Apostila Oracle 133

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 134

Esquema RH (tradução do HR)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 135

Operadores de Conjunto

n  Operadores de conjuntos (set operators) podem ser usados para
selecionar dados de tabelas múltiplas.

n  Eles simplesmente combinam resultados de duas consultas em
uma única consulta. Estas consultas são conhecidas como
consultas compostas (compound queries).

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 136

Operadores de Conjunto

n  São os operadores de conjunto:

Operador Descrição
UNION Retorna todas as l inhas não repetidas

selecionadas por cada consulta.
UNION ALL Retorna todas as linhas, inclusive duplicadas,

selecionadas por cada consulta.
INTERSECT Retorna linhas selecionadas por ambas as

consultas.
MINUS Retorna linha únicas selecionadas pela primeira

consulta, porém que não foram selecionadas na
segunda consulta.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 137

Operadores de Conjunto

n  Para entender melhor vamos tomar como base as seguintes
consultas:

q  Selecionar o último nome dos
empregados que trabalham no
departamento 90.
n  select e.ULTIMO_NOME

 from RH.EMPREGADO e
 where e.ID_DEPARTAMENTO = 90

q  Resultado:
 ULTIMO_NOME

 King
 Kochhar
 De Haan

q  Selecionar o último nome dos
empregados que começam com ‘K’.
n  select e.ULTIMO_NOME

 from RH.EMPREGADO e
 where e.ULTIMO_NOME like 'K%'

q  Resultado:
 ULTIMO_NOME

 King
 Kochhar
 Khoo
 Kaufling
 King
 Kumar

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 138

UNION

n  Une todas as linhas não repetidas de cada consulta.
q  select e.ULTIMO_NOME from RH.EMPREGADO e

 where e.ID_DEPARTAMENTO = 90
 UNION
 select e.ULTIMO_NOME from RH.EMPREGADO e
 where e.ULTIMO_NOME like 'K%‘

q  Resultado:
ULTIMO_NOME

De Haan
Kaufling
Khoo
King
Kochhar
Kumar

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 139

UNION ALL

n  Une todas as linhas, inclusive duplicadas, de cada consulta.
q  select e.ULTIMO_NOME from RH.EMPREGADO e

 where e.ID_DEPARTAMENTO = 90
 UNION ALL
 select e.ULTIMO_NOME from RH.EMPREGADO e
 where e.ULTIMO_NOME like 'K%‘

q  Resultado:
ULTIMO_NOME

King
Kochhar
De Haan
King
Kochhar
Khoo
Kaufling
King
Kumar

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 140

INTERSECT

n  Faz a interseção entre as linhas de cada consulta, isto é, retorna
linhas comuns de ambas as consultas.
q  select e.ULTIMO_NOME from RH.EMPREGADO e

 where e.ID_DEPARTAMENTO = 90
 INTERSECT
 select e.ULTIMO_NOME from RH.EMPREGADO e
 where e.ULTIMO_NOME like 'K%'

q  Resultado:
ULTIMO_NOME

King
Kochhar

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 141

MINUS

n  Realiza a subtração entre as linhas da primeira consulta com as
linhas da segunda consulta, isto é, retorna as linhas da primeira
consulta que não aparecem na segunda consulta.
q  select e.ULTIMO_NOME from RH.EMPREGADO e

 where e.ID_DEPARTAMENTO = 90
 MINUS
 select e.ULTIMO_NOME from RH.EMPREGADO e
 where e.ULTIMO_NOME like 'K%'

q  Resultado:
ULTIMO_NOME

De Haan

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 142

SUBQUERIES

n  Uma subquery é um consulta dentro de uma consulta.

n  Quando você tem várias subqueries, a subquery mais interna é
avaliada primeiramente.

n  Podem ser usadas com todas as instruções DML.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 143

SUBQUERIES

n  Existem vários tipos de subqueries tais como:
q  nested subquery

n  Tradução: subquery aninhada
n  São subqueries utilizadas na cláusula WHERE.

q  correlated subquery
n  Tradução: subquery correlacionada
n  São subqueries que utilizam colunas da consulta "pai". Para cada linha

processada da consulta "pai", a correlated subquery é avaliada novamente.
q  scalar subquery

n  Tradução: subquery escalar
n  São subqueries que podem ser usadas em qualquer lugar onde um nome de

uma coluna ou um expressão podem ser utilizadas.

n  Vamos ver alguns exemplos de subqueries.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 144

SUBQUERIES

n  Buscar o primeiro e o último nome e o salário do empregado com o
maior salário.
q  select e.PRIMEIRO_NOME, e.ULTIMO_NOME, e.SALARIO

 from RH.EMPREGADO e
 where e.SALARIO =
 (select max(SALARIO) from RH.EMPREGADO)

q  Resultado:
PRIMEIRO_NOME ULTIMO_NOME SALARIO
-------------------- ------------------------- ----------
Steven King 24000

q  Como fazer isto sem utilizar subquery?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 145

SUBQUERIES

n  Buscar o primeiro e o último nome dos empregados e o código do
departamento cujo nome do departamento comece com a letra 'A'.
q  select e.PRIMEIRO_NOME, e.ULTIMO_NOME, e.ID_DEPARTAMENTO

 from RH.EMPREGADO e
 where e.ID_DEPARTAMENTO IN
 (select ID_DEPARTAMENTO from RH.DEPARTAMENTO
 where NOME_DEPARTAMENTO like 'A%')

q  Resultado:
PRIMEIRO_NOME ULTIMO_NOME ID_DEP
-------------------- ------------------------- ----------
Jennifer Whalen 10
Shelley Higgins 110
William Gietz 110

q  Como fazer isto sem utilizar subquery?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 146

SUBQUERIES

n  Buscar o código do departamento, o primeiro e o último nome e o
salário do empregado com o maior salário do seu departamento.
q  select e.ID_DEPARTAMENTO,
 e.PRIMEIRO_NOME, e.ULTIMO_NOME, e.SALARIO

 from RH.EMPREGADO e
 where e.SALARIO =
 (select max(ei.SALARIO) from RH.EMPREGADO ei
 where ei.ID_DEPARTAMENTO = e.ID_DEPARTAMENTO)

q  Resultado no próximo slide.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 147

SUBQUERIES

q  Resultado:
 ID_DEP PRIMEIRO_NOME ULTIMO_NOME SALARIO
---------- -------------------- ------------------------- ----------
 90 Steven King 24000
 60 Alexander Hunold 9000
 100 Nancy Greenberg 12000
 30 Den Raphaely 11000
 50 Adam Fripp 8200
 80 John Russell 14000
 10 Jennifer Whalen 4400
 20 Michael Hartstein 13000
 40 Susan Mavris 6500
 70 Hermann Baer 10000
 110 Shelley Higgins 12000

q  Como fazer isto sem utilizar subquery?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 08

Apostila Oracle 148

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 149

Esquema Acadêmico Simples
Modelo ER

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 150

PROFESSOR (cpf, nome, salario, titulacao)

DISCIPLINA (codigo, nome, carga_horaria, cpf_professor)

 DISCIPLINA [cpf_professor] ß PROFESSOR [cpf]

ALUNO (matricula, nome, data_nascimento)

ALUNO_DISCIPLINA (matricula_aluno, codigo_disciplina, pontuacao)

 ALUNO_DISCIPLINA [matricula_aluno] ß ALUNO [matricula]
 ALUNO_DISCIPLINA [codigo_disciplina] ßDISCIPLINA [codigo]

Esquema Acadêmico Simples
Modelo Relacional (abstraindo domínios)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 151

Instruções DML

n  DML (Data Manipulation Language) é um subconjunto do SQL que
é empregado para manipular dados.

q  Nos slides seguintes, abordaremos cada instrução acima.

Instrução Propósito
INSERT Adicionar linhas à uma tabela.

UPDATE Modificar os valores armazenados em uma tabela.

MERGE Atualizar ou inserir linhas de uma tabela em outra.

DELETE Remover linhas de uma tabela.

SELECT FOR UPDATE Bloqueia outras sessões de realizar DML nas linhas
selecionadas.

LOCK TABLE Bloqueia outras sessões de realizar DML em uma tabela.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 152

Insert

n  A instrução INSERT é usada para adicionar linha em uma ou mais
tabelas.
q  As linhas podem ser adicionada com valores especificados ou podem

ser criadas por dados existentes utilizando uma subquery.

n  Sintaxes:
q  insert into <TABELA> (<lista-de-colunas>) values (<lista-de-valores>)

q  insert into <TABELA> values (<lista-de-valores>)
n  A lista de colunas é opcional, porém só funciona se na lista-de-valores forem

inseridas todas as colunas da tabela na ordem de sua criação.

q  insert into <TABELA> [<lista-de-colunas>] SELECT...
n  Também pode ser inserido em uma tabela o resultado de uma consulta.

Muito utilizada em migração de dados.
n  Lista de colunas é opcional.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 153

Insert

n  Exemplos:
q  insert into PROFESSOR (CPF,NOME,SALARIO,TITULACAO)

 values (11111111111, 'RICARDO TERRA', 1.99, 'ESPECIALISTA');

q  insert into PROFESSOR

 values (11111111111, 'RICARDO TERRA', 1.99, 'ESPECIALISTA');

q  insert into PROFESSOR (CPF,NOME,SALARIO,TITULACAO)

 select cpf_cliente, nome_cliente, 1000.00, 'GRADUADO' from CLIENTE

q  insert into PROFESSOR

 select cpf_cliente, nome_cliente, 1000.00, 'GRADUADO' from CLIENTE

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 154

Update

n  A instrução UPDATE é usada para modificar linhas existentes em
uma tabela.

n  Sintaxe:
q  update <TABELA>

 set <coluna1> = <valor1>, <coluna2> = <valor2>, ...
 [where <condições>]

n  Exemplos:
q  update PROFESSOR set SALARIO = 1.1*SALARIO

q  update PROFESSOR set SALARIO = 1.1*SALARIO
 where upper(NOME) like ' %TERRA%'

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 155

Delete

n  A instrução DELETE é usada para remover linhas de uma tabela.

n  Sintaxe:
q  delete [from] <TABELA>

 [where <condições>]

n  Exemplos:
q  delete from PROFESSOR

n  exclui todos os professores

q  delete from PROFESSOR
 where SALARIO > 1.99
n  exclui os professores cujo salário seja superior a 1.99

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 156

Truncate

n  Quando se deseja apagar todas as linhas de uma tabela, deve ser
considerado o uso da instrução TRUNCATE.

n  Assim como na instrução DELETE sem a cláusula WHERE,
TRUNCATE irá remover todas as linhas e uma tabela.

n  Entretanto, TRUNCATE não é uma DML, mas sim, uma DDL e, por
isto, possui características diferentes de uma instrução DELETE
que é uma instrução DML.

n  Um usuário só poderá realizar o TRUNCATE de uma tabela de um
outro esquema, se tiver permissão de DROP TABLE naquela
tabela.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 157

Truncate

n  Para sua execução não poderá haver FKs ativas.

n  Sintaxe:
q  truncate table ALUNO;

n  Exemplo:
q  alter table ALUNO_DISCIPLINA disable constraint fk_aluno;

 truncate table ALUNO;

n  Depois não esqueça de reativar as FKs:
q  alter table ALUNO_DISCIPLINA enable constraint fk_aluno;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 158

Truncate

n  Algumas diferenças do TRUNCATE para o DELETE:
q  O TRUNCATE é mais rápido tanto em largas ou pequenas tabelas. O

DELETE gerará informação de recuperação (como um desfazer), ao
contrário do TRUNCATE que não gera este tipo de informação.

q  Não ativa triggers.

q  Com o TRUNCATE, o armazenamento da tabela e todos os índices são
zerados.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 159

Truncate

n  Mesmo sendo uma instrução DDL, realizar o TRUNCATE de uma
tabela é diferente de removê-la (DROP TABLE) e criá-la (CREATE
TABLE) novamente.

n  O TRUNCATE não faz:
q  Invalidar objetos dependentes.
q  Exclui índices, triggers ou restrições de integridade referencial.
q  Requer que privilégios sejam garantidos novamente.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 160

Transação

n  Uma transação representa uma unidade atômica de trabalho.
q  Todas as operações são aplicadas ou nenhuma delas.

n  Uma transferência monetária é um exemplo tradicional de
transação. Uma conta deve ser debitada e a outra creditada. Caso
uma das operações apresente problema, nada é feito, senão todas
as operações são efetuadas.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 161

Transação

n  Por padrão, uma transação é aberta logo que a primeira instrução
seja efetuada. Ao criar um script é altamente recomendável inserir
todas as operações em um bloco BEGIN e END.
q  O SQL*Plus possui a configuração AUTOCOMMIT ativada, para

desativá-la, basta:
n  SET AUTOCOMMIT OFF

n  Um bloco inicia com BEGIN e o termina com END.
q  A instrução COMMIT confirma todas as alterações.
q  A instrução ROLLBACK desfaz todas as alterações.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 162

Transação

n  Exemplo:
BEGIN
 update CONTA set SALDO - 50 where NUMERO = 100;

 update CONTA set SALDO + 50 where NUMERO = 200;

 COMMIT;

 EXCEPTION WHEN OTHERS THEN ROLLBACK;
END;

q  Caso as atualizações não gerem problemas, todas as operações serão
confirmadas pelo COMMIT. Porém, caso haja qualquer problema,
nenhuma alteração será realizada.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 163

Selecionando linhas FOR UPDATE

n  A instrução SELECT FOR UPDATE é utilizada para bloquear linhas
específicas, impedindo que outras sessões alterem ou excluam
estas linhas.

n  Quando uma linha está bloqueada, outras sessões somente podem
selecionar estas linhas, mas não podem alterar nem tampouco
bloquear estas linhas.

n  A sintaxe é similar a de um SELECT, porém com a inserção da
expressão FOR UPDATE no final.

n  O bloqueio permanece, independente de qualquer coisa, até que a
transação encerre com um COMMIT ou com um ROLLBACK.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 164

Selecionando linhas FOR UPDATE

n  Exemplo:
declare l_professor PROFESSOR%rowtype;
BEGIN
 select * into linha_professor from PROFESSOR
 where TITULACAO = 'ESPECIALISTA' FOR UPDATE;

 --Várias outras operações

 COMMIT;

 EXCEPTION WHEN OTHERS THEN ROLLBACK;
END;

q  Nenhuma modificação ou exclusão nos professores especialistas pode
ser feita por outra sessão até que haja um COMMIT ou ROLLBACK.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 165

Bloqueando uma tabela

n  A instrução LOCK é usada para bloquear toda uma tabela,
impedindo outras sessões de executar a maioria ou todas as DML
na tabela bloqueada.

n  Sintaxe:
q  LOCK TABLE professor IN EXCLUSIVE MODE

n  O EXCLUSIVE MODE impede qualquer outra sessão de adquirir qualquer
compartilhamento ou bloqueio nesta tabela.

n  Além do EXCLUSIVE MODE, existem diversos modos de bloquear uma
tabela.

n  Deadlocks
q  Ocorre quando duas transações aguardam um desbloqueio e cada uma

delas está esperando o desbloqueio da outra. Oracle detecta?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 09

Apostila Oracle 166

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 167

Esquema Acadêmico Simples
Modelo ER

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 168

PROFESSOR (cpf, nome, salario, titulacao)
 dom(cpf) = numérico(11) NN
 dom(nome) = alfabético(60) NN
 dom(salario) = numérico(9,2) NN
 dom(titulacao) = alfabético(40) NN

ALUNO (matricula, nome, data_nascimento)
 dom(matricula) = numérico(6) NN
 dom(nome) = alfabético(60) NN
 dom(data_nascimento) = data NN

Esquema Acadêmico Simples
Modelo Relacional

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 169

DISCIPLINA (codigo, nome, carga_horaria, cpf_professor)
 dom(codigo) = numérico(3) NN
 dom(nome) = alfanumérico(40) NN
 dom(carga_horaria) = numérico(3) NN
 dom(cpf_professor) = numérico(11) NN
 DISCIPLINA [cpf_professor] ß PROFESSOR [cpf]

ALUNO_DISCIPLINA (matricula_aluno, codigo_disciplina, pontuacao)
 dom(matricula_aluno) = numérico(6) NN
 dom(codigo_disciplina) = numérico(3) NN
 dom(pontuacao) = numérico(3)
 ALUNO_DISCIPLINA [matricula_aluno] ß ALUNO [matricula]
 ALUNO_DISCIPLINA [codigo_disciplina] ßDISCIPLINA [codigo]

Esquema Acadêmico Simples
Modelo Relacional

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 170

Tipos de dados

n  Os tipos de dados existentes na linguagem SQL variam de acordo
com a versão e o fabricante. O conjunto de tipos de dados evoluem
junto com a evolução da informática. A primeira versão, surgida por
volta de 1970, não possuia tipos de dados para armazenamento de
informações multimídia como som, imagem, vídeo; tão comuns nos
dias de hoje. A maioria dos SGBDs incorporaram esses novos tipos
de dados às suas versões da linguagem SQL.

n  Os principais tipos de dados do Oracle que iremos utilizar estão
citados no próximo slide.
q  A explicação detalhada destes tipos pode ser encontrada na Aula 04.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 171

Tipos de dados

n  CHAR(<size>)
q  É uma string alfanumérica de tamanho fixo, que possui um tamanho

máximo em bytes (2000).

n  VARCHAR2(<size>)
q  É uma string alfanumérica de tamanho variável, que possui um

tamanho máximo em bytes (4000).

n  NUMBER(<p>,<s>)
q  O tipo NUMBER armazena números com uma precisão de p dígitos

tendo uma escala de s dígitos reservados para as casas decimais.

n  DATE
q  É o tipo utilizado para armazenar informação de data e hora.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 172

Criando tabelas

n  Você pode pensar em uma tabela como uma planilha com linhas e
colunas. Esta é a estrutura que armazena dados em uma base de
dados relacional.

n  A tabela é criada com um nome para identificá-la e com colunas
bem definidas com nomes e propriedades válidas, tais como tipo de
dado e tamanho.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 173

Criando tabelas

n  A instrução CREATE TABLE é uma instrução com várias opções.
q  Exemplo da sintaxe mais simples de criação de tabela:

create table ALUNO (
 MATRICULA number(6),
 NOME varchar2(60),
 DATA_NASCIMENTO date

)

n  Você deve especificar o nome da tabela após o create table. Como
não informou o usuário da tabela, o Oracle entende como sendo o seu.

n  As definições de colunas estão delimitadas por um parênteses. A
tabela criada acima possui três colunas, cada qual com seu nome, tipo
de dado e tamanho.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 174

Criando tabelas

n  Algumas recomendações e regras para nomenclatura de nomes de
tabelas e colunas:
q  Tente fazer nomes de tabelas e colunas o mais descritivo possível.

q  Nomes de tabelas e colunas são identificadores e podem:
n  ter no máximo 30 caracteres;
n  deve começar com letra e pode conter números;
n  também aceitam os caracteres $ (cifrão), _ (traço inferior) e # (sustenido).

q  Os nomes não são sensíveis a caixa, isto é, a tabela ALUNO pode ser
referenciada como Aluno ou aluno ou AlUnO.
n  O Oracle converte tudo para maiúscula e grava no dicionário de dados.
n  Porém, se você cria a tabela ou coluna com o nome em aspas duplas ("), o Oracle

a trata como sensível a caixa.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 175

Criando tabelas

n  Exemplo:
q  create table Abc (

 COL1 number
);

 select * from ABC;

q  create table "Abc" (
 COL1 number
);

 select * from ABC; --Não funciona

 select * from Abc; --Não funciona

 select * from "Abc";

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 176

Criando tabelas: valor padrão

n  Na criação ou alteração de uma tabela, pode-se especificar valores
padrões para colunas.

n  O valor padrão especificado será usado quando você não
especificar o valor para aquela coluna no momento de inserção de
um registro.

n  O valor padrão especificado deve seguir o tipo de dado e o
tamanho da coluna em questão.

n  Se o valor padrão não é explicitado, o valor padrão é implicitamente
NULL.

n  Geralmente constantes ou: SYSDATE, USER, USERENV e UID.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 177

Criando tabelas: valor padrão

n  Exemplo:
 create table ALUNO (

 MATRICULA number(6),
 NOME varchar2(60) DEFAULT 'ANÔNIMO',
 DATA_NASCIMENTO date DEFAULT SYSDATE

);

 insert into ALUNO (MATRICULA) values (1);

 select * from ALUNO;

 MATRICULA NOME DATA_NASC
 ---------- ------------------------------ ---------
 1 ANÔNIMO 25-APR-08

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 178

Criando tabelas: anulabilidade

n  Uma coluna pode ser obrigatória ou opcional.

n  Se a coluna é obrigatória deve ser declarada como NOT NULL e,
caso seja opcional, deve ser declarada como NULL. Se não for
declarado, NULL será admitido.

n  Exemplo:
 create table ALUNO (

 MATRICULA number(6) NOT NULL,
 NOME varchar2(60) NOT NULL,
 DATA_NASCIMENTO date NULL

);

n  Neste caso a matrícula e o nome são obrigatórios, porém a data de
nascimento é opcional.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 179

Criando tabelas: chave primária

n  Uma tabela sempre possui uma chave primária.

n  Uma tabela só possui uma chave primária (pode ser mais de uma
coluna) que é única e nunca nula.

n  Existem várias sintaxes para criação de uma chave primária, porém
vamos aprender a criá-la:
q  junto com a instrução create table;
q  utilizando a instrução alter table.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 180

Criando tabelas: chave primária

n  Exemplo da criação de uma chave primária junto ao create table:
 create table ALUNO (

 MATRICULA number(6) NOT NULL,
 NOME varchar2(60) NOT NULL,
 DATA_NASCIMENTO date NULL,
 CONSTRAINT pk_aluno PRIMARY KEY (MATRICULA)

);

n  Caso seja mais de uma coluna, basta separá-las por vírgula:
q  CONSTRAINT pk_tabela PRIMARY KEY (COLA, COLB, COLC)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 181

Criando tabelas: chave primária

n  Exemplo da criação de uma chave primária utilizando alter table:
 create table ALUNO (

 MATRICULA number(6) NOT NULL,
 NOME varchar2(60) NOT NULL,
 DATA_NASCIMENTO date NULL

);

alter table ALUNO add

 CONSTRAINT pk_aluno PRIMARY KEY (MATRICULA);

q  Isto é, você cria a tabela sem chave primária e depois a altera inserido a
restrição de chave primária.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 182

Criando tabelas: comentários

n  O propósito da tabela ou da coluna pode ser documentado na base
de dados usando a instrução COMMENT.

n  Exemplos:
COMMENT ON TABLE ALUNO IS

 'Tabela de Armazenamento de Alunos';

COMMENT ON COLUMN ALUNO.MATRICULA IS
 'Matrícula Única do Aluno';

COMMENT ON COLUMN ALUNO.NOME IS
 'Nome Completo do Aluno';

COMMENT ON COLUMN ALUNO.DATA_NASCIMENTO IS
 'Data de Nascimento do Aluno';

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 183

Criando tabelas: comentários

n  Para ver os comentários de uma tabela:
q  select TABLE_NAME, COMMENTS

 from USER_TAB_COMMENTS
 where TABLE_NAME = 'ALUNO';

TABLE_NAME COMMENTS
------------ ---------------------------------
ALUNO Tabela de Armazenamento de Alunos

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 184

Criando tabelas: comentários

n  Para ver os comentários das colunas de uma tabela:
q  select TABLE_NAME, COLUMN_NAME, COMMENTS

 from USER_COL_COMMENTS
 where TABLE_NAME = 'ALUNO';

TABLE_NAME COLUMN_NAME COMMENTS
---------------- ------------------- ---------------------------
ALUNO MATRICULA Matrícula Única do Aluno
ALUNO NOME Nome Completo do Aluno
ALUNO DATA_NASCIMENTO Data de Nascimento do Aluno

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 185

Criando tabelas: a partir de outra tabela

n  Você pode criar uma tabela utilizando uma consulta em uma ou
mais tabelas ou visões existentes.

n  O tipo de dado e o tamanho de cada coluna será determinado pelo
resultado da consulta.

n  Além do mais, os dados já virão populados na nova tabela.

n  Sintaxe:
q  CREATE TABLE <nome-da-tabela> AS SELECT <consulta>

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 186

Criando tabelas: a partir de outra tabela

n  Exemplo:
q  CREATE TABLE RH.REGIAO AS

 select REGION_ID as "ID_REGIAO", REGION_NAME as
 "NOME_REGIAO" from HR.REGIONS

n  Quando você faz este tipo de criação, somente as restrições de
anulabilidade (not null) são copiadas para a nova tabela, isto é,
outras restrições e definições de valores padrões não são copiados.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 187

Destruindo tabelas

n  Destruir uma tabela é simples, bastando utilizar a instrução DROP
TABLE.

n  Sintaxe:
q  DROP TABLE <tabela> [CASCADE CONSTRAINTS]

n  Quando você destroi uma tabela, os dados e as definições dela são
removidas. Os índices, restrições, gatilhos (triggers) e privilégios
também são destruídos.

n  Uma vez destruída, a ação não pode ser desfeita.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 188

Destruindo tabelas

n  Caso existam restrições de integridade referencial de outras tabelas
que referenciam a uma chave primária ou única desta tabela, você
deverá especificar o CASCADE CONSTRAINTS.

n  Em outras palavras, a tabela PROFESSOR não pode ser removida,
pois a tabela de DISCIPLINA referencia à chave primária
(CPF_PROFESSOR) desta tabela.

SQL> drop table PROFESSOR;
drop table PROFESSOR
 *
ERROR at line 1:
ORA-02449: unique/primary keys in table referenced by foreign keys

SQL> drop table PROFESSOR cascade constraints;
Table dropped.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 10

Apostila Oracle 189

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 190

Gerenciando restrições

n  Restrições são criadas em um banco de dados para garantir uma
regra de negócio no banco de dados e para especificar
relacionamentos entre várias tabelas.

n  Regras de negócio também podem ser garantidas pela utilização de
gatilhos (triggers) e pelo código da aplicação.

n  Restrições de integridade previnem que dados inconsistentes
entrem no banco de dados.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 191

Gerenciando restrições

n  Oracle suporta cinco tipos de restrições de integridade:

NOT NULL Previne valores nulos em colunas. Por padrão, o Oracle
permite valores NULL em qualquer coluna.

PRIMARY KEY Identifica unicamente cada linha de uma tabela e previne
valores nulos. Uma tabela pode somente possuir uma
única chave primária.

FOREIGN KEY Estabelece um relacionamento pai-filho entre tabelas por
utilização de colunas comuns. Uma chave estrangeira
em uma tabela referencia a uma chave primária ou única
de uma outra tabela.

UNIQUE Garante a unicidade de valores para as colunas
especificadas.

CHECK Verifica se a condição especificada é satisfeita.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 192

Criando restrições

n  Existem várias sintaxes para criação de uma chave estrangeira,
porém vamos aprender a criá-la:
q  junto com a instrução create table;
q  utilizando a instrução alter table.

n  Se você não fornece um nome para as restrições, Oracle atribui um
nome único gerado automaticamente que começa com "SYS_".
q  O nome é fornecido logo em seguida a palavra-chave CONSTRAINT

conforme será visto na criação de restrições a frente.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 193

Criando restrições: chave estrangeira

n  Uma restrição de chave estrangeira (foreign key) garante que uma
ou mais colunas em uma tabela tenham valores não-nulos
correspondentes em alguma chave primária ou única no banco de
dados.

n  Isto é, uma chave estrangeira é uma ou mais colunas em uma
tabela (tabela filha) que referenciam a uma chave primária ou uma
chave única em uma outra tabela (tabela pai).

n  Os tipos da coluna na tabela pai e na tabela filho devem coincidir,
isto é, serem idênticos.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 194

Criando restrições: chave estrangeira

n  Exemplo da criação de uma chave estrangeira junto ao create
table:

create table DISCIPLINA(
 CODIGO number(3) not null PRIMARY KEY,
 NOME varchar2(40) not null,
 CARGA_HORARIA number(3) not null,
 CPF_PROFESSOR number(11) not null,
 CONSTRAINT fk_professor
 FOREIGN KEY (CPF_PROFESSOR)
 REFERENCES PROFESSOR(CPF)

);

n  Caso seja mais de uma coluna, basta separá-las por vírgula:
q  … FOREIGN KEY (COLA,COLB) REFERENCES TABLE(COLA,COLB)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 195

Criando restrições: chave estrangeira

n  Exemplo da criação de uma chave estrangeira utilizando alter
table:

create table DISCIPLINA(
 CODIGO number(3) not null PRIMARY KEY,
 NOME varchar2(40) not null,
 CARGA_HORARIA number(3) not null,
 CPF_PROFESSOR number(11) not null

);

ALTER TABLE DISCIPLINA ADD CONSTRAINT fk_professor
 FOREIGN KEY (CPF_PROFESSOR)
 REFERENCES PROFESSOR(CPF);

q  Isto é, você cria a tabela sem chave estrangeira e depois a altera
inserido a restrição de chave estrangeira.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 196

Criando restrições: chave estrangeira

n  Independente da sintaxe de criação, existe uma cláusula opcional a
ser inserida na sintaxe da restrição:
q  [ON DELETE {CASCADE | SET NULL}]

n  Esta cláusula especifica a ação que deve ser tormada quando um
registro na tabela pai é excluído e ainda existem registros filhos que
o referenciam.
q  Você pode deletar todos os registros filhos (CASCADE) ou alterar a

coluna de chave estrangeira para NULL (SET NULL).
q  Se a cláusula é omitida, o Oracle não permite a exclusão de um registro

se existirem registros filhos. Você deve excluir os registros filhos
primeiramente antes de excluir o registro pai. É o mais utilizado.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 197

Criando restrições: chave estrangeira

n  Exemplo 1:
alter table CIDADE add constraint FK_ESTADO

 foreign key (ID_ESTADO) references ESTADO (ID)
 ON DELETE CASCADE;

n  Exemplo 2:

alter table CIDADE add constraint FK_ESTADO
 foreign key (ID_ESTADO) references ESTADO (ID)
 ON DELETE SET NULL;

n  O que acontecerá no primeiro exemplo? E no segundo?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 198

Criando restrições: chave única

n  Uma restrição de chave única protege uma ou mais colunas em
uma tabela, garantindo que registros tenham valores repetidos.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 199

Criando restrições: chave única

n  Exemplo da criação de uma chave única junto ao create table:
create table DISCIPLINA(

 CODIGO number(3) not null PRIMARY KEY,
 NOME varchar2(40) not null,
 CARGA_HORARIA number(3) not null,
 CPF_PROFESSOR number(11) not null,
 CONSTRAINT fk_professor
 FOREIGN KEY (CPF_PROFESSOR)
 REFERENCES PROFESSOR(CPF),
 CONSTRAINT un_nome_disciplina UNIQUE (nome)

);

n  Caso seja mais de uma coluna, basta separá-las por vírgula.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 200

Criando restrições: chave única

n  Exemplo da criação de uma chave estrangeira utilizando alter
table:

create table DISCIPLINA(
 CODIGO number(3) not null PRIMARY KEY,
 NOME varchar2(40) not null,
 CARGA_HORARIA number(3) not null,
 CPF_PROFESSOR number(11) not null

);

ALTER TABLE DISCIPLINA ADD CONSTRAINT un_nome_disciplina
 UNIQUE (NOME);

q  Isto é, você cria a tabela sem chave única e depois a altera inserido a
restrição de chave única.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 201

Criando restrições: verificação

n  Uma restrição de verificação (check) especifica uma condição
booleana que deve ser sempre satisfeita.

n  Pode referir aos valores das colunas, porém não pode realizar
consultas, nem utilizar funções do ambiente (tal como SYSDATE,
USER, etc) e pseudo-colunas (tal como ROWNUM, etc).

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 202

Criando restrições: verificação

n  Exemplo da criação de uma restrição de verificação junto ao create
table:

create table DISCIPLINA(
 CODIGO number(3) not null PRIMARY KEY,
 NOME varchar2(40) not null,
 CARGA_HORARIA number(3) not null,
 CPF_PROFESSOR number(11) not null,
 CONSTRAINT fk_professor
 FOREIGN KEY (CPF_PROFESSOR)
 REFERENCES PROFESSOR(CPF),
 CONSTRAINT un_nome_disciplina UNIQUE (nome),
 CONSTRAINT ck_carga_horaria
 CHECK (carga_horaria between 80 and 160)

);

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 203

Criando restrições: verificação

n  Exemplo da criação de uma restrição de verificação utilizando alter
table:

create table DISCIPLINA(
 CODIGO number(3) not null PRIMARY KEY,
 NOME varchar2(40) not null,
 CARGA_HORARIA number(3) not null,
 CPF_PROFESSOR number(11) not null

);

ALTER TABLE DISCIPLINA ADD CONSTRAINT ck_carga_horaria
 CHECK (carga_horaria between 80 and 160)

q  Isto é, você cria a tabela sem restrição de verificação e depois a altera
inserido a restrição de verificação.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 204

Adiando verificação de restrições

n  Por padrão, o Oracle verifica se um dado conforma com a restrição
logo que a instrução é executada.

n  Oracle permite alterar este comportamento se a restrição é criada
com a cláusula DEFERRABLE que modifica o comportamento da
verificação de restrições.
q  INITIALLY IMMEDIATE indica que um dado é verificado logo após a

instrução ser executada. É o padrão.
q  INITIALLY DEFERRED indica que a restrição deve ser verificada no

final da transação, ie, no momento do commit.

n  Aplica-se às restrições de chave primária ou de chave estrangeira.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 205

Adiando verificação de restrições

n  Observe o seguinte DER:

q  Um departamento só existe se possuir um empregado que o gerencie.
q  Um empregado só existe se possuir um departamento que o lote.

n  Enfim, para incluir um empregado deve-se vinculá-lo a um
departamento e para incluir um departamento deve-se indicar quem
o gerencia. E se o banco de dados estiver vazio, como faremos
para populá-lo?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 206

Adiando verificação de restrições

n  Observe a seguinte DML:

create table DEPARTAMENTO(
 CODIGO number(3) not null PRIMARY KEY,
 NOME varchar2(60) not null,
 CPF_GERENTE number(11) not null
);
 create table EMPREGADO(
 CPF number(11) not null PRIMARY KEY,
 NOME varchar2(60) not null,
 CODIGO_DEPTO number(3) not null
);

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 207

Adiando verificação de restrições

n  Observe a seguinte DML:

alter table DEPARTAMENTO add constraint fk_depto_gerente
 FOREIGN KEY (CPF_GERENTE) references EMPREGADO(CPF)
 INITIALLY DEFERRED DEFERRABLE;

alter table EMPREGADO add constraint fk_emp_depto

 FOREIGN KEY (CODIGO_DEPTO) references DEPARTAMENTO(CODIGO)
 INITIALLY DEFERRED DEFERRABLE;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 208

Adiando verificação de restrições

n  Observe o bloco transacional abaixo:

BEGIN

insert into DEPARTAMENTO (CODIGO, NOME, CPF_GERENTE)
 values (1,'Departamento Qualquer',12345678901);

insert into EMPREGADO (CPF, NOME, CODIGO_DEPTO)

 values (12345678901,'Gerente do Departamento',1);

COMMIT;

END;

n  Funcionará? Funcionaria sem a util ização da cláusula
DEFERRABLE? Por quê?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 209

Ativando e desativando restrições

n  Quando se cria uma restrição, ela está automaticamente ativa (a
não ser que você a crie utilizando a cláusula DISABLE).

n  Você pode desativar uma restrição utilizando a cláusula DISABLE
na instrução ALTER TABLE.

n  Você pode desativar qualquer restrição especificando a cláusula
DISABLE seguida do nome da restrição.
q  Pode-se também especificar a palavra-chave UNIQUE e o nome da(s)

coluna(s) ou também somente especificando a palavra-chave PRIMARY
KEY.

n  Para desativar todas as chaves estrangeiras vinculadas a uma
chave primária ou única, basta especificar CASCADE.
q  Mas CASCADE não funciona para a ativação.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 210

Ativando e desativando restrições

n  Exemplos de desativação:
q  ALTER TABLE professor DISABLE CONSTRAINT ck_salario;

n  Desabilita a verificação de salário.

q  ALTER TABLE disciplina DISABLE CONSTRAINT un_nome_disciplina;
n  Desabilita a restrição de unicidade do nome da disciplina.

q  ALTER TABLE disciplina DISABLE UNIQUE (NOME);
n  Idem anterior.

q  ALTER TABLE disciplina DISABLE PRIMARY KEY CASCADE;
n  Desabilita a verificação da chave primária da tabela DISCIPLINA e de todas

as chaves estrangeiras vinculadas.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 211

Ativando e desativando restrições

n  Exemplos de ativação:
q  ALTER TABLE professor ENABLE CONSTRAINT ck_salario;

n  Ativa a verificação de salário.

q  ALTER TABLE disciplina ENABLE CONSTRAINT un_nome_disciplina;
n  Ativa a restrição de unicidade do nome da disciplina.

q  ALTER TABLE disciplina ENABLE UNIQUE (NOME);
n  Idem anterior.

q  ALTER TABLE disciplina ENABLE PRIMARY KEY;
n  Ativa a verificação da chave primária da tabela DISCIPLINA, mas não das

chaves estrangeiras vinculadas. O CASCADE não funciona na ativação.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 212

Destruindo restrições

n  Restrições são destruídas usando a instrução ALTER TABLE.
Qualquer restrição pode ser destruída pela espeficação do seu
nome.
q  ALTER TABLE disciplina DROP CONSTRAINT ck_carga_horaria;

n  Restrições de chave única podem ser destruídas pela especificação
do nome da coluna única e pode também destruir todas as chaves
estrangeiras vinculadas pela utilização da cláusula CASCADE.
q  ALTER TABLE disciplina DROP UNIQUE (NOME) CASCADE;

n  O mesmo pode ser feito com a chave primária:
q  ALTER TABLE disciplina DROP PRIMARY KEY CASCADE;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 11

Apostila Oracle 213

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 214

Esquema Venda
Modelo ER

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 215

CLIENTE (cpf-ou-cnpj , titulo-eleitor , nome , cidade , estado , pais)
 dom(cpf-ou-cnpj) = numérico(14) NN
 dom(titulo-eleitor) = numérico(8) NN, com título de eleitor único
 dom(nome) = alfabético(60) NN
 dom(cidade) = alfabético(60) NN
 dom(estado) = alfabético(2) NN, deve ser “MG”, “RJ” ou “SP”
 dom(pais) = albabético(60)

PRODUTO (id-produto , descricao-produto , valor)
 dom(id-produto) = numérico(2) NN
 dom(descricao-produto) = alfabético(30) NN, com descrição única
 dom(valor) = numérico(4,2) NN

Esquema Venda
Modelo Relacional

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 216

COMPRA (cpf-ou-cnpj , id-produto , data , qtde)
 dom(cpf-ou-cnpj) = numérico(14) NN
 dom(id-produto) = numérico(2) NN
 dom(data) = data NN
 dom(qtde) = numérico(1) NN, com o valor “1” como padrão
 COMPRA [cpf-ou-cnpj] ßr CLIENTE [cpf-ou-cnpj]
 COMPRA [id-produto] ßr PRODUTO [id-produto]

Esquema Venda
Modelo Relacional

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 217

Renomeando tabelas

n  A instrução RENAME é usada para renomear uma tabela e outros
objetos, como visões, sinônimos ou sequências.

n  Sintaxe:
q  RENAME nome-antigo TO novo-nome;

n  Quando você renomeia uma tabela, o Oracle automaticamente
transfere as restrições de integridade, índices e permissões da
tabela antiga para a nova tabela.

n  Exemplo:
q  RENAME funcionario TO empregado;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 218

Modificando Tabelas

n  Após a criação de uma tabela, existem vários motivos pelos quais
você tenha que modificá-la.

n  Você pode modificar uma tabela para alterar a definição de alguma
coluna ou seu valor padrão, adicionar uma nova coluna, remover
uma coluna existente ou, até mesmo, renomear colunas.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 219

Renomeando colunas

n  A instrução ALTER TABLE é utilizada para renomear colunas.

n  Sintaxe:
q  ALTER TABLE nome-tabela

 RENAME COLUMN nome-antigo TO novo-nome;

n  Exemplo:
q  ALTER TABLE empregado

 RENAME COLUMN pnome TO primeiro_nome;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 220

Adicionando colunas

n  Às vezes pode ser necessária adicionar colunas a uma tabela já
existente.

n  Sintaxe:
q  ALTER TABLE nome-tabela

 ADD definição-da-coluna;

n  Quando uma nova coluna é adicionada, ela sempre é inserida como
a última coluna da tabela.

n  Exemplo:
q  ALTER TABLE empregado

 ADD salario number(8,2) null;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 221

Adicionando colunas

n  Pode-se adicionar várias colunas ao mesmo tempo, bastando
apenas demarcar as colunas por parênteses e separar cada uma
das colunas por vírgula.

n  Exemplo:
q  ALTER TABLE empregado

 ADD (salario number(8,2) null , bonus number(6,2) null)

n  Para as linhas existentes, o valor padrão da coluna será NULL.
q  Isto pode resultar em algum problema?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 222

Adicionando colunas

n  Se a coluna for NOT NULL, como pode-se preencher as linhas existentes
com valor NULL?
q  Uma solução é adicionar a coluna com um valor padrão (o salário

mínimo, por exemplo) que será preenchido para todas as linhas
existentes, atualizar o salário dos empregados que não ganham o
salário mínimo e.
n  Ex.:

q  ALTER TABLE empregado
 ADD salario number(8,2) DEFAULT 415.00 not null;

 ... (série de atualizações) ...

 ALTER TABLE empregado
 MODIFY salario DEFAULT NULL;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 223

Adicionando colunas

q  Uma outra solução seria adicioná-la como NULL, atualizar o salário de
todos os empregados (colocando valores não-nulos) e então modificar a
coluna para NOT NULL.
n  Ex.:

q  ALTER TABLE empregado
 ADD salario number(8,2) null;

 ... (série de atualizações) ...

 ALTER TABLE empregado
 MODIFY salario not null;

q  Quais das soluções apresentadas você considera mais "adequada"?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 224

Modificando colunas

n  Às vezes pode ser necessária modificar colunas de uma tabela já
existente.

n  Sintaxe:
q  ALTER TABLE nome-tabela

 MODIFY nome-da-coluna novos-atributos;

n  Se você omitir qualquer parte da definição da coluna (tipo de dado,
valor padrão ou anulabilidade) estas partes não serão modificadas.

n  Assim como na adição de colunas, você pode modificar várias
colunas na mesma instrução usando a delimitação por parênteses e
separação por vírgula.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 225

Modificando colunas

n  Exemplo:
q  Alterando o tipo de dado:

n  ALTER TABLE empregado MODIFY salario number(10,2);

q  Alterando a anulabilidade:
n  ALTER TABLE empregado MODIFY salario null;

q  Alterando o valor padrão:
n  ALTER TABLE empregado MODIFY salario default 430.00;

q  Alterando o tipo de dado, a anulabilidade e o valor padrão:
n  ALTER TABLE empregado

 MODIFY salario number(10,2) default 430.00 null;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 226

Modificando colunas

n  Existem algumas regras a serem seguidas para a alteração das
definições de colunas:
q  Você pode aumentar o tamanho de uma coluna texto e a precisão de

uma coluna numérica. Se a coluna for CHAR e a tabela possuir diversas
linhas irá demandar um tempo superior, pois todos as linhas terão que
serem preenchidas com espaços em branco.

q  Você pode reduzir o tamanho de uma coluna texto ou numérica se
todos os dados couberem neste novo tamanho.

q  Para a modificação do tipo de dado, todos os valores da coluna devem
estar NULL, exceto se a alteração for de CHAR para VARCHAR2 ou
vice-versa.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 227

Destruindo colunas

n  Às vezes uma coluna não faz mais sentido e deseja-se retirá-la da
tabela.

n  Sintaxe:
q  ALTER TABLE nome-tabela

 DROP nome-da-coluna [CASCADE CONSTRAINTS];

n  A cláusula CASCADE CONSTRAINTS destrói também todas as
restrições vinculadas a esta coluna.

n  Assim como na adição e modificação de colunas, você pode
destruir várias colunas na mesma instrução usando a delimitação
por parênteses e separação por vírgula.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 228

Destruindo colunas

n  Destruir uma coluna de uma tabela com muitos registros pode levar
um tempo considerável.

n  O Oracle oferece uma sintaxe de desativação temporária de uma
coluna, para que em uma melhor momento a coluna seja realmente
destruida.

n  Sintaxe:
q  ALTER TABLE nome-tabela

 SET UNUSED COLUMN nome-da-coluna
 [CASCADE CONSTRAINTS];

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 229

Destruindo colunas

n  Exemplo:
q  ALTER TABLE empregado

 SET UNUSED COLUMN titulo_eleitor;

n  Para realmente efetivar a destruição da coluna, deve-se fazer a
seguinte instrução:
q  ALTER TABLE empregado DROP UNUSED COLUMNS;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 12

Apostila Oracle 230

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 231

Esquema RH (tradução do HR)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 232

Criando visões

n  Uma visão é uma representação lógica de dados de uma ou mais
tabelas ou visões. Pode-se pensar em uma visão como uma
consulta (query) armazenada no banco de dados.

n  As tabelas que a visão referencia são conhecidas como tabelas
base.

n  Uma visão pode ser considerada uma consulta armazenada ou
mesmo uma tabela virtual (não existe fisicamente).
q  Somente a consulta é armazenada no dicionário de dados, os dados

atuais não são copiados de forma alguma (com exceções da visão
materializada que será abordada à frente).

q  Isto indica que visão convencional não ocupa qualquer espaço de
armazenamento, somente um espaço no dicionário de dados.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 233

Criando visões

n  Exemplo:
q  O departamento 90 é o departamento Executivo, portanto segue uma

visão simplificada sobre os seus funcionários:
n  create view EXECUTIVO as

 select PRIMEIRO_NOME || ' ' || ULTIMO_NOME as "NOME", EMAIL
 from RH.EMPREGADO
 where ID_DEPARTAMENTO = 90;

q  Basta a seguinte consulta para retornar todos os executivos:
n  select * from EXECUTIVO;

NOME EMAIL
---------------------------------- -------------------------
Steven King SKING
Neena Kochhar NKOCHHAR
Lex De Haan LDEHAAN

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 234

Criando visões

n  Visões podem ser baseadas em consultas mais sofisticadas,
envolvendo junções, funções, agrupamentos, subqueries, etc.
q  Observe a seguinte visão. Ela retorna a quantidade de funcionários por

função de cada departamento daquelas funções que possuem mais de
dois funcionários ordenadas pelo departamento, depois pela função e
depois pela quantidade é uma consulta muito utilizada.
n  create view REL_DEPTO_FUNCAO as

 select d.NOME_DEPARTAMENTO as "DEPARTAMENTO",
 f.DESCRICAO_FUNCAO as "FUNÇÃO",

 to_char(count(e.ID_EMPREGADO),'000') as "QUANTIDADE"
from RH.DEPARTAMENTO d inner join RH.EMPREGADO e

 using (ID_DEPARTAMENTO)
 inner join RH.FUNCAO f using (ID_FUNCAO)

group by d.NOME_DEPARTAMENTO, f.DESCRICAO_FUNCAO
having count(e.ID_EMPREGADO) > 2 order by 1, 2, 3

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 235

Criando visões

q  Como é uma consulta largamente utilizada, agora basta realizar a
seguinte consulta que retornará o resultado esperado:
n  select * from REL_DEPTO_FUNCAO;

DEPARTAMENTO FUNÇÃO QUAN
-------------------- -------------------- ----
Finance Accountant 005
IT Programmer 005
Purchasing Purchasing Clerk 005
Sales Sales Manager 005
Sales Sales Representative 029
Shipping Shipping Clerk 020
Shipping Stock Clerk 020
Shipping Stock Manager 005

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 236

Criando visões somente leitura

n  Ao criar uma visão, instruções DML podem ser executadas nela.
Por exemplo, pode-se inserir, atualizar, excluir dados de uma visão,
o que irá modificar as tabelas base envolvidas.
q  Existem uma série de regras para que possa realizar instruções DML

em uma visão.

n  Porém, para evitar qualquer problema, pode-se criar uma visão
somente leitura, bastando apenas utilizar a opção WITH READ
ONLY.
q  As visões criadas com esta opção somente podem ser usadas em

consultas, nenhuma outra instrução DML poderá ser utilizada.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 237

Criando visões somente leitura

q  Exemplo:
n  create view ASSALARIADO as

 select PRIMEIRO_NOME || ' ' || ULTIMO_NOME as "NOME",
 SALARIO as "SALARIO"
 from RH.EMPREGADO
 WITH READ ONLY

q  A seguinte instrução não funcionará:
n  update ASSALARIADO set SALARIO = 4000 where NOME = 'Sarah Bell'

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 238

Criando visões materializadas

n  Uma visão materializada é uma visão que armazena os resultados
de uma consulta.

n  Tem várias utilidades, mas, geralmente, são cópias locais de dados
localizados remotamente ou são usadas para criar tabelas
sumarizadas baseadas nos dados de uma certa tabela.

n  Elas são cópias e devem possuir um mecanismo de atualização
destes dados.
q  Geralmente a atualização ocorre de tempos em tempos com base na

chave primária.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 239

Criando visões materializadas

q  Exemplo:
n  create materialized view FUNCIONARIO

 REFRESH FORCE
 START WITH SYSDATE
 NEXT SYSDATE + 1
 WITH PRIMARY KEY

 as select * from RH.EMPREGADO@banco_dados_remoto

q  "@banco_dados_remoto" é um dblink para um outro SGBD Oracle.
n  Portanto, não funcionará. Foi apenas para dar mais realidade ao uso.

q  Para funcionar basta retirar o "@banco_dados_remoto"

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 240

Modificando visões

n  Para alterar uma definição de uma visão, deve-se utilizar a
instrução CREATE VIEW com a opção OR REPLACE.

n  Quanto se usa a opção OR REPLACE, se a visão existir, ela será
substituída pela nova definição. Caso contrário, uma nova visão
será criada.

n  Como exemplo, a visão assalariado tem formatação do salário:
q  create OR REPLACE view ASSALARIADO as

 select PRIMEIRO_NOME || ' ' || ULTIMO_NOME as "NOME",
 to_char(SALARIO,'990,000.00') as "SALARIO"
 from RH.EMPREGADO

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 241

Destruindo visões

n  Para destruir uma uma visão, deve-se utilizar a instrução DROP
VIEW.

n  Ao destruir uma visão, a definição desta visão é removida do
dicionário de dados e os privilégios e permissões da visão também
serão removidos.
q  Outras visões que se referem a ela, tornarão-se inválidas.

n  Exemplo:
q  drop view ASSALARIADO

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 242

Outras operações em visões

n  Existem várias outras coisas que podem ser feitas em uma visão
como:
q  Criar visões com erros (opção FORCE)
q  Criar restrições em visões
q  Utilizar a instrução ALTER VIEW para:

n  compilar ou recompilar
n  validar e invalidar
n  adicionar ou destruir restrições

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 243

Utilizando visões

n  Uma visão pode ser utilizada na maioria dos locais onde uma tabela
é utilizada, tal como em consultas e instruções DML.

q  Para verificar as visões do seu esquema basta:
n  select VIEW_NAME from USER_VIEWS

q  Para verificar as visões, que possui acesso, de um outro
esquema deve ser realizado o seguinte comando:
n  select VIEW_NAME from ALL_VIEWS where OWNER = '<nome-usuário>'

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 244

Utilizando visões

n  Se certas condições são respeitadas, maioria das visões baseadas
em uma única tabela e muitas das visões baseadas em junções
podem ser utilizadas para inserir, atualizar e deletar dados da(s)
tabela(s) base.
q  Para verificar quais instruções DML podem ser realizadas em uma dada

visão, basta:
n  select COLUMN_NAME, UPDATABLE, INSERTABLE, DELETABLE

 from USER_UPDATABLE_COLUMNS
 where OWNER = '<nome-usuário>' and
 TABLE_NAME='<nome-tabela>'

n  Todas as operações em visões afetam as tabelas base, contudo
elas devem satisfazer toda restrição de integridade definida nas
tabelas base.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 245

Utilizando visões

n  São utilizações comuns de visões:

q  Representar um subconjunto de dados

q  Representar um superconjunto de dados

q  Ocultar junções complexas

q  Prover nomes mais entendíveis para colunas

q  Criação de uma camada entre a aplicação e a fonte de dados

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 13

Apostila Oracle 246

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 247

Esquema Acadêmico Simples
Modelo ER

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 248

PROFESSOR (cpf, nome, salario, titulacao)
 dom(cpf) = numérico(11) NN
 dom(nome) = alfabético(60) NN
 dom(salario) = numérico(9,2) NN
 dom(titulacao) = alfabético(40) NN

ALUNO (matricula, nome, data_nascimento)
 dom(matricula) = numérico(6) NN
 dom(nome) = alfabético(60) NN
 dom(data_nascimento) = data NN

Esquema Acadêmico Simples
Modelo Relacional

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 249

DISCIPLINA (codigo, nome, carga_horaria, cpf_professor)
 dom(codigo) = numérico(3) NN
 dom(nome) = alfanumérico(40) NN
 dom(carga_horaria) = numérico(3) NN
 dom(cpf_professor) = numérico(11) NN
 DISCIPLINA [cpf_professor] ß PROFESSOR [cpf]

ALUNO_DISCIPLINA (matricula_aluno, codigo_disciplina, pontuacao)
 dom(matricula_aluno) = numérico(6) NN
 dom(codigo_disciplina) = numérico(3) NN
 dom(pontuacao) = numérico(3)
 ALUNO_DISCIPLINA [matricula_aluno] ß ALUNO [matricula]
 ALUNO_DISCIPLINA [codigo_disciplina] ßDISCIPLINA [codigo]

Esquema Acadêmico Simples
Modelo Relacional

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 250

Outros objetos do banco de dados

n  Uma base de dados do Oracle contem muito mais do que simples
tabelas e visões:
q  Sequências podem ser utilizadas para gerar chaves artificiais;
q  Sinônimos provêm apelidos (alias) para objetos;
q  Vários tipos de índices podem ser inseridos para melhorar o

desempenho de consultas.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 251

Sequências

n  Uma sequência do Oracle é um gerador nominado de números
sequênciais.

n  Geralmente são utilizadas para chaves artificiais ou para ordenar
linhas que de outra forma não teriam ordem.

n  Assim como as restrições, as sequências existem somente no
dicionário de dados.

n  Elas podem ser configuradas para aumentar ou diminuir sem limites
ou para repetir após alcançar um valor limite.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 252

Criando sequências

n  Sintaxe:
q  CREATE SEQUENCE [esquema].<nome-da-sequência>

 [START WITH integer]
 [INCREMENT BY integer]
 [MINVALUE integer | NOMINVALUE]
 [MAXVALUE integer | NOMAXVALUE]
 [CYCLE | NOCYCLE]
 [CACHE integer | NOCACHE]
 [ORDER | NOORDER]

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 253

Criando sequências

n  START WITH
q  Define o valor inicial da sequência. Por padrão é MAXVALUE para

sequências descendentes (-1) e MINVALUE para ascendentes (1).

n  INCREMENT BY
q  Define a quantidade que aumenta ou diminui entre números. O padrão é

1. Para sequências descendentes, basta inserir um valor negativo.

n  MINVALUE
q  Define o menor valor que a sequência irá gerar. O padrão é

NOMINVALUE. (1 para sequências descendentes e -1026 para as
ascendentes.

n  MAXVALUE
q  Define o maior valor que a sequência irá gerar. O padrão é

NOMAXVALUE. (-1 para sequências descendentes e 1027 para as
ascendentes.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 254

Criando sequências

n  CYCLE
q  Configura a sequência para repetir números após alcançar o limite.

n  NOCYCLE
q  Configura a sequência para não repetir números após alcançar o limite.

Este é o padrão. Quando tentar gerar MAXVALUE+1, uma exceção será
lançada.

n  CACHE
q  Define o tamanho do bloco de números da sequência armazenados na

memória. O padrão é 20.

n  NOCACHE
q  Força o dicionário de dados a atualizar a sequência para cada número

gerado, garantindo que nenhum espaço existirá entre os números
gerados, porém o desempenho inferior.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 255

Criando sequências

n  ORDER
q  Garante que os números da sequência sejam gerados pela ordem de

requisição.

n  NOORDER
q  Não garante que os números da sequência sejam gerados pela ordem

de requisição. Esta é a opção padrão.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 256

Criando sequências

n  Exemplo de uma sequência ascendente:
q  create sequence SQ_MATRICULA_ALUNO;

 corresponde a

q  create sequence SQ_MATRICULA_ALUNO
 START WITH 1 INCREMENT BY 1
 NOMINVALUE NOMAXVALUE
 NOCYCLE CACHE 20 NOORDER

n  Exemplo de uma sequência descendente:
q  create sequence SQ_MATRICULA_ALUNO

 INCREMENT BY -1

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 257

Destruindo sequências

n  Sintaxe:
q  drop sequence <nome-da-sequência>

n  Exemplo:
q  drop sequence SQ_MATRICULA_ALUNO

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 258

Usando sequências

n  Para acessar o próximo número na sequência, você simplesmente
seleciona, usando a pseudo-coluna NEXTVAL.
q  Ex.:

n  select SQ_MATRICULA_ALUNO.NEXTVAL from dual;

n  Para buscar o último número da sequência gerado na sua sessão,
você seleciona a pseudo-coluna CURRVAL.
q  Ex.:

n  select SQ_MATRICULA_ALUNO.CURRVAL from dual;

q  Se você ainda não tiver gerado nenhum número da sequência,
CURRVAL não funcionará.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 259

Usando sequências

n  Exemplo de usos:
q  Inserindo um novo aluno:

n  insert into ALUNO (matricula, nome, data_nascimento)
 values (sq_matricula_aluno.nextval, 'Aluno', sysdate)

q  Atualização de todas as matrículas:

n  update ALUNO set matricula = sq_matricula_aluno.nextval

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 260

Alterando sequências

n  Você não pode simplesmente alterar a sequência e ajustar o seu
NEXTVAL. Para isto existem as seguintes soluções:
q  Destruí-la e recriá-la.

n  Invalidará todos os objetos dependentes e perderá as permissões

q  Selecionar NEXTVAL até que a sequência alcançe o valor desejado.

q  Alterar a sequência ajustando o valor do INCREMENT BY para um valor
muito grande, selecionar NEXTVAL e depois alterar a sequência para
voltar ao INCREMENT BY ao valor original.
n  alter sequence SQ_MATRICULA_ALUNO increment by 1000;

 select SQ_MATRICULA_ALUNO.NEXTVAL from dual;
 alter sequence SQ_MATRICULA_ALUNO increment by 1;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 261

Sequências

n  Para ver as sequências existentes e suas propriedades, basta:
q  select * from USER_SEQUENCES;

n  Para ver de um outro usuário:
q  select * from ALL_SEQUENCES

 where SEQUENCE_OWNER = '<usuario>';

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 262

Sinônimos

n  Sinônimo é um apelido para um outro objeto do banco de dados.

n  Sintaxe de criação:
q  create synonym <nome-sinônimo> for <[esquema].<nome-objeto>>
q  Ex.:

n  create synonym EMPREGADO for RH.EMPREGADO

n  Sintaxe de destruição:
q  Ex.:

n  drop synonym EMPREGADO

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 263

Índices

n  Os índices são estruturas de dados que podem oferecer um melhor
desempenho na obtenção de linhas específicas do que o full-table
scan (escaneamento completo da tabela) que é o padrão.

n  Índices podem aumentar o desempenho de instruções SELECT,
porém podem ser gargalos para operações de alterações de dados,
pois devem ser atualizados de acordo com os dados.
q  Por isto devem ser utilizados com racionalidade e cautela.

n  Pensamento:
q  Um bilhão de empregados. Crio os índices e depois insiro todos os

empregados ou insiro todos os empregados e depois crio os índices?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 264

Índices

n  Os índices podem ser únicos (UNIQUE) ou não únicos.

n  Os índices podem vincular mais de uma coluna. São conhecidos
como índices concatenados.

n  Pensamentos:
q  Qual possui melhor desempenho?

q  Se algum é melhor, posso sempre utilizá-lo?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 265

Criando índices

n  Sintaxe:
q  CREATE [UNIQUE] INDEX <nome-índice> ON

 <nome-tabela> (<nome-coluna> [, <nome-coluna>...])

n  Exemplo:
q  create index IX_DATA_NASCIMENTO on

 ALUNO (DATA_NASCIMENTO)

q  create unique index IX_NOME_UNICO on
 ALUNO (NOME)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 266

Destruindo índices

n  Sintaxe:
q  DROP INDEX <nome-índice>

n  Exemplo:
q  drop index IX_DATA_NASCIMENTO

q  drop index IX_NOME_UNICO

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 14

Apostila Oracle 267

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 268

Acesso de usuário e segurança

n  O Oracle provê vários métodos para controle de acesso de
usuários. Quando se cria um usuário, pode-se especificar como ele
é autenticado e também ajustar vários de seus atributos.

n  O modo inicial para controle de acesso de usuários é através de
privilégios. Por garantir (grant) ou revogar (revoke) privilégios, você
pode especificar o que os usuários podem fazer como certos
objetos do banco de dados.

n  Como os usuários usarão os recursos do sistema e diretivas de
senha se fazem por um outro modo de controle conhecido como
profile (perfil).

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 269

Criando e alterando usuários

n  A instrução CREATE USER é empregada para a criação de
usuários (também conhecidos como conta ou esquema) e pode,
opcionalmente, designar certos atributos adicionais ao usuário.

n  A instrução ALTER USER é utilizada para a realização de
alterações de quaisquer atributos do usuário, porém o mesmo já
deve estar criado.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 270

Criando usuários

n  A sintaxe para criação de usuários é:
q  CREATE USER <nome-do-usuário> IDENTIFIED BY <senha-do-usuário>

n  O usuário acima é criado para ser autenticado no próprio Oracle.
Porém existem outros modos de criação de usuário:
q  Autenticação externa: Validação de senha pelo sistema operacional ou

pela rede.
q  Autenticação Global: Validação de senha pelo Serviço de Segurança do

Oracle (Oracle Security Service), um serviço configurado e licenciado
separadamente.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 271

Designando atributos à usuários

n  Atributos da conta são atribuidos com a própria instrução CREATE
como com a instrução ALTER USER.
q  A instrução CREATE USER deve conter minimamente o usuário e a

cláusula da senha.

n  As instruções CREATE e ALTER USER podem:
q  Designar validação (senha)
q  Designar a default tablespace (espaço de tabelas padrão)
q  Designar a temporary tablespace (espaço de tabelas padrão)
q  Designar a quota de espaço disponível
q  Vincular a um profile (perfil)
q  Habilitar e desabilitar uma role (papel)
q  Ajustar expiração de senha
q  Travar e destravar usuários

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 272

Designando atributos à usuários

n  Segue exemplos dos mais utilizados:
q  Alterando senha:

n  ALTER USER <usuário> IDENTIFIED BY <senha>

q  Vinculando a um profile:
n  ALTER USER <usuário> PROFILE <nome-do-perfil>

q  Vinculando a um role:
n  ALTER USER <usuário> DEFAULT ROLE <nome-do-papel>

q  Somente funciona com usuários administradores e só com a instrução ALTER
USER.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 273

Designando atributos à usuários

q  Expirando senha:
n  ALTER USER <usuário> PASSWORD EXPIRE

q  Travando um usuário:
n  ALTER USER <usuário> ACCOUNT LOCK

q  Para destravar, basta substituir LOCK por UNLOCK

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 274

Usando controle de licença de usuários

n  O Oracle fornece vários tipos de licença de funcionamento. Para
que se respeite a licença de uso adquirida, o Oracle inclui alguns
mecanismos de controle.

n  Você pode limitar o número de sessões permitidas a conectar
simultaneamente e, também, o número de usuários que podem
estar criados no SGBD.
q  Estes parâmetros que estão no init.ora podem ajudar nas restrições:

n  licence_max_users
n  licence_sessions_warning
n  licence_max_sessions

n  Como administrador, para consultar os usuário do Oracle:
q  select USERNAME, PASSWORD, CREATED, PROFILE, ACCOUNT_STATUS

 from DBA_USERS;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 275

Criando e usando roles

n  Um role é um instrumento para administrar privilégios. Os privilégios
podem ser garantidos a um role e este role ser garantido a um
usuário ou, até mesmo, a um outro role.
q  Não servem para nenhum outro propósito a não ser um agrupamento de

privilégios para facilitar a administração de privilégios.

n  Sintaxe:
q  CREATE ROLE <nome-do-papel>;

n  Pode-se inserir uma senha para o role, se isto for feito ela deve ser ativada
para seu funcionamento.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 276

Criando e usando roles

n  Exemplo:
q  CREATE ROLE permissao_aluno;

 GRANT select on rh.empregado TO permissao_aluno;
 GRANT select on rh.departamento TO permissao_aluno;
 GRANT select on rh.funcao TO permissao_aluno;
 GRANT select on rh.localizacao TO permissao_aluno;
 GRANT select on rh.pais TO permissao_aluno;
 GRANT select on rh.regiao TO permissao_aluno;
 GRANT select on rh.historico_funcao TO permissao_aluno;

 GRANT permissao_aluno TO aluno1, aluno2, aluno3, aluno4;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 277

Criando e usando profiles

n  Profiles permitem gerenciar grupos de usuários por limitar recursos
de processamento ou políticas de senha.

n  Todos os usuário possuem um profile. O profile padrão é admitido
quando não é explicitado na criação de um usuário.

n  As instruções CREATE PROFILE e ALTER PROFILE são
responsáveis, respectivamente, por criar e alterar profile. Possuem
praticamente a mesma sintaxe.
q  A única diferença é que a instrução ALTER PROFILE necessita que o

profile já exista.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 278

Criando e usando profiles

n  Sintaxe:
q  [CREATE | ALTER] PROFILE <nome-do-perfil> LIMIT <restrição>

n  Existem várias restrições, são alguns exemplos:
q  CONNECT_TIME IDLE_TIME

 CPU_PER_CALL CPU_PER_SESSION
 SESSIONS_PER_USER FAILED_LOGON_ATTEMPTS
 PASSWORD_LIFE_TIME PASSWORD_GRACE_TIME
 PASSWORD_LOCK_TIME PASSWORD_REUSE_TIME
 PASSWORD_VERIFY_FUNCTION PRIVATE_SGA

q  Mais detalhes podem ser encontrados nas páginas 482-490 da

referência DAWES e THOMAS (2002).

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 279

Criando e usando profiles

n  Exemplo:
q  CREATE PROFILE aluno LIMIT SESSIONS_PER_USER 1;

 ALTER PROFILE aluno LIMIT CONNECT_TIME 3;
 ALTER PROFILE aluno LIMIT IDLE_TIME 1;
 ALTER PROFILE aluno LIMIT FAILED_LOGIN_ATTEMPTS 3;
 ALTER PROFILE aluno LIMIT PASSWORD_LIFE_TIME 30;
 ALTER PROFILE aluno LIMIT PASSWORD_REUSE_TIME 90;

 CREATE USER alunox IDENTIFIED BY alunox PROFILE aluno;
 GRANT papel_usuario TO alunox;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 280

Garantindo e revogando privilégios

n  Privilégios permitem um usuário acessar objetos ou executar
programas que são de um outro usuário ou executar operações de
nível de sistema, como criar e destruir objetos.

n  Privilégios podem ser garantidos (grant) para um usuário, para o
usuário especial PUBLIC ou para um role. Uma vez garantidos, tais
privilégios podem ser revogados (revoke).

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 281

Garantindo e revogando privilégios

n  O Oracle tem três tipos de privilégios:
q  Privilégios de objetos (Object privileges)

n  São permissões em objetos de esquemas, como tabelas, visões, funções e
bibliotecas.

q  Privilégios de sistema (System privileges)
n  Habilita ao usuário a desenvolver operações de nível de sistema, tais como

conexão, alterar sessão, criar tabelas ou criar usuários.

q  Privilégios de role (Role privileges)
n  São aqueles privilégios que um usuário possui por intermédio de um role.

n  Nos próximos slides iremos ver quais são estas permissões, contudo
mais detalhes podem ser encontrados nas páginas 464-473 da
referência DAWES e THOMAS (2002).

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 282

Privilégios de objetos

n  Privilégios de objetos:
q  ALTER
q  DELETE
q  EXECUTE
q  INDEX
q  INSERT
q  SELECT
q  UPDATE
q  ALL

q  Outros privilégios:
n  READ REFERENCE

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 283

Privilégios de sistema

n  Privilégios de sistema:
q  CLUSTER SEQUENCE
q  DATABASE SESSION
q  INDEX SYNONYM
q  PROCEDURE TABLE
q  PROFILE TABLESPACE
q  ROLE USER
q  ROLLBACK SEGMENT VIEW

q  Existem alguns privilégios especiais:
n  SYSDBA SYSOPER

q  Outros privilégios:
n  ANALYSE AUDIT COMMENT
n  PRIVILEGE ROLE

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 284

Atribuindo privilégios

n  Quando se deseja atribuir um ou mais privilégios para um usuário
ou um role, deve ser utilizada a instrução GRANT.

n  SINTAXES:
q  GRANT <privilegio-de-objeto> TO <usuário|role|PUBLIC>

 [WITH GRANT OPTION]

q  GRANT <privilegio-de-sistema> TO <usuário|role|PUBLIC>
 [WITH ADMIN OPTION]

n  Garantir um privilégio para o usuário especial PUBLIC implica em garantir o

privilégio para qualquer usuário que conectar o banco de dados.

n  Quando um privilégio é garantido, o seu efeito é imediato, não necessitando
que um usuário desconecte e conecte novamente.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 285

Atribuindo privilégios de objetos

n  Exemplos de atribuição de privilégios de objetos:
q  GRANT SELECT ON rh.empregado TO joazinho

 GRANT UPDATE (ultimo_nome, salario) ON rh.empregado TO joazinho

 GRANT INSERT, UPDATE, DELETE ON rh.departamento TO joaozinho

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 286

Atribuindo privilégios de objetos

n  Privilégios de objetos podem ser garantidos com WITH GRANT
OPTION, que permite ao garantido garantir estes privilégios para
qualquer outro usuário ou role.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 287

Atribuindo privilégios de objetos

n  Por exemplo, se o usuário RH conceder consulta a tabela FUNCAO
ao Joãozinho usando WITH GRANT OPTION, Joãozinho pode
conceder consulta a essa mesma tabela a Mariazinha:
q  conn rh/rh@xe;

 GRANT SELECT ON rh.funcao TO joaozinho WITH GRANT OPTION;
 conn joaozinho/joaozinho@xe;
 GRANT SELECT ON rh.funcao TO mariazinha;
 conn mariazinha/mariazinha@xe;
 select * from rh.funcao;

q  Porém, se Joãozinho deixar de ser um usuário, Mariazinha pode perder

a sua garantia de consulta.
n  A não ser que outro usuário também tenha concedido este privilégio a ela.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 288

Atribuindo privilégios de objetos

n  Entendimento 1:

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 289

Atribuindo privilégios de objetos

n  Entendimento 2:

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 290

Atribuindo privilégios de sistema

n  Exemplos de atribuição de privilégios de sistema:
q  GRANT CREATE SESSION TO joaozinho

 GRANT CREATE SEQUENCE TO joaozinho
 GRANT CREATE SYNONYM TO joaozinho
 GRANT CREATE TABLE TO joaozinho
 GRANT CREATE ANY TABLE TO joaozinho
 GRANT DROP TABLE TO joaozinho
 GRANT DROP ANY TABLE TO joaozinho
 GRANT CREATE PROCEDURE TO joaozinho
 GRANT EXECUTE ANY PROCEDURE TO joaozinho
 GRANT CREATE USER TO joaozinho
 GRANT DROP USER TO joaozinho
 GRANT CREATE VIEW TO joaozinho

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 291

Atribuindo privilégios de sistema

n  Existe três roles que abrangem vários privilégios de sistema e
facilitam em muito a concessão de várias permissões:
q  CONNECT

n  Contém somente o privilégio CREATE SESSION.

q  RESOURCE
n  Contém os seguintes privilégios:

q  CREATE CLUSTER, CREATE INDEXTYPE, CREATE OPERATOR, CREATE
PROCEDURE, CREATE SEQUENCE, CREATE TABLE, CREATE TRIGGER,
CREATE TYPE.

q  DBA
n  Contém os privilégios comuns de um administrador do banco de dados.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 292

Atribuindo privilégios de sistema

n  Privilégios de sistema podem ser garantidos com WITH ADMIN
OPTION, que permite ao garantido garantir estes privilégios de
sistema para qualquer outro usuário ou role.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 293

Atribuindo privilégios de sistema

n  Por exemplo, se o usuário RH conceder criação de visão ao
Joãozinho usando WITH ADMIN OPTION, Joãozinho pode
conceder criação de visão a Mariazinha:
q  conn rh/rh@xe;

 GRANT CREATE VIEW TO joaozinho WITH ADMIN OPTION;
 conn joaozinho/joaozinho@xe;
 GRANT CREATE VIEW TO mariazinha;
 conn mariazinha/mariazinha@xe;
 create view DUPLO as select * from dual;

q  Ao contrário do privilégio de objetos, que utiliza WITH GRANT OPTION,

se Joãozinho deixar de ser um usuário, Mariazinha não perde a garantia
de criação de visão.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 294

Atribuindo privilégios de sistema

n  Entendimento:

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 295

Revogando privilégios

n  Quando se deseja revogar um ou mais privilégios para um usuário
ou um role, deve ser utilizada a instrução REVOKE.

n  SINTAXE:
q  REVOKE <privilegio-de-objeto-ou-sistema> FROM <usuário|role|PUBLIC>

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 296

Revogando privilégios

n  Exemplos de revogação de privilégios de sistema:
q  REVOKE CREATE SESSION FROM joaozinho
q  REVOKE CREATE SEQUENCE FROM joaozinho
q  REVOKE CREATE SYNONYM FROM joaozinho
q  REVOKE CREATE TABLE FROM joaozinho
q  REVOKE CREATE ANY TABLE FROM joaozinho
q  REVOKE DROP TABLE FROM joaozinho
q  REVOKE DROP ANY TABLE FROM joaozinho
q  REVOKE CREATE PROCEDURE FROM joaozinho
q  REVOKE EXECUTE ANY PROCEDURE FROM joaozinho
q  REVOKE CREATE USER FROM joaozinho
q  REVOKE DROP USER FROM joaozinho
q  REVOKE CREATE VIEW FROM joaozinho

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 15

Apostila Oracle 297

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 298

Sistema da Locadora: MR s/atributos

ATOR (id_ator , nome_real , nome_artistico , dt_nascimento)

FILME (id_filme , titulo , id_categoria)

 FILME [id_categoria] ß CATEGORIA [id_categoria]

CATEGORIA (id_categoria , descricao)

ATOR_FILME (id_ator , id_filme)

 ATOR_FILME [id_ator] ß ATOR [id_ator]
 ATOR_FILME [id_filme] ß FILME [id_filme]

DVD (id_filme , numero)

 DVD [id_filme] ßFILME [id_filme]

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 299

Sistema da Locadora: MR s/atributos

LOCACAO (id_filme , numero , id_cliente , dt_locacao , dt_devolucao_prevista,
 dt_devolucao_efetiva)
 LOCACAO [id_filme , numero] ß DVD [id_filme , numero]
 LOCACAO [id_cliente] ß CLIENTE [id_cliente]

CLIENTE (id_cliente , nome , telefone , id_endereco)
 CLIENTE [id_endereco] ß ENDERECO [id_endereco]

TITULAR (id_titular , cpf)
 TITULAR [id_titular] ß CLIENTE [id_cliente]

DEPENDENTE (id_dependente , id_titular)
DEPENDENTE [id_dependente] ß CLIENTE [id_cliente]
DEPENDENTE [id_titular] ß TITULAR [id_titular]

ENDERECO (id_endereco , logradouro , numero , complemento , cep , bairro , cidade ,
 estado)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 300

Visões, permissões e otimizações

n  Hoje vamos trabalhar com visões, permissões e otimizações

n  Com o uso de visões, conseguimos filtrar informações de um banco de
dados. São utilizações comuns de visões:
q  Representar um subconjunto de dados
q  Representar um superconjunto de dados
q  Ocultar junções complexas
q  Prover nomes mais entendíveis para colunas
q  Criação de uma camada entre a aplicação e a fonte de dados

n  Com o uso de permissões, podemos restringir o que cada usuário pode
fazer com certos objetos do banco de dados

n  Com o uso de índices, podemos melhorar o desempenho em várias
consultas

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 301

Cronograma da aula

1.  Criar três tipos de usuários:
n  Administrador, cliente e atendente

2.  Criar todo o modelo do Sistema Locadora naquele que será o
administrador, no caso, proprietário

n  Explicar o funcionamento usual em sistemas web

3.  Criar visões aos usuários do tipo cliente e atendente

4.  Garantir as devidas permissões ao cliente e ao atendente

5.  Criar sinônimos

6.  Pensar em otimização utilizando índices

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 302

Para o cliente

n  Criação da visão somente leitura VW_DADOS_CLIENTE
q  Exibirá o ID_CLIENTE, CPF, NOME, TIPO, TELEFONE, ENDERECO e o

NOME_TITULAR (este último caso seja dependente)

q  A própria aplicação fará o filtro pelo ID_CLIENTE

n  Criação da visão somente leitura VW_VINCULO_DEPENDENTE
q  Exibirá o ID_CLIENTE, ID_DEPENDENTE e NOME_DEPENDENTE

q  A própria aplicação fará o filtro pelo ID_CLIENTE

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 303

Para o cliente

n  Criação da visão somente leitura VW_RELATORIO_FILMES
q  Exibirá o NOME_FILME, CATEGORIA, NOME_ARTISTICO (caso não exista

exibir o NOME_REAL), QTDE e QTDE_DISP

n  Criação da visão somente leitura VW_HISTORICO_LOCACOES
q  Exibirá o NOME_USUARIO, TIPO_USUARIO, NOME_FILME, DT_LOCACAO,

DT_DEV_PREVISTA, DT_DEV_EFETIVA e STATUS
n  STATUS pode ser ALUGADO, DEVOLUÇÃO PENDENTE, DEVOLVIDO e DEVOLVIDO

COM ATRASO

q  A própria aplicação fará o filtro pelo ID_CLIENTE

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 304

Para o cliente

n  As seguintes permissões devem ser concedidas:
q  Em todas as visões criadas para o cliente

n  R (Retrieve)
q  Pois somente poderá consultar

n  Sinônimos para todas as visões criadas para o cliente foram criados:
q  create SYNONYM VW_RELATORIO_FILMES FOR LOC_ADM.VW_RELATORIO_FILMES;

q  create SYNONYM VW_DADOS_CLIENTE FOR LOC_ADM.VW_DADOS_CLIENTE;

q  create SYNONYM VW_HISTORICO_LOCACOES FOR LOC_ADM.VW_HISTORICO_LOCACOES;
q  create SYNONYM VW_VINCULO_DEPENDENTE FOR LOC_ADM.VW_VINCULO_DEPENDENTE;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 305

Para o atendente

n  Criação da visão somente leitura VW_RELATORIO_FILMES_COMPLETO
q  Exibirá o NOME_FILME, CATEGORIA, NOME_REAL, NOME_ARTISTICO

QTDE e QTDE_DISP

n  Criação da visão somente leitura VW_SITUACAO_DVDS
q  Exibirá o ID_FILME, NOME_FILME, NUMERO_DVD e STATUS

n  STATUS pode ser ALUGADO, DEVOLUÇÃO PENDENTE e DISPONÍVEL

n  Criação de uma tabela FUNCIONARIO
q  Para informar os dados do atendente e para o mesmo se logar
q  Terá ID_FUNCIONARIO, CPF, NOME e SENHA
q  Pertencerá ao administrador

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 306

Para o atendente

n  As seguintes permissões devem ser concedidas:
q  Em LOCACAO

n  CRUD (Create, Retrieve, Update e Delete)
q  Pois o atendente deve gerenciar as locações

q  Em FUNCIONARIO
n  R

q  Pois o atendente somente poderá consultar essa tabela para se logar

q  Em CLIENTE, TITULAR, DEPENDENTE e ENDERECO
n  CRUD

q  Pois o atendente deve gerenciar o cadastro de clientes

q  Em SQ_CLIENTE e SQ_ENDERECO
n  Acesso

q  Pois o atendente deve utilizar essas sequências para as atividades acima mencionadas

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 307

Para o atendente

n  Sinônimos para todas as visões criadas para o atendentes foram criados:
q  create SYNONYM VW_RELATORIO_FILMES_COMPLETO FOR

 LOC_ADM.VW_RELATORIO_FILMES_COMPLETO;
q  create SYNONYM VW_SITUACAO_DVDS FOR LOC_ADM.VW_SITUACAO_DVDS;

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 308

Como ficou?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 309

Otimização

n  Observando as visões criadas e as responsabilidades tanto do cliente
quanto do atendente, quais índices seriam apropriados para criação e
porque?
q  CPF e SENHA do FUNCIONÁRIO

n  create index ix_login_funcionario on FUNCIONARIO(CPF,SENHA);

q  ID_CLIENTE em LOCACAO
n  create index ix_locacao_cliente on LOCACAO(ID_CLIENTE);

q  ID_FILME e NUMERO em LOCACAO
n  create index ix_locacao_dvd on LOCACAO(ID_FILME, NUMERO);

q  ID_TITULAR em DEPENDENTE
n  create index ix_dependente_titular on DEPENDENTE(ID_TITULAR);

q  ...

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 310

Otimização

q  ID_CATEGORIA em FILME
n  create index ix_filme_categoria on FILME(ID_CATEGORIA);

q  NOME em CLIENTE
n  create index ix_nome_cliente on CLIENTE(NOME);

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008

Aula 16

Apostila Oracle 311

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 312

Triggers

n  Triggers são procedimentos que podem ser gravados em Java, PL/
SQL ou C. São executados (ou disparados) implicitamente quando
uma tabela é modificada, um objeto é criado ou ocorrem algumas
ações de usuário ou de sistema de banco de dados

n  As triggers são similares as stored procedures diferenciando,
apenas, na maneira como são chamadas. A trigger é executada
implicitamente quando ocorre algum evento enquanto a stored
procedure deve ser executado explicitamente

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 313

Triggers

n  Uma trigger é composta por quatro partes:
q  Momento
q  Evento
q  Tipo
q  Corpo

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 314

Triggers - momento

n  Momento define quando uma trigger irá ser acionada. Pode ser:
q  BEFORE (tabela)
q  AFTER (tabela)
q  INSTEAD OF (view)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 315

Triggers - momento

n  BEFORE indica que os comandos PL/SQL do corpo da trigger
serão executados ANTES dos dados da tabela serem alterados.
Normalmente usamos BEFORE nos casos em que precisamos
incializar variáveis globais, validar regras de negócios, alterar o
valor de flags ou para salvar o valor de uma coluna antes de
alterarmos o valor delas. Exemplo:

CREATE OR REPLACE TRIGGER novo_func

 BEFORE...

.

.

END;

/

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 316

Triggers - momento

n  AFTER indica que os comando PL/SQL do corpo da trigger será
executado APÓS os dados da tabela serem alterados.
Normalmente usamos AFTER para completar os dados de outras
tabelas e para completar a atividade de outra trigger de momento
BEFORE. Exemplo:

CREATE OR REPLACE TRIGGER novo_func

 AFTER...

.

.

END;

/

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 317

Triggers - momento

n  INSTEAD OF indica que a trigger irá ser executada no lugar da
instrução que disparou a trigger. Literalmente, a instrução é
substituída pela trigger

n  Essa técnica permite que façamos, por exemplo, alterações em
uma tabela através de uma view. É usado nos casos em que a view
não pode alterar uma tabela por não referenciar à uma coluna com
a restrição not null. Nesse caso a trigger pode atualizar a coluna
que a view não tem acesso

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 318

Triggers - momento

n  Dois detalhes muito importantes sobre INSTEAD OF:
q  Só funcionam com views
q  É sempre de linha. Será considerado assim, mesmo que "FOR EACH

ROW" for omitido

n  Exemplo:
 CREATE OR REPLACE TRIGGER novo_func

 INSTEAD OF INSERT ON vemp
FOR EACH ROW
WHEN ...
.
.
END;
/

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 319

Triggers - evento

n  O evento define qual é a instrução DML que aciona/disparar a
trigger. Pode ser:
q  INSERT
q  UPDATE
q  DELETE

n  Quando o evento for um UPDATE podemos informar quais colunas
que, ao serem alteradas, irão disparar a trigger. O mesmo NÃO
ocorre com INSERT e DELETE porque essas instruções sempre
afetam a linha por inteiro

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 320

Triggers - evento

n  Exemplo:
 CREATE OR REPLACE TRIGGER novo_func

 AFTER INSERT ON emp
.
.
END;
/

n  O evento pode conter uma, duas ou todas as três operações DML
em uma única linha de comando. Exemplo:

 CREATE OR REPLACE TRIGGER novo_func
 BEFORE INSERT OR UPDATE OR DELETE ON emp

.

.
END;
/

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 321

Triggers - tipo

n  O tipo define quantas vezes uma trigger será executa. A trigger
pode ser executada uma vez para a instrução que a disparou ou ser
disparada para cada linha afetada pela instrução que a disparou.
Pode ser:
q  Instrução (STATEMENT)
q  Linha (ROW)

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 322

Triggers - tipo

n  Quando a trigger for do tipo instrução ela será disparada uma vez
para cada evento de trigger, mesmo que nenhuma linha tenha sido
afetada. São úteis para aquelas trigger que eventualmente não
alteram dados ou para situações onde o que queremos é uma
resposta da trigger, por exemplo, em uma restrição complexa de
negócio. Por DEFAULT toda trigger é deste tipo. Exemplo:

CREATE OR REPLACE TRIGGER novo_func

 BEFORE INSERT OR UPDATE OR DELETE ON emp

 FOR EACH STATEMENT

.

.

END;

/

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 323

Triggers - tipo

n  Quando a trigger for do tipo linha, a trigger será executada toda vez
que a tabela for afetada pelo evento da trigger. Se nenhuma linha
for afetada a trigger não será executada. São muito úteis quando a
ação da trigger depende dos dados afetados pelo evento da trigger.
Exemplo:

CREATE OR REPLACE TRIGGER novo_func

 BEFORE INSERT OR UPDATE OR DELETE ON emp

 FOR EACH ROW

.

.

END;

/

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 324

Triggers - corpo

n  O corpo define a ação que uma trigger irá executar quando
acionada. O corpo de uma trigger é composto por um bloco PL/
SQL, a chamada de uma PROCEDURE ou por um procedimento
JAVA. Por definição, o tamanho de uma trigger não pode
ultrapassar 32K

n  Como, normalmente, precisamos trabalhar com os valores antes e
depois da alteração dos dados, a trigger permite que façamos
referencia aos valores antes da alteração (OLD) e após a alteração
(NEW)

n  O nome de uma trigger deve ser único dentro de um mesmo
esquema

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 325

Triggers - corpo

n  Sintaxe básica:
 CREATE [OR REPLACE] TRIGGER [schema.] nome_da_trigger

 [BEFORE|AFTER]

 [DELETE|OR INSERT|OR UPDATE[OF coluna]]

 ON [schema.] nome_da_tabela_ou_da_view
 [REFERENCING [OLD [AS] OLD] [NEW [AS] NEW]

 [FOR EACH ROW|STATEMENT]

 [WHEN [condição]]

 BLOCO PL/SQL

q  Bloco PL/SQL inicia-se normalmente com BEGIN e encerra com END

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 326

Triggers – exemplos práticos

n  Antes de trabalharmos com triggers em tabelas, vamos entender o
seu funcionamento com alguns eventos de sistema, tais como:
q  AFTER SERVERERROR
q  AFTER LOGON
q  BEFORE LOGOFF
q  AFTER STARTUP
q  BEFORE SHUTDOWN

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 327

Triggers – exemplos práticos

n  O próximo exemplo irá auditar o nome do usuário e a data e hora
que ele realizou login no sistema

n  Portanto, vamos criar uma tabela para armazenar isto:

 create table sys.AUDITORIA_LOGIN (

 USUARIO varchar2(30) not null,

 DATA_ACESSO date not null

);

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 328

Triggers – exemplos práticos

n  Observe como ficaria a nossa trigger de auditoria:

 CREATE OR REPLACE TRIGGER audita_login
 AFTER LOGON ON DATABASE
 BEGIN

 INSERT INTO sys.AUDITORIA_LOGIN

 (USUARIO, DATA_ACESSO) values (USER, SYSDATE);

 COMMIT;

 END;

 /

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 329

Triggers – exemplos práticos

n  A trigger pode apresentar problemas no momento de sua criação e
exibir mensagem como a abaixo:

 Warning: Trigger created with compilation errors.

n  Logo em seguida faça o comando "SHOW ERRORS" que ele
exibirá o que ocorreu:
SQL> show errors;

Errors for TRIGGER AUDITA_LOGIN:

LINE/COL ERROR

-------- ---

2/3 PL/SQL: SQL Statement ignored

2/19 PL/SQL: ORA-00942: table or view does not exist

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 330

Triggers – exemplos práticos

n  Caso não seja logo em seguida, você pode a qualquer momento
realizar o comando "SHOW ERRORS TRIGGER nome_da_trigger":

 SQL> SHOW ERRORS TRIGGER audita_login;
 No errors.

n  Caso deseje saber informações sobre as triggers basta consultar a
table USER_TRIGGERS ou mesmo ALL_TRIGGERS. Exemplo:
SQL> select TRIGGER_NAME from USER_TRIGGERS

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 331

Triggers – exemplos práticos

n  Até mesmo o corpo da trigger pode ser acessado pela
USER_TRIGGERS:
SELECT trigger_name, trigger_type, triggering_event,
 table_name, referencing_names,

 status, trigger_body
FROM user_triggers

WHERE trigger_name = 'NOME_DA_TRIGGER';

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 332

Triggers – exemplos práticos

n  Caso descubra que não precisa mais da trigger existe duas formas
de tratar a situação: eliminá-la ou desabilitá-la.

n  Eliminando a trigger:
q  drop trigger NOME_DA_TRIGGER

n  Desabilitando:
q  alter trigger NOME_DA_TRIGGER disable

n  Habilitando:
q  alter trigger NOME_DA_TRIGGER enable

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 333

Triggers – exemplos práticos

n  Vamos continuar com nossos exemplos práticos. Existe uma tabela
chamada RELATORIO que possui uma única linha e possui um
campo QTDE_FUNCIONARIO e TOTAL_SALARIO. Observe:

 create table RELATORIO (

 ID_RELATORIO number(1) not null,

 QTDE_FUNCIONARIO number(4) not null,

 TOTAL_SALARIO number(11,2) not null,

 constraint pk_relatorio primary key (ID_RELATORIO),

 constraint ck_unico check (ID_RELATORIO=1)

);

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 334

Triggers – exemplos práticos

n  Suponha que exista a seguinte tabela:

 create table FUNCIONARIO (

 ID_FUNCIONARIO number(4) not null,

 NOME varchar2(60) not null,

 SALARIO number(8,2) not null,

 constraint pk_empregado primary key (ID_FUNCIONARIO)

);

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 335

Triggers – exemplos práticos

n  Portanto, para iniciar a tabela RELATORIO basta:
insert into RELATORIO
 (ID_RELATORIO, QTDE_FUNCIONARIO, TOTAL_SALARIO)

values

 (1,

 (select count(*) from FUNCIONARIO),

 (select nvl(sum(SALARIO),0) from FUNCIONARIO)

);

n  Como manter este relatório sempre atualizado sem ter que ficar
sempre contando todos os funcionários e somando todos os
salários?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 336

Triggers – exemplos práticos

n  Manteremos a quantidade de funcionários sempre atualizada se:
q  ao inserir mais um funcionário, incrementarmos a quantidade
q  ao excluir um funcionário, decrementarmos a quantidade

n  Manteremos o total de salário sempre atualizado se:
q  ao inserir mais um funcionário, somarmos o seu salário
q  ao excluir um funcionário, diminuirmos o seu salário
q  ao modificar o salário de um funcionário, diminuirmos seu antigo salário

e somarmos o seu novo salário

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 337

Triggers – exemplos práticos

n  Manteremos a quantidade de funcionários sempre atualizada se:
q  ao inserir mais um funcionário, incrementarmos a quantidade
q  ao excluir um funcionário, decrementarmos a quantidade

 create or replace trigger TRIGGER_QTDE_FUNC
 AFTER INSERT OR DELETE ON FUNCIONARIO
 FOR EACH ROW
 begin
 IF INSERTING THEN
 update RELATORIO
 set QTDE_FUNCIONARIO = QTDE_FUNCIONARIO+1;
 ELSIF DELETING THEN
 update RELATORIO
 set QTDE_FUNCIONARIO = QTDE_FUNCIONARIO-1;
 END IF;
 end;
 /

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 338

Triggers – exemplos práticos

n  Manteremos o total de salário sempre atualizado se:
 create or replace trigger TRIGGER_TOTAL_SALARIO
 AFTER INSERT OR DELETE OR UPDATE OF SALARIO ON FUNCIONARIO
 FOR EACH ROW
 begin
 IF INSERTING THEN
 update RELATORIO
 set TOTAL_SALARIO = TOTAL_SALARIO + :NEW.SALARIO;
 ELSIF DELETING THEN
 update RELATORIO
 set TOTAL_SALARIO = TOTAL_SALARIO - :OLD.SALARIO;

 ELSIF UPDATING THEN
 update RELATORIO

 set TOTAL_SALARIO = TOTAL_SALARIO -
 :OLD.SALARIO + :NEW.SALARIO;
 END IF;
 end;
 /

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 339

Triggers – exemplos práticos

n  Teste:
 [1 0 0] (select * from RELATORIO)

insert into FUNCIONARIO values (1, 'A', 43.9);

 [1 1 43.9]
insert into FUNCIONARIO values (2, 'B', 106.1);

 [1 2 150.0]
insert into FUNCIONARIO values (3, 'C', 40.0);

 [1 3 190.0]
update FUNCIONARIO set SALARIO = 116.1

 where ID_FUNCIONARIO = 2;

 [1 3 200.0]
delete from FUNCIONARIO where ID_FUNCIONARIO = 3;

 [1 2 160.0]

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 340

Triggers – exemplos práticos

n  Solucionando herança por disjunção:

n  Um funcionário é peão ou chefe. Como impedir que seja criado um
mesmo funcionário como peão e como chefe?

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 341

Triggers – exemplos práticos

n  Restrição por chave estrangeira não é suficiente:

 create table FUNCIONARIO (

 ID_FUNCIONARIO number(3) not null,
 NOME varchar2(60) not null,
 constraint PK_FUNCIONARIO primary key (ID_FUNCIONARIO)

);

create table CHEFE (
 ID_CHEFE number(3) not null,
 SALARIO number(8,2) not null,
 constraint PK_CHEFE primary key (ID_CHEFE),
 constraint fk_chefe FOREIGN KEY (ID_CHEFE)
 references FUNCIONARIO(ID_FUNCIONARIO)

);

create table PEAO (
 ID_PEAO number(3) not null,
 CARGA_TRABALHO number(3) not null,
 constraint PK_PEAO primary key (ID_PEAO),
 constraint fk_peao FOREIGN KEY (ID_PEAO)
 references FUNCIONARIO(ID_FUNCIONARIO)

);

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 342

Triggers – exemplos práticos

n  Manteremos a integridade de disjunção se:
q  Ao vincular um funcionário como CHEFE, garantir que ele não seja PEÃO

 create or replace trigger TG_CHEFE
 BEFORE INSERT OR UPDATE OF ID_CHEFE ON CHEFE
 FOR EACH ROW
 declare
 contador NUMBER;
 begin
 select count(ID_PEAO) into contador from PEAO

 where ID_PEAO = :NEW.ID_CHEFE;
 IF contador != 0 THEN
 RAISE_APPLICATION_ERROR(-20515,'JA É PEÃO!');
 END IF;
 end;
 /

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 343

Triggers – exemplos práticos

n  Manteremos a integridade de disjunção se:
q  Ao vincular um funcionário como PEÃO, garantir que ele não seja CHEFE

 create or replace trigger TG_PEAO
 BEFORE INSERT OR UPDATE OF ID_PEAO ON PEAO
 FOR EACH ROW
 declare
 contador NUMBER;
 begin
 select count(ID_CHEFE) into contador from CHEFE

 where ID_CHEFE = :NEW.ID_PEAO;
 IF contador != 0 THEN
 RAISE_APPLICATION_ERROR(-20515,'JA É CHEFE!');
 END IF;
 end;
 /

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 344

Referência Bibliográfica

n  DAWES, Chip; THOMAS, Biju. OCA/OCP: Introduction to Oracle9i™ SQL.
São Francisco: Sibex, 2002.

n  GOYA, M i l ton . Oracle – Tr igger . D ispon íve l em: <h t tp : / /
www.linhadecodigo.com.br/Artigo.aspx?id=322>. Acesso em: 09 set. 2008.

n  GURSAHANI, Ajay. Materialized Views in Oracle. Disponível em: <http://
www.databasejournal.com/features/oracle/article.php/2192071>. Acesso em:
29 maio 2008.

n  ORACLE. Oracle Database Sample Schemas. Disponível em: <http://
download.oracle.com/docs/cd/B12037_01/server.101/b10771.pdf>. Acesso
em: 22 fev. 2008.

Ricardo Terra (rterrabh [at] gmail.com) Outubro, 2008 Apostila Oracle 345

Referência Bibliográfica

n  Oracle PL/SQL Tutorial: Index. Disponível em: <http://www.java2s.com/
Tutorial/Oracle/0180__Index/0020__Create-Index.htm>. Acesso em: 06 jun.
2008.

n  Oracle Roles. Disponível em: <http://www.psoug.org/reference/roles.html>.
Acesso em: 13 jun. 2008.

n  SILBERSCHATZ. A.; KORTH, H. F.; SUDARSHAN, S. Sistemas de bancos
de dados. Tradução de Daniel Vieira. Rio de Janeiro: Editora Campus,
2006. Título original: Database system concepts. 5 ed.

n  TEOREY, T; LIGHTSTONE, S; NADEAU, T. Projeto e Modelagem de
banco de dados. Rio de Janeiro: Elsevier, 2007.

